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This paper extends the results of M-estimation in Koul et al. (2003) to a general nonlinear random design regression model with multiple change-points at unknown times. The M-estimator of locations of breaks and of regression parameters are consistent. Convergence rate and asymptotic distribution are obtained.

Introduction

The statistics literature contains a vast amount of works on issues related to the estimation of the change-point for a parametric regression, most of it specifically designed for the case of a single break. The more used estimators are the maximum likelihood (ML) estimators, the least squares (LS) estimators or a wider class, the M-estimators. For the LS estimators we refer to Feder (1975aFeder ( , 1975b) ) for continuous two-lines models, [START_REF] Lai | Strong consistency of least squares estimates in multiple regression[END_REF],
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ACCEPTED MANUSCRIPT [START_REF] Yao | Least-squares estimation of a step function[END_REF] for a step function, [START_REF] Bai | Estimating and testing linear models with multiple structural changes[END_REF] for multiple structural changes in a linear model. For the ML estimator, when the design is random we refer to [START_REF] Koul | Asymptotics of maximum likelihood estimator in a two-phase linear regression model[END_REF] for two lines model, [START_REF] Ciuperca | Maximum likelihood estimator in a two-phase nonlinear regression model[END_REF] for a single jump in a nonlinear model, [START_REF] Ciuperca | Maximum likelihood estimator in a multi-phase random regression model[END_REF] for multiple change-points in linear and nonlinear model. In the general case of M-estimators, [START_REF] Rukhin | Change-point estimation as a nonlinear regression problem[END_REF] consider the change-point estimation problem as a nonlinear regression problem, the model being continuous, with a single change-point and fixed design. [START_REF] Koul | Asymptotics of M-estimators in twophase linear regression models[END_REF] study the Mestimators in two lines model with random design.

The present paper makes several contributions to the existing literature. The considered design is random, the regression function is nonlineary within the framework of a multi-regime and not lastly, a general method of estimation. We study the properties of the M-estimator in a multi-phase discontinuous nonlinear random regression model with a general error distribution. We generalize, among others, the results for the two-phase random linear model of [START_REF] Koul | Asymptotics of M-estimators in twophase linear regression models[END_REF] obtained by M-estimation, the results obtained by ML estimation of [START_REF] Ciuperca | Maximum likelihood estimator in a multi-phase random regression model[END_REF] for a multiphase random nonlinear model and the results obtained by LS estimation in a multiple nonrandom linear regression of [START_REF] Bai | Estimating and testing linear models with multiple structural changes[END_REF]. An important point of the proofs for the linear case is the relation between the regression function and its derivatives with respect to regression parameters, due to the fact that these derivatives do not depend on parameters.
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Consider the step-function with K (K ≥ 1) fixed change-points, for x ∈ IR:

f θ (x) = h α0 (x)1 1 x≤τ1 + h α1 (x)1 1 τ1<x≤τ2 + ..... + h α K (x)1 1 τ K <x
where θ 1 = (α 0 , α 1 , ...., α K ) are the nonlinear regression parameters and θ 2 = (τ 1 , ..., τ K ), τ 1 < τ 2 < ... < τ K are the change-points. We suppose that, for all

k = 0, 1, ..., K, α k ∈ Γ ⊆ IR d , with Γ compact. We consider θ 2 ∈ IR K and we set θ = (θ 1 , θ 2 ) ∈ Ω = Γ K+1 × IR K .
Consider the random design model:

Y i = f θ (X i ) + ε i , for i = 1, ..., n, where (ε i , X i
) is a sequence of continuous independent random variables with the same joint distribution as (ε, X). The parameter θ 1 and the change-points (or break points) are unknown. The purpose is to estimate θ when n observations of (Y, X) are available. We denote by θ 0 1 = (α 0 0 , α 0 1 , ..., α 0 K ) and θ 0 2 = (τ 0 1 , ..., τ 0 K ), respectively, the true values of the regression parameters and the true changepoints. Let be also θ 0 = (θ 0 1 , θ 0 2 ). We assume that θ 0 1 is an inner point of the set Γ K+1 .

The random variables X and ε satisfy the following assumptions:

(A1) X has a positive absolutely continuous Lebesgue density ϕ on IR. Moreover, IE(X 2 ) < ∞;

(A2) ε has a density absolutely continuous and positive everywhere on IR.

Moreover, IE(ε) = 0, IE(ε 2 ) < ∞;
(A3) the random variables X i and ε i are independent.

Remark 1 In the case h α (x) = a + bx, α = (a, b) and K = 1, assumptions (A1)-(A3) on X and ε are also considered by [START_REF] Koul | Asymptotics of M-estimators in twophase linear regression models[END_REF].

In the following, we denote by C a generic positive finite constant not depend- The nonlinear function h α satisfies the conditions:

(B1) for all x ∈ IR, h α (x) is three times differentiable with respect to α;

(B2) for all x ∈ IR, k ∈ {0, 1, ...K}, ∂h α 0 k (x)/∂α = 0; (B3) the derivatives ∂ 3 h α (x)/∂α 3 , exist for x ∈ IR and there exists the func-

tions F 0 , F 1 , F 2 ∈ L 2 (ϕ) such that: sup α∈Γ |h α (x)| ≤ F 0 (x), sup α∈Γ ∂ j h α (x)/∂α j ≤ F j (x), j = 1, 2 (1) 
The derivative ∂ 3 h α (x)/∂α 3 is a three dimension matrix .

Obviously, in the case h α (x) = a + bx, assumptions (B1), (B2) are verified and (B3) is transformed in (A1). If h α (x) is a polynomial with degree p, assumption (B3) can be replaced by IE(X p+1 ) < ∞. The assumption (B2) is necessary for obtaining the convergence rate of regression parameters estimator, by considering α in a neighborhood of α 0 k .

Let us consider the functions:

d (α k ,α j ) (x) := h α k (x) -h α j (x), x ∈ IR, k, j ∈
{0, 1, ...K} and the jump at the true break point:

d 0 k := d (α 0 k ,α 0 k-1 ) (τ 0 k ).
We make the identifiability assumption that the jump at each τ 0 k is non-zero:

d (α k ,α k-1 ) (τ 0 k ) = 0, ∀α k , α k-1 ∈ Γ, α k = α k-1 , k ∈ {1, ...K} (2) 
a condition which implies that the function f θ is not continuous at the true break points for all regression parameters in Γ. For θ, θ * ∈ Ω, let us denote by δ (θ,θ * ) (x) := f θ (x)f θ * (x) the difference between two models and .

f θ (x) = ∂f θ (x)/∂θ.
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For a function ρ : IR → IR + , let the M-process be:

M n (θ) = n i=1 ρ (Y i -f θ (X i ))
The following assumptions are considered for the function ρ:

(C1) ρ is convex on IR with right-continuous non-decreasing almost every-

where derivative ψ satisfying IE ε [ψ 2 (ε + y)] < ∞, ∀y ∈ IR. The function λ(y) := IE ε [ψ(ε + y)], y ∈ IR, is strictly increasing on IR and λ is continuous at 0 with λ(0) = 0. (C2) for all c ∈ IR, IE (ε,X) [ψ 2 (ε + c sup θ,θ * ∈ Ω δ (θ,θ * ) (X))] < ∞, where Ω is the closure of Ω. (C3) the function y → IE[|ψ(ε + c + y) -ψ(ε)|] is continuous at 0, ∀c ∈ IR.
(C4) the function λ is differentiable in a neighborhood of 0, with derivative λ ′ satisfying λ ′ (0) = 0, and lim a→0 a -1 a 0 |λ ′ (s)λ ′ (0)|ds = 0.

(C5) the random variables ρ(ε ± d 0 k )ρ(ε), ∀k = 1, ..., K, are continuous.

(C6) the function ψ is differentiable on IR.

Assumptions (C1), (C2) are necessary for obtaining the consistency of the estimators, while (C1)-(C6) are used for obtaining the rate of convergence and the asymptotic distribution.

Notice that for the two-phase linear regression function:

f θ (x) = (a 0 +b 0 x)1 1 x≤τ + (a 1 + b 1 x)1 1 x>τ , Koul et al. (2003) consider assumptions (C1)-(C5). Obviously, (C2) becomes: IE (ε,X) [ψ 2 + c 1 + c 2 |X|] < ∞.
The M-estimator is defined by:

θn := θ1n , θ2n = arg min θ∈ Ω M n (θ) a.s.
For constructing the M-estimator, first we search the regression parameters estimator and then we localize the change-points. For a given θ 2 ∈ IR K , we
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Since the number K of the change-points is fixed, the estimator θ1n (θ 2 ) is constant in θ 2 over any interval of two consecutive ordered X i 's. The Mprocess M n ( θ1n (θ 2 ), θ 2 ) has only a finite number of possible values with changepoints located at the ordered X i 's. Second, we find the minimizer θ2n of M n ( θ1n (θ 2 ), θ 2 ). This minimizer may be taken as the left end point of the interval over which it is obtained. Then θ2n = θ2n and the M-estimator is: θn = ( θ1n ( θ2n ), θ2n ). Obviously, θ1n = θ1n ( θ2n ). 

Asymptotic properties

In order to simplify the study of the rate of convergence, three processes defined as the differences between two M-processes are considered. The first one is the difference between a M-process calculated in a some point θ and a M-process at the true point θ 0 :

D n (θ 1 , θ 2 ) := M n (θ 1 , θ 2 ) -M n (θ 0 1 , θ 0 2 ) (3) 
For the second one, the regression parameters vary around θ 0 1 , for w 1 ∈ Γ K+1 :

D (1) n (w 1 ) := M n θ 0 1 + n -1/2 w 1 , θ 0 2 -M n (θ 0 1 , θ 0 2
), the coefficient of w 1 being the rate of convergence of the estimator θ1n , and finally the change-points vary:

D (2) n (θ 1 , θ 2 ) := M n (θ 1 , θ 2 ) -M n (θ 1 , θ 0 2 ).
For certain results of this section the proofs are omitted or we give only their outline. The full versions can be found in the preprint version of this paper [START_REF] Ciuperca | The M-estimation in a multi-phase random nonlinear model (Longer version is[END_REF]).

For each η > 0, denote the η-neighborhood of θ ∈ Ω by:

Ω η (θ) := {θ * = (θ * 1 , θ * 2 ) ∈ Ω / θ * 1 -θ 1 ≤ η, θ * 2 -θ 2 ≤ η}
The following lemma of uniform convergence will be useful in the consistency proof.

Lemma 3.1 Under assumptions (A1), (B1), (B3) and (C2), we have

lim ηց0 IE (ε,X) sup θ * ∈Ωη(θ) |ρ (Y -f θ (X)) -ρ (Y -f θ * (X))| = 0
Proof of Lemma 3.1 We apply a version of the mean value theorem:

ρ (Y -f θ (X))-ρ (Y -f θ * (X)) = δ (θ,θ * ) (X) 1 0 ψ Y -f θ (X) + vδ (θ,θ * ) (X) dv (4) 
We begin by showing that:

IE X sup (θ,θ * )∈Ωη (θ) δ 2 (θ,θ * ) (X) -→ η→0 0 (5) 
Case 1. τ k ∈ IR, ∀k = 1, ..., K. We have:

sup θ * ∈ Ωη(θ) δ (θ,θ * ) (X) ≤ C η sup α∈Γ ∂h α (X) ∂α + 2 sup α∈Γ |h α (X)| K k=1 1 1 |X-τ k |≤η Furthermore IP [|X -τ k | ≤ η] → 0 for η → 0.
Then, using (B3) we obtain [START_REF] Feder | On asymptotic distribution theory in segmented regression problems-identified case[END_REF].

Case 2. τ 1 = -∞ or τ K = ∞. Without loss of generality, we consider τ 1 = -∞. Obviously τ * 1 ≥ τ 1 . We have |τ * 1 -τ 1 | ≤ η. Then: sup θ * ∈Ωη(θ) |δ (θ,θ * ) (X)| ≤ C η sup α∈Γ ∂h α (X) ∂α + 2 sup α∈Γ |h α (X)| 1 1 X<τ * 1 + K k=2 1 1 |X-τ k |≤η A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT But IP [X < τ * 1 ] → 0 for η → 0.
Using assumption (B3) and the Cauchy-Schwarz inequality, we obtain relation [START_REF] Feder | On asymptotic distribution theory in segmented regression problems-identified case[END_REF].

On the other hand, using the inequality:

∀x ∈ IR, |ψ(x + ε)| ≤ |ψ(ε + |x|)| + |ψ(ε -|x|)|
, by the Cauchy-Schwarz inequality, (C2) and relations ( 4), ( 5) we obtain the conclusion.

The next theorem establishes the strong consistency of the M-estimator and shows that the convergence rate of θ2n to θ 0 2 is n -1 and n -1/2 of θ1n to θ 0 1 . Remark 3 Assumptions ( 2) is necessary to prove that: e(θ) = 0 for all θ = θ 0 and then we can apply the Huber (1967) method to prove the convergence.

For x, z ∈ IR, τ ∈ IR K , for each k = 1, ..., K, let be functions:

ν k (x, z) := ρ(z + sgn(τ k -τ 0 k )d (α 0 k ,α 0 k-1 ) (x)) -ρ(z) and p k (x) := IE ε [ν k (x, ε)]. Let us con- sider the functions G k , G k,n : IR * → (0, 1], where IR * = IR \ {0}: G k,n (u k ) := n -1 n i=1 1 1 min(τ 0 k ,τ 0 k +u k )<X i ≤max(τ 0 k ,τ 0 k +u k )
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and its expectation:

G k (u k ) := IE X [1 1 min(τ 0 k ,τ 0 k +u k )<X i ≤max(τ 0 k ,τ 0 k +u k ) ]
. For u = (u 1 , ..., u K ), we define also the functions G, G n :

IR * K → IR + , G(u) := K k=1 G k (u k ), G n (u) := K k=1 G k,n (u k )
Lemma 3.2 Under (A1), for each γ > 0, η > 0, there exists a constant 0 < B < ∞, such that for all b ∈ (0, 1), and n ≥ [B/b] + 1,

IP [ sup B/n< u ≤b | G n (u) G(u) -1| < η] > 1 -γ IP [ sup B/n< u ≤b | K k=1 Z (1) k,n (u k ) G(u) -1| < η] > 1 -γ where Z (1) 
k,n : IR * → IR, k = 1, ..., K is defined by:

Z (1) k,n (u k ) := n -1 n i=1 [p k (X i ) -ν k (X i , ε i )] 1 1 min(τ 0 k ,τ 0 k +u k )<X i ≤max(τ 0 k ,τ 0 k +u k )
Proof of Lemma 3.2 See proof of Lemma 4.3 in Ciuperca(2008).

Let us now given an approximation of the M-process in θ 0 in the direction of the parameters of regression. Let us denote V 0 := IE X .

f θ 0 (X) . f θ 0 (X) t
the Fisher information matrix corresponding to the random model in X. We suppose that the matrix V 0 is inversible. 

sup w1 <b |D (1) n (w 1 ) + n -1/2 w t 1 n i=1 [ . f θ 0 (X i )ψ(ε i )] - λ ′ (0) 2 w t 1 V 0 w 1 | = o IP (1) (7)
Proof of Lemma 3.3 Using (C1), (C4) and (C5), we have that:

D (1) n (w 1 ) = n i=1 f (θ 0 1 ,θ 0 2 ) (X i ) -f (θ 0 1 +n -1/2 w1,θ 0 2 ) (X i ) ψ(ε i ) - 1 2 n i=1 f (θ 0 1 ,θ 0 2 ) (X i ) -f (θ 0 1 +n -1/2 w1,θ 0 2 ) (X i ) 2 ψ ′ (ε i )(1 + o IP (1))
Since λ(0) = 0 and by assumption (1) we obtain:

D (1) n (w 1 ) = -n -1/2 w t 1 n i=1 . f θ 0 (X i )ψ(ε i ) - 1 2 n -1 w t 1 n i=1 . f θ 0 (X i ) . f t θ 0 (X i )w 1 ψ ′ (ε i ) (1+o IP (1))
with o IP (1)) uniformly in w 1 and n. In final, taking into account (A1)-( A3) and (C4), the strong law of large numbers is applied for

n i=1 . f θ 0 (X i ) . f t θ 0 (X i )ψ ′ (ε i ).
Lemma 3.4 For any k random variables Z 1 , ..., Z k we have: 

k i=1 IP [Z i < 0] -(k -1) ≤ IP k i=1 Z i < 0 ≤ k i=1 IP [Z i < 0]
IP inf θ∈ V2b 2 ̺ D (2) n (θ 1 , θ 2 ) nG(|θ 2 -θ 0 2 |) > γ 2 > 1 -γ/2, ∀n > n 2 ( 8 
)
where

V 2b2̺ = {θ ∈ Ω ̺ (θ 0 ); n θ 2 -θ 0 2 > b 2 } for some b 2 > 0.
Proof of Lemma 3.5 For each change-point τ 0 k , consider the processes:

S (1) k,n (θ 1 , u k ) := n -1 n i=1 ρ(ε i + d (α 0 k ,α k-1 ) (X i )) -ρ(ε i + d (α 0 k ,α 0 k-1 ) (X i )) 1 1 min(τ 0 k ,τ 0 k +u k )<X i ≤max(τ 0 k ,τ 0 k +u k ) S (2) k,n (θ 1 , u k ) := n -1 n i=1 [ρ(ε i )-ρ(ε i +d (α 0 k ,α k ) (X i ))]1 1 min(τ 0 k ,τ 0 k +u k )<X i ≤max(τ 0 k ,τ 0 k +u k )
and the functions:

Z (2) k,n : IR * → IR, k = 1, ..., K: Z (2) k,n (u k ) := n -1 n i=1 [p k (X i ) -p k (τ 0 k )] 1 1 min(τ 0 k ,τ 0 k +u k )<X i ≤max(τ 0 k ,τ 0 k +u k )
Let us consider θ 2 = θ 0 2 + u with u = (u 1 , ..., u K ). Then:

n -1 D (2) n (θ 1 , θ 2 ) = K k=1 p k (τ 0 k )G k (u k ) + K k=1 p k (τ 0 k ) [G k,n (u k ) -G k (u k )] + K k=1 Z (1) k,n (u k ) + Z (2) k,n (u k ) + S (1) k,n (θ 1 , u k ) + S (2) k,n (θ 1 , u k )
The lemma will result by showing that the supremum on the set V2b2̺ of all terms on the right-hand side of the last relation, except the first, divided by
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that the first term is strictly positive with the probability 1. By Fubini's lemma, ( 2), (A2), (C1) and since the function λ is strictly increasing and λ(0) = 0, we have: p k (τ 0 k ) > 0, for each k = 1, ..., K.

For all u k ≤ ̺:

|Z (2) k,n (u k )| ≤ sup 0≤υ≤̺ |p k (τ 0 k + υ) -p k (τ 0 k )| G k,n (u k ). By (C1), Lemma 3.2, ∀̺ > 0, ∃B 1 > 0 such that: sup B1/n< u ≤̺ K k=1 Z (2) k,n (u k ) G(u) = o IP (1) for n → ∞, ̺ ց 0
We have a similar relation for Z

k,n , for a B 2 > 0 and n > B 2 /̺.

On the other hand, for each η > 0:

IP      | K k=1 p k (τ 0 k )[G k,n (u k ) -G k (u k )]| G(u) < η      ≥ IP K k=1 |G k,n (u k ) -G k (u k )| G k (u k ) < η max k p k (τ 0 k ) ≥ K k=1 IP |G k,n (u k ) -G k (u k )| G k (u k ) < η max k p k (τ 0 k ) -(K -1)
the last inequality is obtained by Lemma 3.4. By Lemma 3.2, ∀η, γ > 0, ∃B 5 > 0 such that the probability which intervenes in the last inequality is bigger than 1γ. The nonlinearity not occuring in an essential way in the rest of proof, we prefer omit it (see proof of Lemma 4.5 in Ciuperca(2008)).

Lemma 3.6 Under assumptions (2), (A1)-(A3), (B1), (B3), (C2), if we de-

fine A n (w 1 , t) := D (2) n θ 0 1 + n -1/2 w 1 , θ 0 2 + n -1 t -D (2) n (θ 0 1 , θ 0 2 + n -1 t), we have, for every b ∈ (0, ∞): sup (w1,t) ≤b |A n (w 1 , t)| = o IP (1)
Proof of Lemma 3.6 See proof of Lemma 4.6 of Ciuperca(2008).

Let us consider t ∈ IR * K and w 1 ∈ Γ K+1 . For D n defined by (3) as a process in the standardized parameters, we have the following decomposition:

D n θ 0 1 + n -1/2 w 1 , θ 0 2 + n -1 t = D (1) n (w 1 ) + D (2) n θ 0 1 + n -1/2 w 1 , θ 0 2 + n -1 t (9) 
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where:

Q n (w 1 ) = M n (θ 0 1 , θ 0 2 ) -n -1/2 w t 1 n i=1 . f θ 0 (X i )ψ(ε i ) + λ ′ (0) 2 w t 1 V 0 w 1 .
Then [START_REF] Bai | Estimating and testing linear models with multiple structural changes[END_REF]. Taking into account (C1),

n 1/2 ( θ1n -θ 0 1 ) = [λ ′ (0)] -1 V -1 0 Z n + o IP
Z n L -→ n→∞ N (K+1)d (0, V 0 IE ε [ψ 2 (ε)]).
In view of Theorem 3.1 (ii) for the change-point estimator, we have:

n( θ2n -θ 0 2 ) = arg min t∈IR K D (2) n θ 0 1 , θ 0 2 + n -1 t + o IP (1)
For study jointly the distribution of Z n and of D (2) n we apply Theorem 4.2

of [START_REF] Koul | Asymptotics of M-estimators in twophase linear regression models[END_REF] for f n (X, ε) :

= . f θ 0 1 (X)ψ(ε) and h n (X, ε) := ρ(ε + d (α 0 k ,α 0 k-1 ) (X)) -ρ(ε). Note that: D (2) n (θ 0 1 , θ 0 2 + n -1 t) = n i=1 K k=1 h n (X i , ε i )1 1 min{τ 0 k ,τ 0 k +t k /n}<X i ≤max{τ 0 k ,τ 0 k +t k /n} . On the other hand, for ξ n (x, z) := IE ε exp in -1/2 z t f n (X, ε) |X = x , we have: |n (1 -ξ n (x, z))| ≤ IE ε [ψ 2 (ε)] 2 z t . f θ 0 1 (x) 2 ≤ CIE ε ψ 2 (ε) z 2 sup α ∂h α (x) ∂α 2
By assumptions (1) and (A1), we obtain that n (1ξ n (x, z)) is uniformly integrable with respect to dH(x), where H is the distribution function of X.

Thus n (1 -ξ n (x, z)) → IE ε [ψ 2 (ε)] z t Λ(x)z, with: Λ(x) := . f θ 0 1 (x) . f t θ 0 1 (x) and Λ := V 0 = IE X [Λ(X)]. Whence: Z n , D (2) n (θ 0 1 , θ 0 2 + n -1 t) L -→ n→∞ N (K+1)d 0, V 0 IE ε [ψ 2 (ε)] , P(t) in IR (K+1)d × D(-∞, ∞) K with P(t) := K k=1 P k (t k ). The random vector N (K+1)d (0, V 0 IE ε [ψ 2 (ε)]) is independent of P k , k = 1, ..., K.
We prove now that n( θ2nθ 0 2 ) converges weakly to the smallest minimizer Π - of the process P and show then that the components of this vector coincide with the minimizer of P k (t k ), with the probability 1. Seen the Skorokhod space definition, D(-∞, ∞), we consider that change-points vary in a compact of IR K .
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We Then, we shall first prove that for all b > 0:

n( θb 2n -θ 0 2 ) L -→ n→∞ Π b - (12) 
For t ∈ [-b, b] K , b = (b, ..., b) a K-vector, we consider the random process

P b (t) := P(t)1 1 |t|< b and: Mb n (t) := M n θ1n (θ 0 2 + n -1 t), θ 0 2 + n -1 t -M n θ1n (θ 0 2 ), θ 0 2 1 1 |t|< b.
Let also, for v ∈ IR, the random process:

H k n (v) = n i=1 ρ(ε i + sign(v)d 0 k ) -ρ(ε i ) 1 1 min(τ 0 k ,τ 0 k +n -1 v)<X i ≤max(τ 0 k ,τ 0 k +n -1 v)
and theirs sum:

H n (t) = K k=1 H k n (t k ). So by (C3), IE (ε,X) sup t ≤b D (2) n (θ 0 2 + n -1 t) -H n (t)
is bounded to upper by 

n K k=1 |x-τ 0 k |≤n -1 b ϕ(x)IE ε ρ ε + d (α 0 k ,α 0 k-1 ) (x) -ρ ε + sign(t k )d 0 k dx = n K k=1 |x-τ 0 k |≤n -

A

  C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT ing on n. For a vector v = (v 1 , ..., v K ) we denote by v its Euclidean norm and we make the convention that |v| = (|v 1 |, ..., |v K |). For a three dimension matrix R = (r ijk ) we can consider the norm R 1 = i,j,k |r ijk |.

Remark 2

 2 The considered model and the estimator are very general. The class of M-estimators includes the LS (ρ(x) = x 2 ), ML (ρ(.) = log ϕ ε (.), with ϕ ε the density of ε) and least absolute deviations (LAD) estimators (ρ(x) = |x|). Examples of distributions satisfying these conditions include Normal for X, double exponential or Normal for the errors ε if ρ(x) = |x| a , a ∈ {1/2, 2}.

Theorem 3 . 1 6 )

 316 (i) Under assumptions (2), (A1), (A3), (B1), (B3), (C1) and (C2) we have: θn a.s. Under assumptions (2), (A1)-(A3), (B1)-(B3), (C1)-(C6), we have n θ2nθ 0 2 = O IP (1), n 1/2 θ1nθ 0 1 = O IP (1) (Proof of Theorem 3.1 Lemma 3.1 is used to show (i). For (ii), Lemmas 3.3, 3.5, 3.6 are needed. The full version of the proof is given in the preprint version of this paper (Ciuperca (2008)).

Lemma 3 . 3

 33 Under assumptions (A1)-(A3), (B1), (B3), (C1), (C4)-(C6), for each b ∈ (0, ∞):

Lemma 3 . 5

 35 Under assumptions (2), (A1)-(A3), (B1), (B3), (C1)-(C5), for all positive numbers γ and c, there exist γ 2 , b 2 ∈ (0, ∞), ̺ ∈ (0, 1), and n 2 ∈ IN such that: γ 2 b 2 inf k ϕ(τ 0 k ) > 2c and that:

  consider the M-estimator of the change-points: θb 2n := arg min t∈[-b,b] K M n θ1n (t), t and the minimizer of P(t): Π b -:= arg min t∈[-b,b] K P(t), for a fixed b > 0. By Theorem 3.1, there is a real number b < ∞ such that θ2n -θb 2n → 0 a.s. for n → ∞. More, it also exists a real b < ∞ such that Π -= Π b -with a probability arbitrarily large.

2 = o( 1 )Remark 4 Remark 5

 2145 1 b ϕ(x)IE ε |d (α 0 k ,α 0 k-1 ) (x)d 0 k | |ψ(ε + y x )| dx, with y x → 0, for x → 0 ≤ Cn K k=1 |x-τ 0 k |≤n -1 b |xτ 0 k | sup α ∂h α (x) ∂α ϕ(x)IE ε [ψ(ε + y x )] dx But ϕ(x) < C and IE ε [ψ(ε + y x )]< C as a continuously function on a compact. Then, by the Cauchy-Schwarz inequality:IE (ε,X) sup t ≤b D (2) n (θ 0 2 + n -1 t) -H n (t) ≤ Cn Hence: sup t ≤b Mb n (t) -H n (t) = o IP (1). Let us consider: Π b n = arg min t∈[-b,b] K H n (t).By Lemmas 4.3 and 4.4 of Koul et al. (2003) we obtain: n( θb 2nθ 0 2 ) -Π b n -. Then relation (12) follows. Because for A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT two different change-points we have to make of two independent sets of random variables we have that: arg min t∈[-b,b] K H n (t)) = K k=1 arg min t k ∈[-b,b] H k n (t k )).The last relation, with[START_REF] Van Der Geer | Regression analysis and empirical processes[END_REF] and Π that the asymptotic dis-tribution of n( θ2nθ 0 2 ) is Π -. Consequence ofTheorem 3.2, we can find the confidence interval or make hypothesis test for the parameter θ. The discontinuity in the change-points of the regression functions influences the rate of convergence of the change-point estimator. The proved results are differently from those in the continuous or discontinuous in the change-points for non-random design cases. For example, Van der Geer (1988) prove that in the uniform non-random design two-phase, discontinuous, the limiting distribution of the change-point estimator is determined by a Brownian motion with a linear drift. Rukhin and Vajda (1997) for a continuous model prove that the change-point M-estimator is asymptotically normal.

Acknowledgements The author would like to thank the referee for carefully reading the paper and for his comments which greatly improved the paper.

A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT

Let us consider the random vector:

The next theorem gives the joint asymptotic distributions of the M-estimators.

For θ1n , the asymptotic approximation expression is similar to that of the M-estimator in a model without break. The asymptotic distribution of the change-points estimators depends only on the density of X in the true break points and on the difference ρ(ε

, where, for k = 1, ..., K:

P k1 and P k2 are two independent compound Poisson processes on [0, ∞) with rate ϕ(τ 0 k ) and P k1 (0) = P k2 (0) = 0. The distribution of jumps is given by:

Proof of Theorem 3.2 We give the outline of the proof.

Using the approximation results obtained in Lemmas 3.3, 3.6 and also the decomposition:

we have an asymptotic approximation for the standardized M-process as the sum of two processes. The first is the quadratic form Q n (w 1 ) in the standardized regression parameters, the second is a empirical process in the standardized change-point parameters:

M n θ 0 1 + n -1/2 w 1 , θ 0 2 + n -1 t = Q n (w 1 ) + D (2) n (θ 0 1 , θ 0 2 + n -1 t) + o IP (1) [START_REF] Rukhin | Change-point estimation as a nonlinear regression problem[END_REF]