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1 Motivations

We observe n stochastic processes Y1(t), . . . , Yn(t), t ∈ [0, 1], such that, for any
v ∈ {1, . . . , n},

dYv(t) = (fXv
⋆ g)(t)dt+ dWv(t), (1)

where

(fXv
⋆ g)(t) =

∫ 1

0

fXv
(t− u)g(u)du,

W1(t), . . . ,Wn(t) are n unobserved independent standard Brownian motions,
g : [0, 1] → R is a known 1-periodic function, X1, . . . , Xn are n unobserved
independent discrete random variables such that, for any v ∈ {1, . . . , n}, the
distribution of Xv is known, the set of possible values of Xv is

Xv(Ω) = {1, . . . ,m}, m ∈ N
∗,
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and, for any d ∈ {1, . . . ,m}, fd : [0, 1] → R is an unknown 1-periodic function.
We suppose that X1, . . . , Xn,W1(t), . . . ,Wn(t) are independent. For a fixed

ω ∈ {1, . . . ,m}, we want to estimate fω and its q-th derivative f
(q)
ω from

Y1(t), . . . , Yn(t). An application of this estimation problem is the following:
m blurred and noise-perturbed signals f1, . . . , fm are randomly observed, and
only fω is of interest. The blurring process is achieved through the convolution

operator T (h) = (h ⋆ g)(t) =
∫ 1

0
h(t− u)g(u)du.

Remark that, when X1, . . . , Xn are constant random variables with X1 =
. . . = Xn = 1, (1) gives

dỸ (t) = (f1 ⋆ g)(t)dt+
1√
n
dW̃ (t), (2)

where

Ỹ (t) =
1

n

n∑

v=1

Yv(t), W̃ (t) =
1√
n

n∑

v=1

Wv(t).

Since W̃ (t) is a standard Brownian motion, (2) becomes the standard convo-
lution model. In this case, the estimation of f1 has received a lot of attention.
See e.g. Cavalier and Tsybakov (2002), Johnstone et al. (2004), Donoho and
Raimondo (2004), Kerkyacharian et al. (2007) and Chesneau (2008).

However, to the best of our knowledge, the estimation of fω (and f
(q)
ω )

from the general model (1) has not been addressed earlier. Note that the

estimation of f
(q)
ω is of interest to detect possible bumps, concavity or convexity

properties of fω. In the literature on nonparametric functional estimation, the
problem of estimating the derivatives have been investigated by several authors
starting with Bhattacharya (1967). For references using wavelet methods, see
e.g. Prakasa Rao (1996), Chaubey and Doosti (2005), Chaubey et al. (2006,
2008) and Chesneau (2010).

Considering the ordinary smooth case on g (see (4)), we estimate f
(q)
ω (in-

cluding f
(0)
ω = fω) by two wavelet estimators: a linear nonadaptive and a non-

linear adaptive based on the hard thresholding rule. Our adaptive estimator
uses a singular value decomposition (SVD), some algebraic tools on the dis-
tributions of X1, . . . , Xn and a new version of the “observations thresholding”
introduced by Delyon and Juditsky (1996). To evaluate their performances,
we adopt the mean integrated squared error (MISE) over Besov balls. Under
mild assumptions on the distributions of X1, . . . , Xn, we prove that our hard
thresholding estimator attains a sharp rate of convergence, close to the one
attained by our linear wavelet estimator.

The paper is organized as follows. Assumptions on (1) and some notations
are introduced in Section 2. Section 3 briefly describes the wavelet basis and
the Besov balls. The estimators are presented in Section 4. The results are set
in Section 5. Technical proofs are given in Section 6.
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2 Assumptions and notations

Assumptions on f1, . . . , fm and g.
– We assume that f1, . . . , fm and g belong to L

2
per([0, 1]) defined by

L
2
per([0, 1]) =

{
h; h is 1-periodic and

(∫ 1

0

|h(x)|2dx
)1/2

<∞
}
.

– We suppose that there exists a known constant C∗ > 0 such that

sup
d∈{1,...,m}

sup
x∈[0,1]

|f (q)d (x)| ≤ C∗. (3)

Assumptions on the smoothness of g. Any function h ∈ L
2
per([0, 1]) can

be represented by its Fourier series

h(t) =
∑

ℓ∈Z

Fℓ(h)e
2iπℓt, t ∈ [0, 1],

where the equality is intended in mean-square convergence sense, and Fℓ(h)
denotes the Fourier coefficient given by

Fℓ(h) =

∫ 1

0

h(x)e−2iπℓxdx, ℓ ∈ Z,

whenever this integral exists. The notation · will be used for the complex
conjugate.
We consider the ordinary smooth case on g: there exist three constants,
cg > 0, Cg > 0 and δ > 1, such that, for any ℓ ∈ Z, Fℓ(g) satisfies

cg
(1 + ℓ2)δ/2

≤ |Fℓ(g)| ≤
Cg

(1 + ℓ2)δ/2
. (4)

This assumption controls the decay of the Fourier coefficients of g, and
thus the smoothness of g. It is a standard hypothesis usually adopted in
the field of nonparametric estimation for deconvolution problems. See e.g.
Pensky and Vidakovic (1999), Fan and Koo (2002) and Johnstone et al.
(2004).

Assumptions on X1, . . . , Xn. Recall that X1, . . . , Xn are unobserved and,
for any v ∈ {1, . . . , n}, we let

wd(v) = P(Xv = d), d ∈ {1, . . . ,m}.

We suppose that the matrix

Γn =

(
1

n

n∑

v=1

wk(v)wℓ(v)

)

(k,ℓ)∈{1,...,m}2
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satisfies det(Γn) > 0. For the considered ω (the one which refers to the

estimation of f
(q)
ω ) and any v ∈ {1, . . . , n}, we set

aω(v) =
1

det(Γn)

m∑

k=1

(−1)k+ωγnω,kwk(v), (5)

where γnω,k denotes the determinant of the minor (ω, k) of the matrix Γn.
Then (aω(v))v∈{1,...,n} satisfy

(aω(1), . . . , aω(n)) = argmin
(b1,...,bn)∈∩m

d=1Uω,d

1

n

n∑

v=1

b2v, (6)

where

Uω,d =

{
(b1, . . . , bn) ∈ R

n;
1

n

n∑

v=1

bvwd(v) = δω,d

}

and δω,d is the Kronecker delta.
Technical details can be found in Maiboroda (1996).
We set

ρn =
1

n

n∑

v=1

a2ω(v) (7)

and we suppose that limn→∞ ρn/n = ∞.
The sequence (aω(v))v∈{1,...,n} is usually used in the field of nonparamet-
ric statistics for mixture density estimation problems. See e.g. Maiboroda
(1996), Pokhyl’ko (2005) and Prakasa Rao (2010).

3 Wavelets and Besov balls

Periodized Meyer wavelets. We consider an orthonormal wavelet basis
generated by dilations and translations of a “father” Meyer-type wavelet φ
and a “mother” Meyer-type wavelet ψ. The main features of such wavelets
are:
1. the Fourier transforms of φ and ψ have compact supports with





supp (F(φ)) ⊂
[
−4π

3
,
4π

3

]
,

supp (F(ψ)) ⊂
[
−8π

3
,−2π

3

]
∪
[
2π

3
,
8π

3

]
,

2. the functions φ and ψ are C∞.
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For the purpose of this paper, we use the periodized Meyer wavelet bases on
the unit interval. For any x ∈ [0, 1], any integer j and any k ∈ {0, . . . , 2j −
1}, let

φj,k(x) = 2j/2φ(2jx− k), ψj,k(x) = 2j/2ψ(2jx− k)

be the elements of the wavelet basis, and

φperj,k (x) =
∑

l∈Z

φj,k(x− l), ψper
j,k (x) =

∑

l∈Z

ψj,k(x− l),

be their periodized versions. There exists an integer j∗ such that, for any
integer jc ≥ j∗, the collection B = {φperjc,k

, k ∈ {0, . . . , 2jc − 1}; ψper
j,k , j ∈

N − {0, . . . , jc − 1}, k ∈ {0, . . . , 2j − 1}} forms an orthonormal basis
of L2

per([0, 1]). In what follows, the superscript “per” will be dropped to
lighten the notation.
Let jc be an integer such that jc ≥ j∗. A function h ∈ L

2
per([0, 1]) can be

expanded into a wavelet series as

h(x) =

2jc−1∑

k=0

αjc,kφjc,k(x) +

∞∑

j=jc

2j−1∑

k=0

βj,kψj,k(x), x ∈ [0, 1],

where

αj,k =

∫ 1

0

h(x)φj,k(x)dx, βj,k =

∫ 1

0

h(x)ψj,k(x)dx. (8)

See (Meyer 1992, Vol. 1 Chapter III.11) for a detailed account on periodized
orthonormal wavelet bases.

Besov balls. Let M > 0, s > 0, p ≥ 1 and r ≥ 1. A function h belongs to
Bs

p,r(M) if and only if there exists a constantM∗ > 0 such that the wavelet
coefficients (8) satisfy

2j∗(1/2−1/p)




2j∗−1∑

k=0

|αj∗,k|p



1/p

+




∞∑

j=j∗


2j(s+1/2−1/p)




2j−1∑

k=0

|βj,k|p



1/p



r


1/r

≤ M∗.

For a particular choice of parameters s, p and r, these sets contain the
Hölder and Sobolev balls. See Meyer (1992).

4 Estimators

Estimators for wavelet coefficients. The first step to estimate f
(q)
ω con-

sists in expanding f
(q)
ω on B and estimating its unknown wavelet coeffi-

cients.
For any integer j ≥ j∗ and any k ∈ {0, . . . , 2j − 1},
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– we estimate αj,k =
∫ 1

0
f
(q)
ω (x)φj,k(x)dx by

α̂j,k =
1

n

n∑

v=1

aω(v)
∑

ℓ∈Cj

(2iπℓ)q
Fℓ (φj,k)

Fℓ(g)

∫ 1

0

e−2iπℓtdYv(t), (9)

where Cj = supp (F(φj,0)) = supp (F (φj,k)) and aω(v) is defined by
(5),

– we estimate βj,k =
∫ 1

0
f
(q)
ω (x)ψj,k(x)dx by

β̂j,k =
1

n

n∑

v=1

Qv1{|Qv|≤ηj}, (10)

where

Qv = aω(v)
∑

ℓ∈Dj

(2iπℓ)q
Fℓ (ψj,k)

Fℓ(g)

∫ 1

0

e−2iπℓtdYv(t), (11)

Dj = supp (F(ψj,0)) = supp (F (ψj,k)), for any random event A, 1A is
the indicator function on A, aω(v) is defined by (5),

ηj = θ2(δ+q)j

√
nρn

ln(n/ρn)
,

ρn is defined by (7) and

θ =

√

3C2
∗ + 2δ

2(2π)2q

c2g

(
8π

3

)2(δ+q)

. (12)

(C∗, cg and δ are those in (3) and (4)).

Statistical properties of α̂j,k and β̂j,k are investigated in Propositions 1, 3,
4 and 5.

Remarks.
– The constructions of α̂j,k and β̂j,k are based on a SVD technique (see

Proposition 1).
– The idea of the thresholding in (10) is to operate a selection on the ob-

servations: when, for v ∈ {1, . . . , n}, Qv is too large, Yv(t) is neglected.
From a technical point of view, this allows us to estimate βj,k in an opti-
mal way under mild assumptions on (aω(v))v∈{1,...,n} and, a fortiori, on
the distributions of X1, . . . , Xn. Such a thresholding method has been
introduced by Delyon and Juditsky (1996) for regression wavelet esti-
mation. Note that, in the simplest case where X1, . . . , Xn are constant
random variables, such a selection is not necessary.

We consider two wavelet estimators for f
(q)
ω : a linear estimator and a hard

thresholding estimator.
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Linear estimator. Assuming that f
(q)
ω ∈ Bs

p,r(M) with p ≥ 2, we define the

linear estimator f̂
(q)
L by

f̂
(q)
L (x) =

2j0−1∑

k=0

α̂j0,kφj0,k(x), (13)

where α̂j,k is defined by (9), j0 is the integer satisfying

1

2

(
n

ρn

)1/(2s+2δ+2q+1)

< 2j0 ≤
(
n

ρn

)1/(2s+2δ+2q+1)

,

ρn is defined by (7) and δ is the one in (4).

Note that f̂
(q)
L is not adaptive since it depends on s.

Hard thresholding estimator. We define the hard thresholding estimator

f̂
(q)
H by

f̂
(q)
H (x) =

2j∗−1∑

k=0

α̂j∗,kφj∗,k(x) +

j1∑

j=j∗

2j−1∑

k=0

β̂j,k1{|β̂j,k|≥κλj}ψj,k(x), (14)

where α̂j∗,k is defined by (9), β̂j,k by (10), j1 is the integer satisfying

1

2

(
n

ρn

)1/(2δ+2q+1)

< 2j1 ≤
(
n

ρn

)1/(2δ+2q+1)

,

κ ≥ 8/3 + 2 + 2
√

16/9 + 4, λj is the threshold

λj = θ2(δ+q)j

√
ρn ln(n/ρn)

n
, (15)

ρn is defined by (7), θ by (12) and δ is the one in (4).

Note that f̂
(q)
H is adaptive.

The feature of the hard thresholding estimator is to only estimate the

“large” unknown wavelet coefficients of f
(q)
ω which contain the main char-

acteristics of f
(q)
ω .

Hard thresholding estimators for other deconvolution problems than (1)
can be found in Fan and Koo (2002), Johnstone et al. (2004), Willer (2005)
and Cavalier and Raimondo (2007).

5 Results

Upper bounds for f̂
(q)
L and f̂

(q)
H are given in Theorems 1 and 2 below. Further

details on our statistical approach can be found in Tsybakov (2004).
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Theorem 1 Consider (1) under the assumptions of Section 2. Suppose that

f
(q)
ω ∈ Bs

p,r(M) with s > 0, p ≥ 2 and r ≥ 1. Let f̂
(q)
L be (13). Then there

exists a constant C > 0 such that

E

(∫ 1

0

(
f̂
(q)
L (x)− f (q)ω (x)

)2
dx

)
≤ C

(ρn
n

)2s/(2s+2δ+2q+1)

.

The proof of Theorem 1 uses a moment inequality on (9) and a suitable de-

composition of the MISE. Note that f̂
(q)
L is constructed to minimize the MISE

as much as possible. For this reason, our benchmark will be the rate of con-

vergence (ρn/n)
2s/(2s+2δ+2q+1)

.

Theorem 2 Consider (1) under the assumptions of Section 2. Let f̂
(q)
H be

(14). Suppose that f
(q)
ω ∈ Bs

p,r(M) with r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2)
and s > (2δ + 2q + 1)/p}. Then there exists a constant C > 0 such that

E

(∫ 1

0

(
f̂
(q)
H (x)− f (q)ω (x)

)2
dx

)
≤ C

(
ρn ln(n/ρn)

n

)2s/(2s+2δ+2q+1)

.

The proof of Theorem 2 is based on several probability results (moment in-
equalities, concentration inequality,. . . ) and a suitable decomposition of the
MISE.

Theorem 2 shows that, besides being adaptive, f̂
(q)
H attains the same rate

of convergence than the one of f̂
(q)
L up to a logarithmic term. Naturally,

in the simplest case where X1, . . . , Xn are constant random variables with

X1 = . . . = Xn = 1 (so ρn = 1 and f
(q)
ω = f

(q)
1 ), the rate of convergence

attained by f̂
(q)
H becomes the standard one for (2) i.e. (lnn/n)2s/(2s+2δ+2q+1).

See Johnstone et al. (2004) and Chesneau (2010).

Conclusion and perspectives. Considering (1), we have developed a

new adaptive estimator f̂
(q)
H for f

(q)
ω . It is based on a SVD, wavelets and the

hard thresholding rule. It attains a sharp rate of convergence for a wide class
of functions. Possible perspectives of this work are

– to investigate the case where the distributions of X1, . . . , Xn are unknown,

– to potentially improve the estimation of f
(q)
ω by considering other kinds of

thresholding rules as the block thresholding one (BlockJS, . . . ). See e.g.
Cai (1999, 2002), Pensky and Sapatinas (2009) and Petsa and Sapatinas
(2009).

All these aspects need further investigations that we leave for a future work.

6 Proofs

In this section, C represents a positive constant which may differ from one
term to another.
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6.1 Auxiliary results

Proposition 1 For any integer j ≥ j∗ and any k ∈ {0, . . . , 2j − 1}, let αj,k

and βj,k be the wavelet coefficients (8) of f
(q)
ω . Then

– α̂j,k defined by (9) is an unbiased estimator of αj,k,
– for (Qv)v∈{1,...,n} defined by (11), we have

E

(
1

n

n∑

v=1

Qv

)
= βj,k.

Proof of Proposition 1. We have
∫ 1

0

e−2iπℓtdYv(t) =

∫ 1

0

e−2iπℓt(fXv ⋆ g)(t)dt+

∫ 1

0

e−2iπℓtdWv(t)

with
∫ 1

0

e−2iπℓt(fXv ⋆ g)(t)dt = Fℓ(fXv ⋆ g) = Fℓ(fXv )Fℓ(g). (16)

Since E

(∫ 1

0
e−2iπℓtdWv(t)

)
= 0, we have

E

(∫ 1

0

e−2iπℓtdYv(t)

)
= E (Fℓ(fXv ))Fℓ(g) + E

(∫ 1

0

e−2iπℓtdWv(t)

)

=

m∑

d=1

wd(v)Fℓ(fd)Fℓ(g). (17)

Note that, since fω is 1-periodic, for any u ∈ {0, . . . , q}, f (u)ω is 1-periodic and

f
(u)
ω (0) = f

(u)
ω (1). By q integrations by parts, for any ℓ ∈ Z, we obtain

(2iπℓ)qFℓ(fω) = Fℓ

(
f (q)ω

)
. (18)

It follows from (17), (6), (18) and the Parseval-Plancherel theorem that

E (α̂j,k) =
1

n

n∑

v=1

aω(v)
∑

ℓ∈Cj

(2iπℓ)q
Fℓ (φj,k)

Fℓ(g)
E

(∫ 1

0

e−2iπℓtdYv(t)

)

=
1

n

n∑

v=1

aω(v)
∑

ℓ∈Cj

(2iπℓ)q
Fℓ (φj,k)

Fℓ(g)

m∑

d=1

wd(v)Fℓ(fd)Fℓ(g)

=

m∑

d=1


∑

ℓ∈Cj

(2iπℓ)qFℓ (φj,k)Fℓ(fd)


 1

n

n∑

v=1

aω(v)wd(v)

=
∑

ℓ∈Cj

Fℓ (φj,k)(2iπℓ)
qFℓ(fω) =

∑

ℓ∈Cj

Fℓ (φj,k)Fℓ

(
f (q)ω

)

=

∫ 1

0

φj,k(x)f
(q)
ω (x)dx = αj,k.
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Similarly, taking ψ instead of φ, we prove that E
(
1
n

∑n
v=1Qv

)
= βj,k.

This completes the proof of Proposition 1.

�

Proposition 2 For any integer j ≥ j∗ and any k ∈ {0, . . . , 2j − 1}, set

Rj,k =
∑

ℓ∈Cj

(2iπℓ)q
Fℓ (φj,k)

Fℓ(g)

∫ 1

0

e−2iπℓtdYv(t).

Then

E(|Rj,k|2) ≤ θ222(δ+q)j ,

where θ is defined by (12).

Proof of Proposition 2. We have

E(|Rj,k|2) = E(E(|Rj,k|2|Xv)) = E(V(Rj,k|Xv)) + E(|E(Rj,k|Xv)|2). (19)

Let us bound E(V(Rj,k|Xv)) and E(|E(Rj,k|Xv)|2) in turn.
Upper bound for E(V(Rj,k|Xv)). Since (e

−2iπℓt)ℓ∈Z is an orthonormal basis

of L2
per([0, 1]) andX1, . . . , Xn,W1(t), . . . ,Wn(t) are independent,

(∫ 1

0
e−2iπℓtdYv(t)

)
ℓ∈Cj

conditionally to Xv are also independent. Therefore

V (Rj,k|Xv) =
∑

ℓ∈Cj

(2πℓ)2q
|Fℓ (φj,k)|2
|Fℓ(g)|2

V

(∫ 1

0

e−2iπℓtdYv(t)|Xv

)
. (20)

Using the elementary inequality (x + y)2 ≤ 2(x2 + y2), (x, y) ∈ R
2, the inde-

pendence of X1, . . . , Xn,W1(t), . . . ,Wn(t), (16) and the fact that (e−2iπℓt)ℓ∈Z

is an orthonormal basis of L2
per([0, 1]), we obtain

V

(∫ 1

0

e−2iπℓtdYv(t)|Xv

)
≤ E

(∣∣∣∣
∫ 1

0

e−2iπℓtdYv(t)

∣∣∣∣
2

|Xv

)

≤ 2

(∣∣∣∣
∫ 1

0

e−2iπℓt(fXv
⋆ g)(t)dt

∣∣∣∣
2

+ E

(∣∣∣∣
∫ 1

0

e−2iπℓtdWv(t)

∣∣∣∣
2
))

= 2
(
|Fℓ(fXv

)|2|Fℓ(g)|2 + 1
)
.

Hence

E

(
V

(∫ 1

0

e−2iπℓtdYv(t)|Xv

))
≤ 2

(
E
(
|Fℓ(fXv

)|2
)
|Fℓ(g)|2 + 1

)
. (21)

It follows from (20) and (21) that

E(V(Rj,k|Xv)) ≤ 2 (A+B) , (22)
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where

A =
∑

ℓ∈Cj

(2πℓ)2q|Fℓ (φj,k) |2E
(
|Fℓ(fXv

)|2
)

and

B =
∑

ℓ∈Cj

(2πℓ)2q
|Fℓ (φj,k) |2
|Fℓ(g)|2

.

Let us now bound A and B in turn.
Upper bound for A. It follows from (18) and (3) that

(2πℓ)2qE
(
|Fℓ(fXv )|2

)
= E

(
|Fℓ

(
f
(q)
Xv

)
|2
)
≤ C2

∗ .

The Parseval-Plancherel theorem gives
∑

ℓ∈Cj
|Fℓ (φj,k) |2 =

∫ 1

0
|φj,k(x)|2dx =

1. So

A ≤ C2
∗

∑

ℓ∈Cj

|Fℓ (φj,k) |2 = C2
∗ . (23)

Upper bound for B. The assumption (4) and the elementary inequality |x +
y|δ ≤ 2δ−1(|x|δ + |y|δ), (x, y) ∈ R

2, imply that

sup
ℓ∈Cj

(2πℓ)2q

|Fℓ(g)|2
≤ (2π)2q

c2g
sup
ℓ∈Cj

ℓ2q(1 + ℓ2)δ ≤ 2δ−1 (2π)
2q

c2g
sup
ℓ∈Cj

ℓ2q(1 + ℓ2δ)

≤ 2δ−1 2(2π)
2q

c2g

(
8π

3

)2(δ+q)

22(δ+q)j .

Using again the Parseval-Plancherel theorem, we obtain

B ≤ 2δ−1 2(2π)
2q

c2g

(
8π

3

)2(δ+q)

22(δ+q)j
∑

ℓ∈Cj

|Fℓ (φj,k) |2

= 2δ−1 2(2π)
2q

c2g

(
8π

3

)2(δ+q)

22(δ+q)j . (24)

Putting (22), (23) and (24) together, we have

E(V(Rj,k|Xv)) ≤ 2

(
C2

∗ + 2δ−1 2(2π)
2q

c2g

(
8π

3

)2(δ+q)
)
22(δ+q)j . (25)

Upper bound for E(|E(Rj,k|Xv)|2). We have E
(∫ 1

0
e−2iπℓtdWv(t)

)
= 0 and,

by (16),

E

(∫ 1

0

e−2iπℓt(fXv ⋆ g)(t)dt|Xv

)
= Fℓ(fXv )Fℓ(g).
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Therefore, using (18), we obtain

E(Rj,k|Xv) =
∑

ℓ∈Cj

(2iπℓ)q
Fℓ (φj,k)

Fℓ(g)
E

(∫ 1

0

e−2iπℓtdYv(t)|Xv

)

=
∑

ℓ∈Cj

(2iπℓ)q
Fℓ (φj,k)

Fℓ(g)
Fℓ (fXv )Fℓ(g)

=
∑

ℓ∈Cj

Fℓ (φj,k)Fℓ

(
f
(q)
Xv

)
.

The Parseval-Plancherel theorem gives

E(Rj,k|Xv) =

∫ 1

0

φj,k(x)f
(q)
Xv

(x)dx.

It follows from (3) and the Cauchy-Schwarz inequality that

E(|E(Rj,k|Xv)|2) ≤ E

((∫ 1

0

|φj,k(x)||f (q)Xv
(x)|dx

)2
)

≤ C2
∗

∫ 1

0

|φj,k(x)|2dx = C2
∗ . (26)

Putting (19), (25) and (26) together, we obtain

E(|Rj,k|2) ≤ 2

(
C2

∗ + 2δ−1 2(2π)
2q

c2g

(
8π

3

)2(δ+q)
)
22(δ+q)j + C2

∗

≤ θ222(δ+q)j .

The proof of Proposition 2 is complete.

�

Proposition 3 For any integer j ≥ j∗ and any k ∈ {0, . . . , 2j −1}, let αj,k be

the wavelet coefficient (8) of f
(q)
ω and α̂j,k be (9). Then there exists a constant

C > 0 such that
E

(
|α̂j,k − αj,k|2

)
≤ C22(δ+q)j ρn

n
.

Proof of Proposition 3. By Proposition 1, we have E (α̂j,k) = αj,k. There-
fore, using the independence of Y1(t), . . . , Yn(t), we obtain

E

(
|α̂j,k − αj,k|2

)
= V (α̂j,k)

=
1

n2

n∑

v=1

a2ω(v)V


∑

ℓ∈Cj

(2iπℓ)q
Fℓ (φj,k)

Fℓ(g)

∫ 1

0

e−2iπℓtdYv(t)


 .

(27)
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Proposition 2 implies that

V


∑

ℓ∈Cj

(2iπℓ)q
Fℓ (φj,k)

Fℓ(g)

∫ 1

0

e−2iπℓtdYv(t)




≤ E




∣∣∣∣∣∣

∑

ℓ∈Cj

(2iπℓ)q
Fℓ (φj,k)

Fℓ(g)

∫ 1

0

e−2iπℓtdYv(t)

∣∣∣∣∣∣

2

 ≤ θ222(δ+q)j . (28)

It follows from (27) and (28) that

E

(
|α̂j,k − αj,k|2

)
≤ θ222(δ+q)j 1

n2

n∑

v=1

a2ω(v) = C22(δ+q)j ρn
n
.

The proof of Proposition 3 is complete.

�

Proposition 4 For any integer j ≥ j∗ and any k ∈ {0, . . . , 2j −1}, let βj,k be

the wavelet coefficient (8) of f
(q)
ω and β̂j,k be (10). Then there exists a constant

C > 0 such that

E

(∣∣∣β̂j,k − βj,k

∣∣∣
4
)

≤ C24(δ+q)j (ρn ln(n/ρn))
2

n2
.

Proof of Proposition 4. Thanks to Proposition 1, we have

βj,k = E

(
1

n

n∑

v=1

Qv

)
=

1

n

n∑

v=1

E(Qv1{|Qv|≤ηj}) +
1

n

n∑

v=1

E(Qv1{|Qv|>ηj}).(29)

By the elementary inequality (x+ y)4 ≤ 8(x4 + y4), (x, y) ∈ R
2, we have

E

(∣∣∣β̂j,k − βj,k

∣∣∣
4
)

= E



∣∣∣∣∣
1

n

n∑

v=1

(
Qv1{|Qv|≤ηj} − E

(
Qv1{|Qv|≤ηj}

))
− 1

n

n∑

v=1

E(Qv1{|Qv|>ηj})

∣∣∣∣∣

4



≤ 8(A+B), (30)

where

A = E



∣∣∣∣∣
1

n

n∑

v=1

(
Qv1{|Qv|≤ηj} − E(Qv1{|Qv|≤ηj})

)
∣∣∣∣∣

4



and

B =

∣∣∣∣∣
1

n

n∑

v=1

E(Qv1{|Qv|>ηj})

∣∣∣∣∣

4

.

Let us bound A and B in turn.
Upper bound for A. We need the Rosenthal inequality presented in lemma

below (see Rosenthal (1970)).
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Lemma 1 (Rosenthal’s inequality) Let p ≥ 2, n ∈ N
∗ and (Uv)v∈{1,...,n}

be n zero mean independent random variables such that, for any v ∈ {1, . . . , n},
E(|Uv|p) <∞. Then there exists a constant C > 0 such that

E

(∣∣∣∣∣

n∑

v=1

Uv

∣∣∣∣∣

p)
≤ Cmax




n∑

v=1

E (|Uv|p) ,
(

n∑

v=1

E
(
U2
v

)
)p/2


 .

Set, for any v ∈ {1, . . . , n},
Uv = Qv1{|Qv|≤ηj} − E

(
Qv1{|Qv|≤ηj}

)
.

Then, for any v ∈ {1, . . . , n}, we have E(Uv) = 0 and, using Proposition 2
with ψ instead of φ, for any b ∈ {2, 4},
E
(
|Uv|b

)
≤ 2bE

(
|Qv|b1{|Qv|≤ηj}

)
≤ 2bηb−2

j E
(
|Qv|2

)
≤ 2bθ2ηb−2

j 22(δ+q)ja2ω(v).

It follows from the Rosenthal inequality and ρn < n/e that

A =
1

n4
E



∣∣∣∣∣

n∑

v=1

Uv

∣∣∣∣∣

4

 ≤ C

1

n4
max




n∑

v=1

E
(
|Uv|4

)
,

(
n∑

v=1

E
(
|Uv|2

)
)2



≤ C
1

n4
max


24θ2η2j 2

2(δ+q)j
n∑

v=1

a2ω(v),

(
22θ222(δ+q)j

n∑

v=1

a2ω(v)

)2



≤ C
1

n4
max

(
24(δ+q)j n2ρ2n

ln(n/ρn)
, 24(δ+q)jn2ρ2n

)
= C24(δ+q)j ρ

2
n

n2
. (31)

Upper bound for B. Using the inequality: 1{|Qv|>ηj} ≤ (1/ηj)|Qv|, and again
Proposition 2 with ψ instead of φ, we obtain

1

n

n∑

v=1

E
(
|Qv|1{|Qv|>ηj}

)
≤ 1

ηj

(
1

n

n∑

v=1

E
(
|Qv|2

)
)

≤ 1

θ2(δ+q)j

√
ln(n/ρn)

nρn
θ222(δ+q)jρn

= θ2(δ+q)j

√
ρn ln(n/ρn)

n
. (32)

Hence

B ≤ C24(δ+q)j (ρn ln(n/ρn))
2

n2
. (33)

It follows from (30), (31), (33) and ρn < n/e that

E

(∣∣∣β̂j,k − βj,k

∣∣∣
4
)

≤ C

(
24(δ+q)j ρ

2
n

n2
+ 24(δ+q)j (ρn ln(n/ρn))

2

n2

)

≤ C24(δ+q)j (ρn ln(n/ρn))
2

n2
.

This completes the proof of Proposition 4.
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�

Proposition 5 For any integer j ≥ j∗ and any k ∈ {0, . . . , 2j −1}, let βj,k be

the wavelet coefficient (8) of f
(q)
ω , β̂j,k be (10) and λj be (15). Then, for any

κ ≥ 8/3 + 2 + 2
√

16/9 + 4,

P

(
|β̂j,k − βj,k| ≥ κλj/2

)
≤ 2

(ρn
n

)2
.

Proof of Proposition 5. Using (29), we have

|β̂j,k − βj,k|

=

∣∣∣∣∣
1

n

n∑

v=1

(
Qv1{|Qv|≤ηj} − E

(
Qv1{|Qv|≤ηj}

))
− 1

n

n∑

v=1

E
(
Qv1{|Qv|>ηj}

)
∣∣∣∣∣

≤
∣∣∣∣∣
1

n

n∑

v=1

(
Qv1{|Qv|≤ηj} − E

(
Qv1{|Qv|≤ηj}

))
∣∣∣∣∣+

1

n

n∑

v=1

E
(
|Qv|1{|Qv|>ηj}

)
.

By (32) we obtain

1

n

n∑

v=1

E
(
|Qv|1{|Qv|>ηj}

)
≤ θ2(δ+q)j

√
ρn ln(n/ρn)

n
= λj .

Hence

P

(
|β̂j,k − βj,k| ≥ κλj/2

)

≤ P

(∣∣∣∣∣
1

n

n∑

v=1

(
Qv1{|Qv|≤ηj} − E

(
Qv1{|Qv|≤ηj}

))
∣∣∣∣∣ ≥ (κ/2− 1)λj

)
. (34)

Let us now present the Bernstein inequality (see Petrov (1995)).

Lemma 2 (Bernstein’s inequality) Let n ∈ N
∗ and (Uv)v∈{1,...,n} be n zero

mean independent random variables such that there exists a constant M > 0
satisfying, for any v ∈ {1, . . . , n}, |Uv| ≤ M < ∞. Then, for any λ > 0, we
have

P

(∣∣∣∣∣

n∑

v=1

Uv

∣∣∣∣∣ ≥ λ

)
≤ 2 exp

(
− λ2

2
(∑n

v=1 E (U2
v ) +

λM
3

)
)
.

Set, for any v ∈ {1, . . . , n},

Uv = Qv1{|Qv|≤ηj} − E
(
Qv1{|Qv|≤ηj}

)
.

Then, for any v ∈ {1, . . . , n}, we have E(Uv) = 0,

|Uv| ≤ |Qv|1{|Qv|≤ηj} + E
(
|Qv|1{|Qv|≤ηj}

)
≤ 2ηj
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and, using again Proposition 2 with ψ instead of φ,

n∑

v=1

E
(
|Uv|2

)
=

n∑

v=1

V
(
Qv1{|Qv|≤ηj}

)
≤

n∑

v=1

E
(
|Qv|2

)
≤ θ222(δ+q)j

n∑

v=1

a2ω(v)

≤ θ222(δ+q)jnρn.

It follows from the Bernstein inequality that

P

(∣∣∣∣∣

n∑

v=1

Uv

∣∣∣∣∣ ≥ n(κ/2− 1)λn

)

≤ 2 exp


−

n2(κ/2− 1)2λ2j

2
(
θ222(δ+q)jnρn +

2n(κ/2−1)λjηj

3

)


 . (35)

Remark that

λjηj = θ2(δ+q)j

√
ρn ln(n/ρn)

n
θ2(δ+q)j

√
nρn

ln(n/ρn)
= θ222(δ+q)jρn

and

λ2j = θ222(δ+q)j ρn ln(n/ρn)

n
.

Combining (34) and (35), for any κ ≥ 8/3 + 2 + 2
√
16/9 + 4, we obtain

P

(
|β̂j,k − βj,k| ≥ κλj/2

)
≤ 2 exp


− (κ/2− 1)2 ln(n/ρn)

2
(
1 + 2(κ/2−1)

3

)




= 2

(
n

ρn

)−
(κ/2−1)2

2(1+ 2(κ/2−1)
3 ) ≤ 2

(ρn
n

)2
.

This completes the proof of Proposition 5.

�

6.2 Proofs of the main results

Proof of Theorem 1. We expand the function f
(q)
ω on B as

f (q)ω (x) =

2j0−1∑

k=0

αj0,kφj0,k(x) +

∞∑

j=j0

2j−1∑

k=0

βj,kψj,k(x),

where

αj0,k =

∫ 1

0

f (q)ω (x)φj0,k(x)dx, βj,k =

∫ 1

0

f (q)ω (x)ψj,k(x)dx.
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We have

f̂
(q)
L (x)− f (q)ω (x) =

2j0−1∑

k=0

(α̂j0,k − αj0,k)φj0,k(x)−
∞∑

j=j0

2j−1∑

k=0

βj,kψj,k(x).

Since B is an orthonormal basis of L2
per([0, 1]), we have

E

(∫ 1

0

(
f̂
(q)
L (x)− f (q)ω (x)

)2
dx

)
= A+B,

where

A =

2j0−1∑

k=0

E

(
|α̂j0,k − αj0,k|

2
)
, B =

∞∑

j=j0

2j−1∑

k=0

|βj,k|2.

Using Proposition 3, we obtain

A ≤ C2j0(1+2δ+2q) ρn
n

≤ C
(ρn
n

)2s/(2s+2δ+2q+1)

.

Since p ≥ 2, we have Bs
p,r(M) ⊆ Bs

2,∞(M). Hence

B ≤ C2−2j0s ≤ C
(ρn
n

)2s/(2s+2δ+2q+1)

.

Therefore

E

(∫ 1

0

(
f̂
(q)
L (x)− f (q)ω (x)

)2
dx

)
≤ C

(ρn
n

)2s/(2s+2δ+2q+1)

.

The proof of Theorem 1 is complete.

�

Proof of Theorem 2. We expand the function f
(q)
ω on B as

f (q)ω (x) =

2j∗−1∑

k=0

αj∗,kφj∗,k(x) +

∞∑

j=j∗

2j−1∑

k=0

βj,kψj,k(x),

where

αj∗,k =

∫ 1

0

f (q)ω (x)φj∗,k(x)dx, βj,k =

∫ 1

0

f (q)ω (x)ψj,k(x)dx.

We have

f̂
(q)
H (x)− f (q)ω (x)

=

2j∗−1∑

k=0

(α̂j∗,k − αj∗,k)φj∗,k(x) +

j1∑

j=j∗

2j−1∑

k=0

(
β̂j,k1{|β̂j,k|≥κλj} − βj,k

)
ψj,k(x)

−
∞∑

j=j1+1

2j−1∑

k=0

βj,kψj,k(x).
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Since B is an orthonormal basis of L2
per([0, 1]), we have

E

(∫ 1

0

(
f̂
(q)
H (x)− f (q)ω (x)

)2
dx

)
= R+ S + T, (36)

where

R =
2j∗−1∑

k=0

E

(
|α̂j∗,k − αj∗,k|

2
)
, S =

j1∑

j=j∗

2j−1∑

k=0

E

(∣∣∣β̂j,k1{|β̂j,k|≥κλj} − βj,k

∣∣∣
2
)

and

T =

∞∑

j=j1+1

2j−1∑

k=0

|βj,k|2.

Let us bound R, T and S in turn.

Using Proposition 3 and the inequalities: ρn < n/e, ρn ln(n/ρn) < n and
2s/(2s+ 2δ + 2q + 1) < 1, we obtain

R ≤ C2j∗(1+2δ+2q) ρn
n

≤ C
ρn
n

≤ C

(
ρn ln(n/ρn)

n

)2s/(2s+2δ+2q+1)

. (37)

For r ≥ 1 and p ≥ 2, we have Bs
p,r(M) ⊆ Bs

2,∞(M). Since ρn ln(n/ρn) < n
and 2s/(2s+ 2δ + 2q + 1) < 2s/(2δ + 2q + 1), we have

T ≤ C
∞∑

j=j1+1

2−2js ≤ C2−2j1s ≤ C

(
ρn ln(n/ρn)

n

)2s/(2δ+2q+1)

≤ C

(
ρn ln(n/ρn)

n

)2s/(2s+2δ+2q+1)

.

For r ≥ 1 and p ∈ [1, 2), we have Bs
p,r(M) ⊆ B

s+1/2−1/p
2,∞ (M). Since s >

(2δ+ 2q+ 1)/p, we have (s+ 1/2− 1/p)/(2δ+ 2q+ 1) > s/(2s+ 2δ+ 2q+ 1).
So, using again ρn ln(n/ρn) < n,

T ≤ C
∞∑

j=j1+1

2−2j(s+1/2−1/p) ≤ C2−2j1(s+1/2−1/p)

≤ C

(
ρn ln(n/ρn)

n

)2(s+1/2−1/p)/(2δ+2q+1)

≤ C

(
ρn ln(n/ρn)

n

)2s/(2s+2δ+2q+1)

.

Hence, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > (2δ + 2q + 1)/p},
we have

T ≤ C

(
ρn ln(n/ρn)

n

)2s/(2s+2δ+2q+1)

. (38)
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The term S can be decomposed as

S = S1 + S2 + S3 + S4, (39)

where

S1 =

j1∑

j=j∗

2j−1∑

k=0

E

(∣∣∣β̂j,k − βj,k

∣∣∣
2

1{|β̂j,k|≥κλj}1{|βj,k|<κλj/2}

)
,

S2 =

j1∑

j=j∗

2j−1∑

k=0

E

(∣∣∣β̂j,k − βj,k

∣∣∣
2

1{|β̂j,k|≥κλj}1{|βj,k|≥κλj/2}

)
,

S3 =

j1∑

j=j∗

2j−1∑

k=0

E

(
|βj,k|21{|β̂j,k|<κλj}1{|βj,k|≥2κλj}

)

and

S4 =

j1∑

j=j∗

2j−1∑

k=0

E

(
|βj,k|21{|β̂j,k|<κλj}1{|βj,k|<2κλj}

)
.

Let us analyze each term S1, S2, S3 and S4 in turn.
Upper bounds for S1 and S3. We have

{
|β̂j,k| < κλj , |βj,k| ≥ 2κλj

}
⊆
{
|β̂j,k − βj,k| > κλj/2

}
,

{
|β̂j,k| ≥ κλj , |βj,k| < κλj/2

}
⊆
{
|β̂j,k − βj,k| > κλj/2

}

and {
|β̂j,k| < κλj , |βj,k| ≥ 2κλj

}
⊆
{
|βj,k| ≤ 2|β̂j,k − βj,k|

}
.

So

max(S1, S3) ≤ C

j1∑

j=j∗

2j−1∑

k=0

E

(∣∣∣β̂j,k − βj,k

∣∣∣
2

1{|β̂j,k−βj,k|>κλj/2}
)
.

It follows from the Cauchy-Schwarz inequality and Propositions 4 and 5 that

E

(∣∣∣β̂j,k − βj,k

∣∣∣
2

1{|β̂j,k−βj,k|>κλj/2}
)

≤
(
E

(∣∣∣β̂j,k − βj,k

∣∣∣
4
))1/2 (

P

(
|β̂j,k − βj,k| > κλj/2

))1/2

≤ C22(δ+q)j ρ
2
n ln(n/ρn)

n2
.
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Since ρn ln(n/ρn) < n and 2s/(2s+ 2δ + 2q + 1) < 1, we have

max(S1, S3) ≤ C
ρ2n ln(n/ρn)

n2

j1∑

j=j∗

2j(1+2δ+2q) ≤ C
ρ2n ln(n/ρn)

n2
2j1(1+2δ+2q)

≤ C
ρn ln(n/ρn)

n
≤ C

(
ρn ln(n/ρn)

n

)2s/(2s+2δ+2q+1)

. (40)

Upper bound for S2. Using Proposition 4 and the Cauchy-Schwarz inequality,
we obtain

E

(∣∣∣β̂j,k − βj,k

∣∣∣
2
)

≤
(
E

(∣∣∣β̂j,k − βj,k

∣∣∣
4
))1/2

≤ C22(δ+q)j ρn ln(n/ρn)

n
.

Hence

S2 ≤ C
ρn ln(n/ρn)

n

j1∑

j=j∗

22(δ+q)j
2j−1∑

k=0

1{|βj,k|>κλj/2}.

Let j2 be the integer defined by

1

2

(
n

ρn ln(n/ρn)

)1/(2s+2δ+2q+1)

< 2j2 ≤
(

n

ρn ln(n/ρn)

)1/(2s+2δ+2q+1)

.(41)

We have

S2 ≤ S2,1 + S2,2,

where

S2,1 = C
ρn ln(n/ρn)

n

j2∑

j=j∗

22(δ+q)j
2j−1∑

k=0

1{|βj,k|>κλj/2}

and

S2,2 = C
ρn ln(n/ρn)

n

j1∑

j=j2+1

22(δ+q)j
2j−1∑

k=0

1{|βj,k|>κλj/2}.

We have

S2,1 ≤ C
ρn ln(n/ρn)

n

j2∑

j=j∗

2j(1+2δ+2q) ≤ C
ρn ln(n/ρn)

n
2j2(1+2δ+2q)

≤ C

(
ρn ln(n/ρn)

n

)2s/(2s+2δ+2q+1)

.

For r ≥ 1 and p ≥ 2, since Bs
p,r(M) ⊆ Bs

2,∞(M),

S2,2 ≤ C
ρn ln(n/ρn)

n

j1∑

j=j2+1

22(δ+q)j 1

λ2j

2j−1∑

k=0

|βj,k|2 ≤ C

∞∑

j=j2+1

2j−1∑

k=0

|βj,k|2

≤ C

∞∑

j=j2+1

2−2js ≤ C2−2j2s ≤ C

(
ρn ln(n/ρn)

n

)2s/(2s+2δ+2q+1)

.
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For r ≥ 1, p ∈ [1, 2) and s > (2δ+2q+1)/p, since Bs
p,r(M) ⊆ B

s+1/2−1/p
2,∞ (M)

and (2s+ 2δ + 2q + 1)(2− p)/2 + (s+ 1/2− 1/p+ δ + q − 2(δ + q)/p)p = 2s,
we have

S2,2 ≤ C
ρn ln(n/ρn)

n

j1∑

j=j2+1

22(δ+q)j 1

λpj

2j−1∑

k=0

|βj,k|p

≤ C

(
ρn ln(n/ρn)

n

)(2−p)/2 ∞∑

j=j2+1

2j(δ+q)(2−p)2−j(s+1/2−1/p)p

≤ C

(
ρn ln(n/ρn)

n

)(2−p)/2

2−j2(s+1/2−1/p+δ+q−2(δ+q)/p)p

≤ C

(
ρn ln(n/ρn)

n

)2s/(2s+2δ+2q+1)

.

So, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > (2δ + 2q + 1)/p}, we
have

S2 ≤ C

(
ρn ln(n/ρn)

n

)2s/(2s+2δ+2q+1)

. (42)

Upper bound for S4. We have

S4 ≤
j1∑

j=j∗

2j−1∑

k=0

|βj,k|21{|βj,k|<2κλj}.

Let j2 be the integer (41). We have

S4 ≤ S4,1 + S4,2,

where

S4,1 =

j2∑

j=j∗

2j−1∑

k=0

|βj,k|21{|βj,k|<2κλj}, S4,2 =

j1∑

j=j2+1

2j−1∑

k=0

|βj,k|21{|βj,k|<2κλj}.

We have

S4,1 ≤ C

j2∑

j=j∗

2jλ2j = C
ρn ln(n/ρn)

n

j2∑

j=j∗

2j(1+2δ+2q) ≤ C
ρn ln(n/ρn)

n
2j2(1+2δ+2q)

≤ C

(
ρn ln(n/ρn)

n

)2s/(2s+2δ+2q+1)

.

For r ≥ 1 and p ≥ 2, since Bs
p,r(M) ⊆ Bs

2,∞(M), we have

S4,2 ≤
∞∑

j=j2+1

2j−1∑

k=0

|βj,k|2 ≤ C

∞∑

j=j2+1

2−2js ≤ C2−2j2s

≤ C

(
ρn ln(n/ρn)

n

)2s/(2s+2δ+2q+1)

.
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For r ≥ 1, p ∈ [1, 2) and s > (2δ+2q+1)/p, since Bs
p,r(M) ⊆ B

s+1/2−1/p
2,∞ (M)

and (2s+ 2δ + 2q + 1)(2− p)/2 + (s+ 1/2− 1/p+ δ + q − 2(δ + q)/p)p = 2s,
we have

S4,2 ≤ C

j1∑

j=j2+1

λ2−p
j

2j−1∑

k=0

|βj,k|p

= C

(
ρn ln(n/ρn)

n

)(2−p)/2 j1∑

j=j2+1

2j(δ+q)(2−p)
2j−1∑

k=0

|βj,k|p

≤ C

(
ρn ln(n/ρn)

n

)(2−p)/2 ∞∑

j=j2+1

2j(δ+q)(2−p)2−j(s+1/2−1/p)p

≤ C

(
ρn ln(n/ρn)

n

)(2−p)/2

2−j2(s+1/2−1/p+δ+q−2(δ+q)/p)p

≤ C

(
ρn ln(n/ρn)

n

)2s/(2s+2δ+2q+1)

.

So, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > (2δ + 2q + 1)/p}, we
have

S4 ≤ C

(
ρn ln(n/ρn)

n

)2s/(2s+2δ+2q+1)

. (43)

It follows from (39), (40), (42) and (43) that

S ≤ C

(
ρn ln(n/ρn)

n

)2s/(2s+2δ+2q+1)

. (44)

Combining (36), (37), (38) and (44), we have, for r ≥ 1, {p ≥ 2 and s > 0}
or {p ∈ [1, 2) and s > (2δ + 2q + 1)/p},

E

(∫ 1

0

(
f̂
(q)
H (x)− f (q)ω (x)

)2
dx

)
≤ C

(
ρn ln(n/ρn)

n

)2s/(2s+2δ+2q+1)

.

The proof of Theorem 2 is complete.
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