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We consider an indirect convolution model where m blurred and noise-perturbed functions f 1 , . . . , f m are randomly observed. For a fixed ω ∈ {1, . . . , m}, we want to estimate f ω and its derivatives. An adaptive nonlinear wavelet estimator using a singular value decomposition is developed. Taking the mean integrated squared error over Besov balls, we prove that it attains a fast rate of convergence.

Motivations

We observe n stochastic processes Y 1 (t), . . . , Y n (t), t ∈ [0, 1], such that, for any v ∈ {1, . . . , n}, dY v (t) = (f Xv ⋆ g)(t)dt + dW v (t),

where

(f Xv ⋆ g)(t) = 1 0 f Xv (t -u)g(u)du,
W 1 (t), . . . , W n (t) are n unobserved independent standard Brownian motions, g : [0, 1] → R is a known 1-periodic function, X 1 , . . . , X n are n unobserved independent discrete random variables such that, for any v ∈ {1, . . . , n}, the distribution of X v is known, the set of possible values of X v is

X v (Ω) = {1, . . . , m}, m ∈ N * ,
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We suppose that X 1 , . . . , X n , W 1 (t), . . . , W n (t) are independent. For a fixed ω ∈ {1, . . . , m}, we want to estimate f ω and its q-th derivative f (q) ω from Y 1 (t), . . . , Y n (t). An application of this estimation problem is the following: m blurred and noise-perturbed signals f 1 , . . . , f m are randomly observed, and only f ω is of interest. The blurring process is achieved through the convolution operator T (h) = (h ⋆ g)(t) = 1 0 h(t -u)g(u)du. Remark that, when X 1 , . . . , X n are constant random variables with X 1 = . . . = X n = 1, (1) gives

d Y (t) = (f 1 ⋆ g)(t)dt + 1 √ n d W (t), (2) 
where

Y (t) = 1 n n v=1 Y v (t), W (t) = 1 √ n n v=1 W v (t).
Since W (t) is a standard Brownian motion, (2) becomes the standard convolution model. In this case, the estimation of f 1 has received a lot of attention. See e.g. [START_REF] Cavalier | Sharp adaptation for inverse problems with random noise[END_REF], [START_REF] Johnstone | Wavelet deconvolution in a periodic setting[END_REF], [START_REF] Donoho | Translation invariant deconvolution in a periodic setting[END_REF], [START_REF] Kerkyacharian | Adaptive boxcar deconvolution on full Lebesgue measure sets[END_REF] and [START_REF] Chesneau | Wavelet estimation via block thresholding: A minimax study under the L p risk[END_REF].

However, to the best of our knowledge, the estimation of f ω (and f (q) ω ) from the general model (1) has not been addressed earlier. Note that the estimation of f (q) ω is of interest to detect possible bumps, concavity or convexity properties of f ω . In the literature on nonparametric functional estimation, the problem of estimating the derivatives have been investigated by several authors starting with [START_REF] Bhattacharya | Estimation of a probability density function and its derivatives[END_REF]. For references using wavelet methods, see e.g. Prakasa [START_REF] Rao | Nonparametric estimation of the derivatives of a density by the method of wavelets[END_REF], [START_REF] Chaubey | Wavelet based estimation of the derivatives of a density for m-dependent random variables[END_REF], [START_REF] Chaubey | Wavelet based estimation of the derivatives of a density with associated variables[END_REF][START_REF] Chaubey | Wavelet based estimation of the derivatives of a density for a negatively associated process[END_REF] and [START_REF] Chesneau | Wavelet estimation of the derivatives of an unknown function from a convolution model[END_REF].

Considering the ordinary smooth case on g (see (4)), we estimate f (q) ω (including f (0) ω = f ω ) by two wavelet estimators: a linear nonadaptive and a nonlinear adaptive based on the hard thresholding rule. Our adaptive estimator uses a singular value decomposition (SVD), some algebraic tools on the distributions of X 1 , . . . , X n and a new version of the "observations thresholding" introduced by [START_REF] Delyon | On minimax wavelet estimators[END_REF]. To evaluate their performances, we adopt the mean integrated squared error (MISE) over Besov balls. Under mild assumptions on the distributions of X 1 , . . . , X n , we prove that our hard thresholding estimator attains a sharp rate of convergence, close to the one attained by our linear wavelet estimator.

The paper is organized as follows. Assumptions on (1) and some notations are introduced in Section 2. Section 3 briefly describes the wavelet basis and the Besov balls. The estimators are presented in Section 4. The results are set in Section 5. Technical proofs are given in Section 6.

Assumptions and notations

Assumptions on f 1 , . . . , f m and g.

-We assume that f 1 , . . . , f m and g belong to L 2 per ([0, 1]) defined by

L 2 per ([0, 1]) = h; h is 1-periodic and 1 0 |h(x)| 2 dx 1/2 < ∞ .
-We suppose that there exists a known constant C * > 0 such that sup d∈{1,...,m}

sup x∈[0,1] |f (q) d (x)| ≤ C * . (3) 
Assumptions on the smoothness of g. Any function h ∈ L 2 per ([0, 1]) can be represented by its Fourier series

h(t) = ℓ∈Z F ℓ (h)e 2iπℓt , t ∈ [0, 1],
where the equality is intended in mean-square convergence sense, and F ℓ (h) denotes the Fourier coefficient given by

F ℓ (h) = 1 0 h(x)e -2iπℓx dx, ℓ ∈ Z,
whenever this integral exists. The notation • will be used for the complex conjugate.

We consider the ordinary smooth case on g: there exist three constants, c g > 0, C g > 0 and δ > 1, such that, for any ℓ ∈ Z, F ℓ (g) satisfies

c g (1 + ℓ 2 ) δ/2 ≤ |F ℓ (g)| ≤ C g (1 + ℓ 2 ) δ/2 . ( 4 
)
This assumption controls the decay of the Fourier coefficients of g, and thus the smoothness of g. It is a standard hypothesis usually adopted in the field of nonparametric estimation for deconvolution problems. See e.g. [START_REF] Pensky | Adaptive wavelet estimator for nonparametric density deconvolution[END_REF], [START_REF] Fan | Wavelet deconvolution[END_REF] and [START_REF] Johnstone | Wavelet deconvolution in a periodic setting[END_REF]. Assumptions on X 1 , . . . , X n . Recall that X 1 , . . . , X n are unobserved and, for any v ∈ {1, . . . , n}, we let

w d (v) = P(X v = d), d ∈ {1, . . . , m}.
We suppose that the matrix

Γ n = 1 n n v=1 w k (v)w ℓ (v) (k,ℓ)∈{1,...,m} 2 satisfies det(Γ n ) > 0.
For the considered ω (the one which refers to the estimation of f (q) ω ) and any v ∈ {1, . . . , n}, we set

a ω (v) = 1 det(Γ n ) m k=1 (-1) k+ω γ n ω,k w k (v), (5) 
where γ n ω,k denotes the determinant of the minor (ω, k) of the matrix Γ n . Then (a ω (v)) v∈{1,...,n} satisfy (a ω (1), . . . , a ω (n)) = argmin

(b1,...,bn)∈∩ m d=1 U ω,d 1 n n v=1 b 2 v , (6) 
where

U ω,d = (b 1 , . . . , b n ) ∈ R n ; 1 n n v=1 b v w d (v) = δ ω,d
and δ ω,d is the Kronecker delta. Technical details can be found in [START_REF] Maiboroda | Estimators of components of a mixture with varying concentrations[END_REF]. We set

ρ n = 1 n n v=1 a 2 ω (v) (7) 
and we suppose that lim n→∞ ρ n /n = ∞.

The sequence (a ω (v)) v∈{1,...,n} is usually used in the field of nonparametric statistics for mixture density estimation problems. See e.g. [START_REF] Maiboroda | Estimators of components of a mixture with varying concentrations[END_REF][START_REF] Pokhyl'ko | Wavelet estimators of a density constructed from observations of a mixture[END_REF] and Prakasa [START_REF] Rao | Wavelet linear estimation for derivatives of a density from observations of mixtures with varying mixing proportions[END_REF].

3 Wavelets and Besov balls Periodized Meyer wavelets. We consider an orthonormal wavelet basis generated by dilations and translations of a "father" Meyer-type wavelet φ and a "mother" Meyer-type wavelet ψ. The main features of such wavelets are: 1. the Fourier transforms of φ and ψ have compact supports with

       supp (F(φ)) ⊂ - 4π 3 , 4π 3 , supp (F(ψ)) ⊂ - 8π 3 , - 2π 3 ∪ 2π 3 , 8π 3 ,
2. the functions φ and ψ are C ∞ .

For the purpose of this paper, we use the periodized Meyer wavelet bases on the unit interval. For any x ∈ [0, 1], any integer j and any k ∈ {0, . . . , 2 j -1}, let

φ j,k (x) = 2 j/2 φ(2 j x -k), ψ j,k (x) = 2 j/2 ψ(2 j x -k)
be the elements of the wavelet basis, and

φ per j,k (x) = l∈Z φ j,k (x -l), ψ per j,k (x) = l∈Z ψ j,k (x -l),
be their periodized versions. There exists an integer j * such that, for any integer j c ≥ j * , the collection B = {φ per jc,k , k ∈ {0, . . . , 2 jc -1}; ψ per j,k , j ∈ N -{0, . . . , j c -1}, k ∈ {0, . . . , 2 j -1}} forms an orthonormal basis of L 2 per ([0, 1]). In what follows, the superscript "per" will be dropped to lighten the notation. Let j c be an integer such that j c ≥ j * . A function h ∈ L 2 per ([0, 1]) can be expanded into a wavelet series as

h(x) = 2 jc -1 k=0 α jc,k φ jc,k (x) + ∞ j=jc 2 j -1 k=0 β j,k ψ j,k (x), x ∈ [0, 1],
where

α j,k = 1 0 h(x)φ j,k (x)dx, β j,k = 1 0 h(x)ψ j,k (x)dx. (8) 
See (Meyer 1992, Vol. 1 Chapter III.11) for a detailed account on periodized orthonormal wavelet bases. Besov balls. Let M > 0, s > 0, p ≥ 1 and r ≥ 1. A function h belongs to B s p,r (M ) if and only if there exists a constant M * > 0 such that the wavelet coefficients (8) satisfy

2 j * (1/2-1/p)   2 j * -1 k=0 |α j * ,k | p   1/p +    ∞ j=j *   2 j(s+1/2-1/p)   2 j -1 k=0 |β j,k | p   1/p    r    1/r ≤ M * .
For a particular choice of parameters s, p and r, these sets contain the Hölder and Sobolev balls. See [START_REF] Meyer | Wavelets and Operators[END_REF].

Estimators

Estimators for wavelet coefficients. The first step to estimate f (q) ω consists in expanding f (q) ω on B and estimating its unknown wavelet coefficients. For any integer j ≥ j * and any k ∈ {0, . . . , 2 j -1},

-we estimate α j,k = 1 0 f (q) ω (x)φ j,k (x)dx by α j,k = 1 n n v=1 a ω (v) ℓ∈Cj (2iπℓ) q F ℓ (φ j,k ) F ℓ (g) 1 0 e -2iπℓt dY v (t), (9) 
where C j = supp (F(φ j,0 )) = supp (F (φ j,k )) and a ω (v) is defined by ( 5), -we estimate

β j,k = 1 0 f (q) ω (x)ψ j,k (x)dx by β j,k = 1 n n v=1 Q v 1 {|Qv|≤ηj } , (10) 
where

Q v = a ω (v) ℓ∈Dj (2iπℓ) q F ℓ (ψ j,k ) F ℓ (g) 1 0 e -2iπℓt dY v (t), (11) 
D j = supp (F(ψ j,0 )) = supp (F (ψ j,k
)), for any random event A, 1 A is the indicator function on A, a ω (v) is defined by ( 5),

η j = θ2 (δ+q)j nρ n ln(n/ρ n ) ,
ρ n is defined by ( 7) and

θ = 3C 2 * + 2 δ 2(2π) 2q c 2 g 8π 3 2(δ+q) . (12) 
(C * , c g and δ are those in (3) and ( 4)). Statistical properties of α j,k and β j,k are investigated in Propositions 1, 3, 4 and 5.

Remarks.

-The constructions of α j,k and β j,k are based on a SVD technique (see Proposition 1). -The idea of the thresholding in ( 10) is to operate a selection on the observations: when,

for v ∈ {1, . . . , n}, Q v is too large, Y v (t) is neglected.
From a technical point of view, this allows us to estimate β j,k in an optimal way under mild assumptions on (a ω (v)) v∈{1,...,n} and, a fortiori, on the distributions of X 1 , . . . , X n . Such a thresholding method has been introduced by [START_REF] Delyon | On minimax wavelet estimators[END_REF] for regression wavelet estimation. Note that, in the simplest case where X 1 , . . . , X n are constant random variables, such a selection is not necessary. We consider two wavelet estimators for f (q) ω : a linear estimator and a hard thresholding estimator.

Linear estimator. Assuming that f (q) ω ∈ B s p,r (M ) with p ≥ 2, we define the linear estimator f

(q) L by f (q) L (x) = 2 j 0 -1 k=0 α j0,k φ j0,k (x), ( 13 
)
where α j,k is defined by ( 9), j 0 is the integer satisfying

1 2 n ρ n 1/(2s+2δ+2q+1) < 2 j0 ≤ n ρ n 1/(2s+2δ+2q+1)
, ρ n is defined by ( 7) and δ is the one in (4). Note that f (q)

L is not adaptive since it depends on s.

Hard thresholding estimator. We define the hard thresholding estimator f

(q) H by f (q) H (x) = 2 j * -1 k=0 α j * ,k φ j * ,k (x) + j1 j=j * 2 j -1 k=0 β j,k 1 {| β j,k |≥κλj } ψ j,k (x), ( 14 
)
where α j * ,k is defined by ( 9), β j,k by ( 10), j 1 is the integer satisfying

1 2 n ρ n 1/(2δ+2q+1) < 2 j1 ≤ n ρ n 1/(2δ+2q+1)
, κ ≥ 8/3 + 2 + 2 16/9 + 4, λ j is the threshold

λ j = θ2 (δ+q)j ρ n ln(n/ρ n ) n , ( 15 
)
ρ n is defined by ( 7), θ by ( 12) and δ is the one in (4).

Note that f (q)

H is adaptive. The feature of the hard thresholding estimator is to only estimate the "large" unknown wavelet coefficients of f (q) ω which contain the main characteristics of f (q) ω . Hard thresholding estimators for other deconvolution problems than (1) can be found in [START_REF] Fan | Wavelet deconvolution[END_REF], [START_REF] Johnstone | Wavelet deconvolution in a periodic setting[END_REF], [START_REF] Willer | Deconvolution in white noise with a random blurring effect[END_REF] and [START_REF] Cavalier | Wavelet deconvolution with noisy eigenvalues[END_REF].

Results

Upper bounds for f (q)

L and f (q) H are given in Theorems 1 and 2 below. Further details on our statistical approach can be found in [START_REF] Tsybakov | Introduction à l'estimation nonparamétrique[END_REF].

Theorem 1 Consider (1) under the assumptions of Section 2. Suppose that f (q) ω ∈ B s p,r (M ) with s > 0, p ≥ 2 and r ≥ 1. Let f (q) L be (13). Then there exists a constant C > 0 such that

E 1 0 f (q) L (x) -f (q) ω (x) 2 dx ≤ C ρ n n 2s/(2s+2δ+2q+1)
.

The proof of Theorem 1 uses a moment inequality on (9) and a suitable decomposition of the MISE. Note that f (q)

L is constructed to minimize the MISE as much as possible. For this reason, our benchmark will be the rate of convergence (ρ n /n) 2s/(2s+2δ+2q+1) .

Theorem 2 Consider (1) under the assumptions of Section 2. Let f

(q) H be (14). Suppose that f (q) ω ∈ B s p,r (M ) with r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2
) and s > (2δ + 2q + 1)/p}. Then there exists a constant C > 0 such that

E 1 0 f (q) H (x) -f (q) ω (x) 2 dx ≤ C ρ n ln(n/ρ n ) n 2s/(2s+2δ+2q+1)
.

The proof of Theorem 2 is based on several probability results (moment inequalities, concentration inequality,. . . ) and a suitable decomposition of the MISE.

Theorem 2 shows that, besides being adaptive, f

H attains the same rate of convergence than the one of f (q) L up to a logarithmic term. Naturally, in the simplest case where X 1 , . . . , X n are constant random variables with X 1 = . . . = X n = 1 (so ρ n = 1 and f

(q) ω = f (q)
1 ), the rate of convergence attained by f (q)

H becomes the standard one for (2) i.e. (ln n/n) 2s/(2s+2δ+2q+1) . See [START_REF] Johnstone | Wavelet deconvolution in a periodic setting[END_REF] and [START_REF] Chesneau | Wavelet estimation of the derivatives of an unknown function from a convolution model[END_REF].

Conclusion and perspectives. Considering (1), we have developed a new adaptive estimator f (q)

H for f (q) ω . It is based on a SVD, wavelets and the hard thresholding rule. It attains a sharp rate of convergence for a wide class of functions. Possible perspectives of this work are -to investigate the case where the distributions of X 1 , . . . , X n are unknown, -to potentially improve the estimation of f (q) ω by considering other kinds of thresholding rules as the block thresholding one (BlockJS, . . . ). See e.g. [START_REF] Cai | Adaptive Wavelet Estimation: A Block Thresholding And Oracle Inequality Approach[END_REF][START_REF] Cai | On adaptive wavelet estimation of a derivative and other related linear inverse problems[END_REF], [START_REF] Pensky | Functional deconvolution in a periodic setting: Uniform Case[END_REF] and [START_REF] Petsa | Minimax convergence rates under the L p -risk in the functional deconvolution model[END_REF].

All these aspects need further investigations that we leave for a future work.

Proofs

In this section, C represents a positive constant which may differ from one term to another.

Auxiliary results

Proposition 1 For any integer j ≥ j * and any k ∈ {0, . . . , 2 j -1}, let α j,k and β j,k be the wavelet coefficients (8) of f (q) ω . Then -α j,k defined by ( 9) is an unbiased estimator of α j,k , -for (Q v ) v∈{1,...,n} defined by (11), we have

E 1 n n v=1 Q v = β j,k .
Proof of Proposition 1. We have

1 0 e -2iπℓt dY v (t) = 1 0 e -2iπℓt (f Xv ⋆ g)(t)dt + 1 0 e -2iπℓt dW v (t)
with

1 0 e -2iπℓt (f Xv ⋆ g)(t)dt = F ℓ (f Xv ⋆ g) = F ℓ (f Xv )F ℓ (g). ( 16 
)
Since E

1 0 e -2iπℓt dW v (t) = 0, we have

E 1 0 e -2iπℓt dY v (t) = E (F ℓ (f Xv )) F ℓ (g) + E 1 0 e -2iπℓt dW v (t) = m d=1 w d (v)F ℓ (f d )F ℓ (g). (17) 
Note that, since f ω is 1-periodic, for any u ∈ {0, . . . , q}, f

(u) ω is 1-periodic and f (u) ω (0) = f (u)
ω (1). By q integrations by parts, for any ℓ ∈ Z, we obtain

(2iπℓ) q F ℓ (f ω ) = F ℓ f (q) ω . ( 18 
)
It follows from ( 17), ( 6), ( 18) and the Parseval-Plancherel theorem that

E ( α j,k ) = 1 n n v=1 a ω (v) ℓ∈Cj (2iπℓ) q F ℓ (φ j,k ) F ℓ (g) E 1 0 e -2iπℓt dY v (t) = 1 n n v=1 a ω (v) ℓ∈Cj (2iπℓ) q F ℓ (φ j,k ) F ℓ (g) m d=1 w d (v)F ℓ (f d )F ℓ (g) = m d=1   ℓ∈Cj (2iπℓ) q F ℓ (φ j,k )F ℓ (f d )   1 n n v=1 a ω (v)w d (v) = ℓ∈Cj F ℓ (φ j,k )(2iπℓ) q F ℓ (f ω ) = ℓ∈Cj F ℓ (φ j,k )F ℓ f (q) ω = 1 0 φ j,k (x)f (q) ω (x)dx = α j,k .
Similarly, taking ψ instead of φ, we prove that

E 1 n n v=1 Q v = β j,k
. This completes the proof of Proposition 1.

Proposition 2 For any integer j ≥ j * and any k ∈ {0, . . . , 2 j -1}, set

R j,k = ℓ∈Cj (2iπℓ) q F ℓ (φ j,k ) F ℓ (g) 1 0 e -2iπℓt dY v (t).
Then

E(|R j,k | 2 ) ≤ θ 2 2 2(δ+q)j ,
where θ is defined by ( 12).

Proof of Proposition 2. We have

E(|R j,k | 2 ) = E(E(|R j,k | 2 |X v )) = E(V(R j,k |X v )) + E(|E(R j,k |X v )| 2 ). ( 19 
) Let us bound E(V(R j,k |X v )) and E(|E(R j,k |X v )| 2 ) in turn. Upper bound for E(V(R j,k |X v )). Since (e -2iπℓt ) ℓ∈Z is an orthonormal basis of L 2 per ([0, 1]) and X 1 , . . . , X n , W 1 (t), . . . , W n (t) are independent, 1 0 e -2iπℓt dY v (t) ℓ∈Cj conditionally to X v are also independent. Therefore V (R j,k |X v ) = ℓ∈Cj (2πℓ) 2q |F ℓ (φ j,k )| 2 |F ℓ (g)| 2 V 1 0 e -2iπℓt dY v (t)|X v . ( 20 
)
Using the elementary inequality (x + y) 2 ≤ 2(x 2 + y 2 ), (x, y) ∈ R 2 , the independence of X 1 , . . . , X n , W 1 (t), . . . , W n (t), ( 16) and the fact that (e -2iπℓt ) ℓ∈Z is an orthonormal basis of L 2 per ([0, 1]), we obtain

V 1 0 e -2iπℓt dY v (t)|X v ≤ E 1 0 e -2iπℓt dY v (t) 2 |X v ≤ 2 1 0 e -2iπℓt (f Xv ⋆ g)(t)dt 2 + E 1 0 e -2iπℓt dW v (t) 2 = 2 |F ℓ (f Xv )| 2 |F ℓ (g)| 2 + 1 . Hence E V 1 0 e -2iπℓt dY v (t)|X v ≤ 2 E |F ℓ (f Xv )| 2 |F ℓ (g)| 2 + 1 . (21)
It follows from ( 20) and ( 21) that

E(V(R j,k |X v )) ≤ 2 (A + B) , (22) 
where

A = ℓ∈Cj (2πℓ) 2q |F ℓ (φ j,k ) | 2 E |F ℓ (f Xv )| 2 and B = ℓ∈Cj (2πℓ) 2q |F ℓ (φ j,k ) | 2 |F ℓ (g)| 2 .
Let us now bound A and B in turn.

Upper bound for A. It follows from ( 18) and ( 3) that

(2πℓ) 2q E |F ℓ (f Xv )| 2 = E |F ℓ f (q) Xv | 2 ≤ C 2 * . The Parseval-Plancherel theorem gives ℓ∈Cj |F ℓ (φ j,k ) | 2 = 1 0 |φ j,k (x)| 2 dx = 1. So A ≤ C 2 * ℓ∈Cj |F ℓ (φ j,k ) | 2 = C 2 * . ( 23 
)
Upper bound for B. The assumption (4) and the elementary inequality |x

+ y| δ ≤ 2 δ-1 (|x| δ + |y| δ ), (x, y) ∈ R 2 , imply that sup ℓ∈Cj (2πℓ) 2q |F ℓ (g)| 2 ≤ (2π) 2q c 2 g sup ℓ∈Cj ℓ 2q (1 + ℓ 2 ) δ ≤ 2 δ-1 (2π) 2q c 2 g sup ℓ∈Cj ℓ 2q (1 + ℓ 2δ ) ≤ 2 δ-1 2(2π) 2q c 2 g 8π 3 2(δ+q)
2 2(δ+q)j .

Using again the Parseval-Plancherel theorem, we obtain

B ≤ 2 δ-1 2(2π) 2q c 2 g 8π 3 2(δ+q) 2 2(δ+q)j ℓ∈Cj |F ℓ (φ j,k ) | 2 = 2 δ-1 2(2π) 2q c 2 g 8π 3 2(δ+q)
2 2(δ+q)j .

(24)

Putting ( 22), ( 23) and ( 24) together, we have

E(V(R j,k |X v )) ≤ 2 C 2 * + 2 δ-1 2(2π) 2q c 2 g 8π 3 2(δ+q) 2 2(δ+q)j . ( 25 
) Upper bound for E(|E(R j,k |X v )| 2 ).
We have E 1 0 e -2iπℓt dW v (t) = 0 and, by ( 16),

E 1 0 e -2iπℓt (f Xv ⋆ g)(t)dt|X v = F ℓ (f Xv )F ℓ (g).
Therefore, using (18), we obtain

E(R j,k |X v ) = ℓ∈Cj (2iπℓ) q F ℓ (φ j,k ) F ℓ (g) E 1 0 e -2iπℓt dY v (t)|X v = ℓ∈Cj (2iπℓ) q F ℓ (φ j,k ) F ℓ (g) F ℓ (f Xv ) F ℓ (g) = ℓ∈Cj F ℓ (φ j,k )F ℓ f (q)
Xv .

The Parseval-Plancherel theorem gives

E(R j,k |X v ) = 1 0 φ j,k (x)f (q) Xv (x)dx.
It follows from ( 3) and the Cauchy-Schwarz inequality that

E(|E(R j,k |X v )| 2 ) ≤ E 1 0 |φ j,k (x)||f (q) Xv (x)|dx 2 ≤ C 2 * 1 0 |φ j,k (x)| 2 dx = C 2 * . (26) 
Putting ( 19), ( 25) and ( 26) together, we obtain

E(|R j,k | 2 ) ≤ 2 C 2 * + 2 δ-1 2(2π) 2q c 2 g 8π 3 2(δ+q) 2 2(δ+q)j + C 2 * ≤ θ 2 2 2(δ+q)j .
The proof of Proposition 2 is complete.

Proposition 3 For any integer j ≥ j * and any k ∈ {0, . . . , 2 j -1}, let α j,k be the wavelet coefficient (8) of f (q)

ω and α j,k be (9). Then there exists a constant

C > 0 such that E | α j,k -α j,k | 2 ≤ C2 2(δ+q)j ρ n n .
Proof of Proposition 3. By Proposition 1, we have E ( α j,k ) = α j,k . Therefore, using the independence of Y 1 (t), . . . , Y n (t), we obtain

E | α j,k -α j,k | 2 = V ( α j,k ) = 1 n 2 n v=1 a 2 ω (v)V   ℓ∈Cj (2iπℓ) q F ℓ (φ j,k ) F ℓ (g) 1 0 e -2iπℓt dY v (t)   . ( 27 
)
Proposition 2 implies that

V   ℓ∈Cj (2iπℓ) q F ℓ (φ j,k ) F ℓ (g) 1 0 e -2iπℓt dY v (t)   ≤ E    ℓ∈Cj (2iπℓ) q F ℓ (φ j,k ) F ℓ (g) 1 0 e -2iπℓt dY v (t) 2    ≤ θ 2 2 2(δ+q)j . ( 28 
)
It follows from ( 27) and ( 28) that

E | α j,k -α j,k | 2 ≤ θ 2 2 2(δ+q)j 1 n 2 n v=1 a 2 ω (v) = C2 2(δ+q)j ρ n n .
The proof of Proposition 3 is complete.

Proposition 4 For any integer j ≥ j * and any k ∈ {0, . . . , 2 j -1}, let β j,k be the wavelet coefficient (8) of f (q) ω and β j,k be (10). Then there exists a constant C > 0 such that

E β j,k -β j,k 4 ≤ C2 4(δ+q)j (ρ n ln(n/ρ n )) 2 n 2 .
Proof of Proposition 4. Thanks to Proposition 1, we have

β j,k = E 1 n n v=1 Q v = 1 n n v=1 E(Q v 1 {|Qv|≤ηj } ) + 1 n n v=1 E(Q v 1 {|Qv|>ηj } ). ( 29 
)
By the elementary inequality (x + y) 4 ≤ 8(x 4 + y 4 ), (x, y) ∈ R 2 , we have

E β j,k -β j,k 4 = E   1 n n v=1 Q v 1 {|Qv|≤ηj } -E Q v 1 {|Qv|≤ηj } - 1 n n v=1 E(Q v 1 {|Qv|>ηj } ) 4   ≤ 8(A + B), (30) 
where

A = E   1 n n v=1 Q v 1 {|Qv|≤ηj } -E(Q v 1 {|Qv|≤ηj } ) 4   and B = 1 n n v=1 E(Q v 1 {|Qv|>ηj } ) 4 .
Let us bound A and B in turn.

Upper bound for A. We need the Rosenthal inequality presented in lemma below (see [START_REF] Rosenthal | On the subspaces of L p (p ≥ 2) spanned by sequences of independent random variables[END_REF]).

Lemma 1 (Rosenthal's inequality) Let p ≥ 2, n ∈ N * and (U v ) v∈{1,...,n} be n zero mean independent random variables such that, for any v ∈ {1, . . . , n}, E(|U v | p ) < ∞. Then there exists a constant C > 0 such that

E n v=1 U v p ≤ C max   n v=1 E (|U v | p ) , n v=1 E U 2 v p/2   .
Set, for any v ∈ {1, . . . , n},

U v = Q v 1 {|Qv|≤ηj } -E Q v 1 {|Qv|≤ηj } .
Then, for any v ∈ {1, . . . , n}, we have E(U v ) = 0 and, using Proposition 2 with ψ instead of φ, for any b ∈ {2, 4},

E |U v | b ≤ 2 b E |Q v | b 1 {|Qv|≤ηj } ≤ 2 b η b-2 j E |Q v | 2 ≤ 2 b θ 2 η b-2 j 2 2(δ+q)j a 2 ω (v). It follows from the Rosenthal inequality and ρ n < n/e that A = 1 n 4 E   n v=1 U v 4   ≤ C 1 n 4 max   n v=1 E |U v | 4 , n v=1 E |U v | 2 2   ≤ C 1 n 4 max   2 4 θ 2 η 2 j 2 2(δ+q)j n v=1 a 2 ω (v), 2 2 θ 2 2 2(δ+q)j n v=1 a 2 ω (v) 2   ≤ C 1 n 4 max 2 4(δ+q)j n 2 ρ 2 n ln(n/ρ n ) , 2 4(δ+q)j n 2 ρ 2 n = C2 4(δ+q)j ρ 2 n n 2 . (31) 
Upper bound for B. Using the inequality:

1 {|Qv|>ηj } ≤ (1/η j )|Q v |,

and again

Proposition 2 with ψ instead of φ, we obtain

1 n n v=1 E |Q v |1 {|Qv|>ηj } ≤ 1 η j 1 n n v=1 E |Q v | 2 ≤ 1 θ2 (δ+q)j ln(n/ρ n ) nρ n θ 2 2 2(δ+q)j ρ n = θ2 (δ+q)j ρ n ln(n/ρ n ) n . (32) 
Hence

B ≤ C2 4(δ+q)j (ρ n ln(n/ρ n )) 2 n 2 . ( 33 
)
It follows from ( 30), ( 31), (33) and

ρ n < n/e that E β j,k -β j,k 4 ≤ C 2 4(δ+q)j ρ 2 n n 2 + 2 4(δ+q)j (ρ n ln(n/ρ n )) 2 n 2 ≤ C2 4(δ+q)j (ρ n ln(n/ρ n )) 2 n 2 .
This completes the proof of Proposition 4.

Proposition 5 For any integer j ≥ j * and any k ∈ {0, . . . , 2 j -1}, let β j,k be the wavelet coefficient (8) of f (q) ω , β j,k be (10) and λ j be (15). Then, for any κ ≥ 8/3 + 2 + 2 16/9 + 4,

P | β j,k -β j,k | ≥ κλ j /2 ≤ 2 ρ n n 2 .
Proof of Proposition 5. Using (29), we have

| β j,k -β j,k | = 1 n n v=1 Q v 1 {|Qv|≤ηj } -E Q v 1 {|Qv|≤ηj } - 1 n n v=1 E Q v 1 {|Qv|>ηj } ≤ 1 n n v=1 Q v 1 {|Qv|≤ηj } -E Q v 1 {|Qv|≤ηj } + 1 n n v=1 E |Q v |1 {|Qv|>ηj } .
By (32) we obtain

1 n n v=1 E |Q v |1 {|Qv|>ηj } ≤ θ2 (δ+q)j ρ n ln(n/ρ n ) n = λ j . Hence P | β j,k -β j,k | ≥ κλ j /2 ≤ P 1 n n v=1 Q v 1 {|Qv|≤ηj } -E Q v 1 {|Qv|≤ηj } ≥ (κ/2 -1)λ j . ( 34 
)
Let us now present the Bernstein inequality (see [START_REF] Petrov | Limit Theorems of Probability Theory: Sequences of Independent Random Variables[END_REF]).

Lemma 2 (Bernstein's inequality) Let n ∈ N * and (U v ) v∈{1,...,n} be n zero mean independent random variables such that there exists a constant M > 0 satisfying, for any v ∈ {1, . . . , n}, |U v | ≤ M < ∞. Then, for any λ > 0, we have

P n v=1 U v ≥ λ ≤ 2 exp - λ 2 2 n v=1 E (U 2 v ) + λM 3 .
Set, for any v ∈ {1, . . . , n},

U v = Q v 1 {|Qv|≤ηj } -E Q v 1 {|Qv|≤ηj } .
Then, for any v ∈ {1, . . . , n}, we have

E(U v ) = 0, |U v | ≤ |Q v | 1 {|Qv|≤ηj } + E |Q v |1 {|Qv|≤ηj } ≤ 2η j
and, using again Proposition 2 with ψ instead of φ,

n v=1 E |U v | 2 = n v=1 V Q v 1 {|Qv|≤ηj } ≤ n v=1 E |Q v | 2 ≤ θ 2 2 2(δ+q)j n v=1 a 2 ω (v) ≤ θ 2 2 2(δ+q)j nρ n .
It follows from the Bernstein inequality that

P n v=1 U v ≥ n(κ/2 -1)λ n ≤ 2 exp   - n 2 (κ/2 -1) 2 λ 2 j 2 θ 2 2 2(δ+q)j nρ n + 2n(κ/2-1)λj ηj 3   . (35) 
Remark that

λ j η j = θ2 (δ+q)j ρ n ln(n/ρ n ) n θ2 (δ+q)j nρ n ln(n/ρ n ) = θ 2 2 2(δ+q)j ρ n and λ 2 j = θ 2 2 2(δ+q)j ρ n ln(n/ρ n ) n .
Combining ( 34) and ( 35), for any κ ≥ 8/3 + 2 + 2 16/9 + 4, we obtain

P | β j,k -β j,k | ≥ κλ j /2 ≤ 2 exp   - (κ/2 -1) 2 ln(n/ρ n ) 2 1 + 2(κ/2-1) 3   = 2 n ρ n - (κ/2-1) 2 2 ( 1+ 2(κ/2-1) 3 ) ≤ 2 ρ n n 2 .
This completes the proof of Proposition 5.

Proofs of the main results

Proof of Theorem 1. We expand the function f (q)

ω on B as

f (q) ω (x) = 2 j 0 -1 k=0 α j0,k φ j0,k (x) + ∞ j=j0 2 j -1 k=0 β j,k ψ j,k (x),
where

α j0,k = 1 0 f (q) ω (x)φ j0,k (x)dx, β j,k = 1 0 f (q) ω (x)ψ j,k (x)dx.
We have

f (q) L (x) -f (q) ω (x) = 2 j 0 -1 k=0 ( α j0,k -α j0,k ) φ j0,k (x) - ∞ j=j0 2 j -1 k=0 β j,k ψ j,k (x).
Since B is an orthonormal basis of L 2 per ([0, 1]), we have

E 1 0 f (q) L (x) -f (q) ω (x) 2 dx = A + B,
where

A = 2 j 0 -1 k=0 E | α j0,k -α j0,k | 2 , B = ∞ j=j0 2 j -1 k=0 |β j,k | 2 .
Using Proposition 3, we obtain

A ≤ C2 j0(1+2δ+2q) ρ n n ≤ C ρ n n 2s/(2s+2δ+2q+1)
.

Since p ≥ 2, we have

B s p,r (M ) ⊆ B s 2,∞ (M ). Hence B ≤ C2 -2j0s ≤ C ρ n n 2s/(2s+2δ+2q+1)
.

Therefore

E 1 0 f (q) L (x) -f (q) ω (x) 2 dx ≤ C ρ n n 2s/(2s+2δ+2q+1)
.

The proof of Theorem 1 is complete.

Proof of Theorem 2. We expand the function f (q)

ω on B as

f (q) ω (x) = 2 j * -1 k=0 α j * ,k φ j * ,k (x) + ∞ j=j * 2 j -1 k=0 β j,k ψ j,k (x),
where

α j * ,k = 1 0 f (q) ω (x)φ j * ,k (x)dx, β j,k = 1 0 f (q) ω (x)ψ j,k (x)dx.
We have

f (q) H (x) -f (q) ω (x) = 2 j * -1 k=0 ( α j * ,k -α j * ,k )φ j * ,k (x) + j1 j=j * 2 j -1 k=0 β j,k 1 {| β j,k |≥κλj } -β j,k ψ j,k (x) - ∞ j=j1+1 2 j -1 k=0 β j,k ψ j,k (x).
Since B is an orthonormal basis of L 2 per ([0, 1]), we have

E 1 0 f (q) H (x) -f (q) ω (x) 2 dx = R + S + T, (36) 
where

R = 2 j * -1 k=0 E | α j * ,k -α j * ,k | 2 , S = j1 j=j * 2 j -1 k=0 E β j,k 1 {| β j,k |≥κλj } -β j,k 2 and T = ∞ j=j1+1 2 j -1 k=0 |β j,k | 2 .
Let us bound R, T and S in turn.

Using Proposition 3 and the inequalities: ρ n < n/e, ρ n ln(n/ρ n ) < n and 2s/(2s + 2δ + 2q + 1) < 1, we obtain

R ≤ C2 j * (1+2δ+2q) ρ n n ≤ C ρ n n ≤ C ρ n ln(n/ρ n ) n 2s/(2s+2δ+2q+1)
.

For r ≥ 1 and p ≥ 2, we have B s p,r (M ) ⊆ B s 2,∞ (M ). Since ρ n ln(n/ρ n ) < n and 2s/(2s + 2δ + 2q + 1) < 2s/(2δ + 2q + 1), we have

T ≤ C ∞ j=j1+1 2 -2js ≤ C2 -2j1s ≤ C ρ n ln(n/ρ n ) n 2s/(2δ+2q+1) ≤ C ρ n ln(n/ρ n ) n 2s/(2s+2δ+2q+1)
.

For r ≥ 1 and p ∈ [1, 2), we have

B s p,r (M ) ⊆ B s+1/2-1/p 2,∞ ( 
M ). Since s > (2δ + 2q + 1)/p, we have (s + 1/2 -1/p)/(2δ + 2q + 1) > s/(2s + 2δ + 2q + 1). So, using again

ρ n ln(n/ρ n ) < n, T ≤ C ∞ j=j1+1 2 -2j(s+1/2-1/p) ≤ C2 -2j1(s+1/2-1/p) ≤ C ρ n ln(n/ρ n ) n 2(s+1/2-1/p)/(2δ+2q+1) ≤ C ρ n ln(n/ρ n ) n 2s/(2s+2δ+2q+1)
.

Hence, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > (2δ + 2q + 1)/p}, we have

T ≤ C ρ n ln(n/ρ n ) n 2s/(2s+2δ+2q+1) . (38) 
The term S can be decomposed as

S = S 1 + S 2 + S 3 + S 4 , (39) 
where

S 1 = j1 j=j * 2 j -1 k=0 E β j,k -β j,k 2 1 {| β j,k |≥κλj } 1 {|β j,k |<κλj /2} , S 2 = j1 j=j * 2 j -1 k=0 E β j,k -β j,k 2 1 {| β j,k |≥κλj } 1 {|β j,k |≥κλj /2} , S 3 = j1 j=j * 2 j -1 k=0 E |β j,k | 2 1 {| β j,k |<κλj } 1 {|β j,k |≥2κλj } and S 4 = j1 j=j * 2 j -1 k=0 E |β j,k | 2 1 {| β j,k |<κλj } 1 {|β j,k |<2κλj } .
Let us analyze each term S 1 , S 2 , S 3 and S 4 in turn.

Upper bounds for S 1 and S 3 . We have

| β j,k | < κλ j , |β j,k | ≥ 2κλ j ⊆ | β j,k -β j,k | > κλ j /2 , | β j,k | ≥ κλ j , |β j,k | < κλ j /2 ⊆ | β j,k -β j,k | > κλ j /2 and | β j,k | < κλ j , |β j,k | ≥ 2κλ j ⊆ |β j,k | ≤ 2| β j,k -β j,k | . So max(S 1 , S 3 ) ≤ C j1 j=j * 2 j -1 k=0 E β j,k -β j,k 2 1 {| β j,k -β j,k |>κλj /2} .
It follows from the Cauchy-Schwarz inequality and Propositions 4 and 5 that

E β j,k -β j,k 2 1 {| β j,k -β j,k |>κλj /2} ≤ E β j,k -β j,k 4 1/2 P | β j,k -β j,k | > κλ j /2 1/2 ≤ C2 2(δ+q)j ρ 2 n ln(n/ρ n ) n 2 .
Since ρ n ln(n/ρ n ) < n and 2s/(2s + 2δ + 2q + 1) < 1, we have

max(S 1 , S 3 ) ≤ C ρ 2 n ln(n/ρ n ) n 2 j1 j=j * 2 j(1+2δ+2q) ≤ C ρ 2 n ln(n/ρ n ) n 2 2 j1(1+2δ+2q) ≤ C ρ n ln(n/ρ n ) n ≤ C ρ n ln(n/ρ n ) n 2s/(2s+2δ+2q+1) . ( 40 
)
Upper bound for S 2 . Using Proposition 4 and the Cauchy-Schwarz inequality, we obtain

E β j,k -β j,k 2 ≤ E β j,k -β j,k 4 1/2 ≤ C2 2(δ+q)j ρ n ln(n/ρ n ) n .
Hence

S 2 ≤ C ρ n ln(n/ρ n ) n j1 j=j * 2 2(δ+q)j 2 j -1 k=0 1 {|β j,k |>κλj /2} .
Let j 2 be the integer defined by

1 2 n ρ n ln(n/ρ n ) 1/(2s+2δ+2q+1) < 2 j2 ≤ n ρ n ln(n/ρ n ) 1/(2s+2δ+2q+1)
.( 41)

We have

S 2 ≤ S 2,1 + S 2,2 , where S 2,1 = C ρ n ln(n/ρ n ) n j2 j=j * 2 2(δ+q)j 2 j -1 k=0 1 {|β j,k |>κλj /2} and S 2,2 = C ρ n ln(n/ρ n ) n j1 j=j2+1 2 2(δ+q)j 2 j -1 k=0 1 {|β j,k |>κλj /2} .
We have

S 2,1 ≤ C ρ n ln(n/ρ n ) n j2 j=j * 2 j(1+2δ+2q) ≤ C ρ n ln(n/ρ n ) n 2 j2(1+2δ+2q)
≤ C ρ n ln(n/ρ n ) n 2s/(2s+2δ+2q+1)

.

For r ≥ 1 and p ≥ 2, since B s p,r (M ) ⊆ B s 2,∞ (M ),

S 2,2 ≤ C ρ n ln(n/ρ n ) n j1 j=j2+1 2 2(δ+q)j 1 λ 2 j 2 j -1 k=0 |β j,k | 2 ≤ C ∞ j=j2+1 2 j -1 k=0 |β j,k | 2 ≤ C ∞ j=j2+1 2 -2js ≤ C2 -2j2s ≤ C ρ n ln(n/ρ n ) n 2s/(2s+2δ+2q+1)
.

For r ≥ 1, p ∈ [1, 2) and s > (2δ + 2q + 1)/p, since B s p,r (M ) ⊆ B s+1/2-1/p 2,∞ (M ) and (2s + 2δ + 2q + 1)(2 -p)/2 + (s + 1/2 -1/p + δ + q -2(δ + q)/p)p = 2s, we have S 2,2 ≤ C ρ n ln(n/ρ n ) n .

So, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > (2δ + 2q + 1)/p}, we have

S 2 ≤ C ρ n ln(n/ρ n ) n 2s/(2s+2δ+2q+1) . ( 42 
)
Upper bound for S 4 . We have

S 4 ≤ j1 j=j * 2 j -1 k=0 |β j,k | 2 1 {|β j,k |<2κλj } .
Let j 2 be the integer (41). We have .

For r ≥ 1 and p ≥ 2, since B s p,r (M ) ⊆ B s 2,∞ (M ), we have

S 4,2 ≤ ∞ j=j2+1 2 j -1 k=0 |β j,k | 2 ≤ C ∞ j=j2+1 2 -2js ≤ C2 -2j2s ≤ C ρ n ln(n/ρ n ) n 2s/(2s+2δ+2q+1)
.

For r ≥ 1, p ∈ [1, 2) and s > (2δ + 2q + 1)/p, since B s p,r (M ) ⊆ B s+1/2-1/p 2,∞ (M ) and (2s + 2δ + 2q + 1)(2 -p)/2 + (s + 1/2 -1/p + δ + q -2(δ + q)/p)p = 2s, we have .

So, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > (2δ + 2q + 1)/p}, we have

S 4 ≤ C ρ n ln(n/ρ n ) n 2s/(2s+2δ+2q+1) . (43) 
It follows from ( 39), ( 40), ( 42) and ( 43) that S ≤ C ρ n ln(n/ρ n ) n 2s/(2s+2δ+2q+1)

.

(44)

Combining ( 36), (37), ( 38) and (44), we have, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > (2δ + 2q + 1)/p},

E 1 0 f (q) H (x) -f (q) ω (x) 2 dx ≤ C ρ n ln(n/ρ n ) n 2s/(2s+2δ+2q+1)
.

The proof of Theorem 2 is complete.

  (s+1/2-1/p+δ+q-2(δ+q)/p)p ≤ C ρ n ln(n/ρ n ) n 2s/(2s+2δ+2q+1)
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