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ABSTRACT

3D contrast-enhanced ultrasound (CEUS) is a powerful imag-

ing technique for tumour vascularity assessment, which is

critical for radio-frequency ablation (RFA) planning or for

the assessment of response to antiangiogenic therapies. In

this paper, we propose a novel semi-automated method for

the quantification of tumour vascularity in 3D CEUS data.

We apply a two-step framework combining an interactive seg-

mentation of the tumour necrosis followed by an automatic

detection of the vascularity based on implicit representations.

Experimental results on 3D CEUS images of renal cell carci-

nomas (RCC) show that our method is promising in terms of

speed and quality.

Index Terms— Tumour Vascularity Segmentation, 3D

Contrast Enhanced Ultrasound.

1. INTRODUCTION

Recent advances in ultrasound imaging techniques have led

to a marked improvement in contrast-enhanced volumetric

imaging. 3D ultrasound offers a better knowledge of het-

erogeneous objects than 2D ultrasound. Ultrasound contrast

agents (UCA) increase the amplitude of the scattered signal

from the micro-vasculature, enabling tissue perfusion imag-

ing [1]. Though UCA are not approved for radiology imaging

in the United States at this time, they are popular and widely

used in Europe and Asia. Fig.1 shows that UCA enhance the

visualization of tumour vascularity. As UCA don’t diffuse in

the interstitial space contrary to MRI or CT contrast agents,

they are well suited for the quantification of tumour vascula-

ture volume. The use of quantitative imaging for the charac-

terization of tumours can improve the diagnosis, the planning

and the monitoring of tumour treatments, specifically in the

clinical contexts of RFA and antiangiogenic therapies [2].

RFA is a minimally invasive therapy of tumours for pa-

tients who do not meet the criteria for surgical resectability.

The aim of thermal ablation is to produce coagulation necro-

sis by using cytotoxic heat. An accurate delineation of tu-

mour vascularity in a 3D image improves the planning of the

needle insertion as well as the monitoring of the treatment

Fig. 1. Left: ultrasound B mode image of a kidney tumour (circle).

Right: ultrasound harmonic imaging of this tumour, its vascularity

being enhanced by ultrasound contrast agents (arrows).

outcome by comparing the overlap between the pre-ablation

tumoural volume and the post-ablation necrosis. Antiangio-

genic drugs slow down the progression of a cancer by in-

hibiting the angiogenesis, i.e. preventing the development of

tumoural blood vessels. Monitoring the tumour vascularity

over time is of paramount importance to evaluate the patient

response to treatment. It is of great interest to delineate ac-

curately a volume of interest in which the tumour vascularity

kinetic can be studied through the injection of UCA.

In current practice, measurements on 3D CEUS images

of tumours are mainly achieved through tedious and time-

consuming manual delineations or through the use of sim-

ple shapes, such as ellipsoids, that poorly account for tumour

heterogeneity. While extensive work has been performed on

tumour segmentation algorithms, to our knowledge, no solu-

tion for tumour vascularity segmentation on 3D CEUS images

have been proposed yet [3].

We propose a novel computer-assisted tool that performs

3D segmentations of both tumour necrosis (section 2.1) and

vascularity (section 2.2). Necrosis segmentation is obtained

from an adaptation of an interactive algorithm combining im-

age features and the radiologist’s clinical knowledge [4]. It

copes efficiently with poor image quality and high necrosis

shape variability. Tumour vascularity is then segmented au-

tomatically using a shape-constrained approach based on its

ring-like shape on the periphery of the necrosis. In section

3 we compare our algorithm to manual segmentations per-

formed by a radiologist.
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2. MATERIALS & METHODS

2.1. Tumour necrosis segmentation

Fig. 2. RCC tumours present a range of necroses shapes (arrows).

In addition to patient-dependent image quality (e.g: mis-

leading anechoic regions), tumour necroses present a high

variability in shape (see Fig.2). Manual segmentation of

necrosis requires a high level of expertise and stems from the

combination of expert’s knowledge and image features. The

interactive algorithm introduced in [4] was specifically de-

signed to allow rapid 3D segmentations, optimally combining

user interactions and image information. User interactions are

as simple as clicks on the image, specifying whether a point

in the image is inside or outside the necrosis. In practice

few interactions (less than 5 points) are needed to obtain

satisfactory segmentations without tedious delineations. Typ-

ically a first click inside the necrosis initiates a fairly accurate

segmentation but ”leakages” are common due to missing

edge information. A few additional clicks around ”leakages”

or ”missing edges” produce satisfactory corrections. Fig.3

illustrates the process on a synthetic 3D image.
This method is based on an implicit representation of the

necrosis region as a linear combination of image dependent
kernels (geodesic radial basis functions). The algorithm se-
quentially builds this representation as the user introduces
points in the image. At the introduction of the nth point xn,
the algorithm computes ([4]) an apodized geodesic distance
x → ϕ(‖x− xn‖gn

) where gn is a metric function and ϕ is

a decreasing non-negative kernel.The necrosis segmentation
is then obtained by the zero super-level ({x, Φ(x) ≥ 0}) of a
linear combination of the previous interactions and the nth

apodized geodesic distance:

Φλi=1..n(x) =
n∑

i=1

λiϕ
(
‖x− xi‖gi

)
. (1)

The n coefficients {λi}i=1..n are obtained by solving the
constrained optimization problem:

min
λ1,...,λn

E(Φλi) =

∫
Ω

H(Φλi)ra(I)+

∫
Ω

(1−H(Φλi))rb(I) (2)

where I is the image intensity, H is the Heaviside function,

ra(I) = − log PΩa(I), rb(I) = − log PΩ\Ωa(I), and PΩa , PΩb

are pixels intensities within the necrosis and the exterior re-

spectively. This problem is minimized under a set of linear

constraints specified as the user imposes a control point to be

inside (Φ(xn) ≥ 0) or outside the necrosis (Φ(xn) < 0).

The adaptation of this algorithm to our problem is done by

choosing a specific distance metric. Necroses are generally

characterized by homogeneous image intensity and high im-

age gradient on its boundary. The following metric: gn(x) =

(I(x)− I(xn))2 × |∇I|2 accounts for these features.

Fig. 3. Necrosis segmentation on a synthetic image. From left to

right: a synthetic image; the resulting segmentation after one click;

the final segmentation after one correction.

2.2. Vascularity segmentation

Through angiogenesis, a tumour develops new vascular struc-

tures in order to reach more nutrients and oxygen. As tu-

mour size increases, necrosis develops in its center where

cells are remote from blood supply. Therefore tumour vas-

cularity often adopts a ring-like distribution on the periphery

of the necrosis.

The use of ultrasound contrast agents enhances both the

vascularity/necrosis and vascularity/surrounding tissue inter-

faces. The former presents a strong image gradient (Fig.1),

the latter presents image texture differences (Fig.4). Indeed

RCC are generally less well perfused than the cortex [5].

Fig. 4. The tumour (oval on the left side of the image) is located

partly in the kidney (oval on the right side). Both the tumour and the

kidney are vascularized and enhanced by UCA (arrows).

Based on these image features, we propose a minimiza-
tion algorithm for the automatic segmentation of tumour
vascularity. The functional to be minimized (E) is composed
of four different terms rationalizing the vascularity ring-like
shape (Ec), high image gradient at the interface with necrosis
(Ee), intensity dissimilarity measure with surrounding tis-
sue (Ei) and a regularization term (Er). Mathematically, we
represent the vascularity as the zero level set of a bounded
variations function u restricted to [−1; 1], partitioning the
image domain Ω in two regions Ωint={x ∈ Ω, u(x) ≥ 0} and
Ωext={x ∈ Ω, u(x) < 0} (Fig.5). The expression of the func-
tional we optimize is

min
u∈BV[−1,1]

E(u) = Ei(u) + Ee(u)︸ ︷︷ ︸
image-based

+ Ec(u)︸ ︷︷ ︸
constraint

+ Er(u)︸ ︷︷ ︸
regularization

(3)
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Fig. 5. Left: implicit function for the necrosis segmentation. Right:

implicit function for the vasculature segmentation.

We now give the expressions of each of these terms.
Intensity distributions dissimilarity measure: As shown in
[6], a suitable metric to quantify the similarity between two
regions is given by the Wasserstein distance between image
intensity distributions. Within our formalism, the Wasserstein
distance between the image intensity distributions inside (u ≥
0) and outside (u < 0) the vascularity is :

W (u) =

∫
R

∣∣∣∣F (y,
1 + u

2
)− F (y,

1− u

2
)

∣∣∣∣ dy (4)

where F is the cumulative distribution function defined by:

F (y, v) =

(∫
Ω

v(x)dx

)−1 ∫ y

a=0

∫
Ω

δ(I(x)− a)v(x)dxda (5)

δ being the Dirac distribution. We choose the expression
Ei(u) = −W (u), as minimizing Ei increases the intensity
distributions distance between the regions defined by u.
Image gradient: As the vascularity is enhanced, the image
gradient at its interface with the necrosis or the surrounding
tissue is oriented toward its interior. Our gradient term must
favor an interface {u = 0} minimizing the outward gradient
flow:

Ee(u) =

∫
{u=0}

∇�I · �n (6)

where �n is the outward unit normal of the surface {u = 0}.
Ring-like shape constraint: Segmentations that differ from
a ring-like shape are constrained through the following term:

Ec(u) =

∫
Ω

(u(x)− S(x))2dx (7)

where S is a discrete function satisfying S = 1 inside the ring

model and S = −1 outside. The construction of this model is

described further on.

Regularization term: Finally we regularize the segmenta-

tion by using a total variation (TV) term:

Er(u) =
∫

Ω

|∇u(x)|dx (8)

Shape model, Implementation and Initialization: Due to

the difficulty of CEUS images, we cannot apply our vascu-

larity segmentation algorithm without restricting the image

domain to a vicinity of the necrosis (previously segmented).

This restriction, as well as the definition of the function S and

the initialization of u, are made through the following proce-

dure.

Fig. 6. Restriction of

the image domain

From the distance function D to the
necrosis, we consider the following
sets:

Ωint(d) = {x, D(x) ∈ [0; d]}
Ωext(d) = {x, D(x) ∈ [d; d + ε]}

where d is a particular distance
level and ε is the inverse of the
necrosis radius. We define the dis-
crete function

ũ(x, d) = {1 if x ∈ Ωint(d), − 1 if x ∈ Ωext(d)}.

We compute E′(d) = (Ei + Ee)(ũ(x, d)) for a suitable set of

discrete distance values and we determine a minimal value

and its corresponding distance level d̃. With this fast and sim-

ple approach we restrict our image domain to Ω = Ωint(d̃) ∪
Ωext(d̃). We initialize the function u with u = ũ(., d̃) and we

define the shape constraint S as S = ũ(., d̃).
The minimization of the functional E is done using an ex-

act penalization term [7] to restrict u to [−1, 1] and an alter-

nated gradient descent scheme (decoupling TV-regularization

and gradient descent) as proposed in [8]. Due to space limi-

tations, we omit the details on these algorithms and we refer

the interested reader to [7, 8]. Fig.7 shows the result of the

vascularity segmentation on a synthetic image (see Fig.3).

Fig. 7. Segmentation of the vasculature on a synthetic image. From

left to right: level d̃ detected; final segmentation of the necrosis;

zoom-in view of the final segmentation (box).

3. RESULTS

3D CEUS data were acquired on 2 phantoms and 5 patients

with RCC carcinoma following the administration of 2mL of

the UCA SonoVue (Bracco, Milan, Italy). All 5 patients un-

derwent CT-scans. The necrosis and the vascularity of each

tumour have been manually segmented on several slices of

both the CEUS and CT data, using a tool that we developed in

C++ based on the VTK library1. 3D semi-automatic quantifi-

cation measurements were compared to manual segmentation

of ultrasound images. Fig.8 shows the 3D segmentation of a

kidney tumour necrosis and vasculature and Fig.9 shows the

result on five kidney tumours.

1www.vtk.org: VTK is an open-source, freely available software system

for 3D computer graphics, image processing and visualization.
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Fig. 8. From left to right: a kidney tumour; the 3D segmentation of

the necrosis; the 3D segmentation of the vasculature.

Fig. 9. Segmentation of the necrotic and vascularized volume of

kidney tumours (from top to bottom). 2 images on the left: manual

delineation. 2 images on the right: semi-automatic segmentations.

The average segmentation time was 1 minute for the semi-

automatic segmentation and 10 minutes for the manual delin-

eation. The average axial, lateral and elevation resolutions of

CEUS data were 0.4 mm, 0.3 mm and 0.7 mm. The average

diameter of the tumours measured from CEUS data was 6 cm.

On phantom studies our segmentations show less than 5% er-

ror and on clinical data the average error in the delineation is

20% for both the necroses and the vasculatures. Those errors

can be compared to the variation in volume from manual de-

lineations of CEUS and CT images. The average variation in

volume ranged from 14% for the necroses to 16% for the vas-

cularized volumes. Those variations can be explained by the

poor quality of CEUS images that requires clinicians to ex-

trapolate lesion boundaries. Therefore our results are promis-

ing considering the quality of ultrasound data sets.

4. DISCUSSION & FUTURE WORK

The newly developed semi-automatic tool is promising as it

rapidly provides accurate measurements of tumour volumes.

This technique may be useful for the evaluation of response to

cytotoxics as well as antiangiogenic drugs and ablative ther-

apies by assessing altered vascularized volume. One further

improvement of the method would be the addition of inter-

actions for the vascularity segmentation in order to provide

radiologists with some flexibility for delineating the tumour

vascularity. One drawback of our vascularity segmentation

algorithm is its inability to control topological changes. In

order to fully control the shape of the vascularity segmenta-

tion, we are working on the implementation of an interactive

segmentation of the tumour vascularity by applying deforma-

tions to a ring model. Further steps include more extensive

clinical validation as well as the study of the evolution over

time of volume signal intensity within the vascularized region

of interest.
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