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AUTOMATIC SEGMENTATION OF PATHOLOGICAL TISSUES IN CARDIAC MRI

Khaoula Elagouni1, Cybèle Ciofolo-Veit1, Benoˆt Mory 1

1Philips Medical Systems Research Paris, Suresnes Cedex, France.

ABSTRACT
In the context of cardiac viability assessment, we propose
a new fully automatic method to segment and quantify my-
ocardial pathological tissues in Late Enhancement Cardiac
Magnetic Resonance images. Our two main contributions are
a generic image intensity analysis and an original variational
segmentation method, the Fast Region Competition. The ob-
tained results are robust to anatomical variability and partial
volume effects and false positives are avoided. To validate
our results, we use representations that are independent of
myocardium shape and size and compute clinically relevant
indicators. The proposed method was tested on 100 slices
and compared to other classical segmentation approaches,
showing the best agreement with semi-automatic expert de-
lineations.

Index Terms— Segmentation, variational methods, late-
enhancement, myocardium viability.

1. INTRODUCTION

Viability assessment of the heart muscle is essential for diag-
nosis and therapy planning. It is based on clinical measure-
ments of pathological tissues, which can be ef ciently visu-
alized with Magnetic Resonance Imaging (MRI). The Late
Enhancement Cardiac Magnetic Resonance (LECMR) proto-
col consists of acquiring images around twenty minutes af-
ter a contrast agent injection. It provides a stack of 10 to 12
slices on which abnormal tissues (for example, infarcted ar-
eas) appear brighter than normal myocardium (see Fig. 1). In
this work, we focus on the automatic and robust detection of
pathological regions with the nal objective to derive relevant
clinical parameters for viability quanti cation.

Fig. 1. Sample LE CMR slice

To this end, several issues have to be solved. First, de-
pending on the pathology, the shape and angular extent of ab-

normal areas, their localization with respect to myocardium
contours and the sharpness of their borders vary a lot. More-
over, the contrast between normal and abnormal tissues is
related to the acquisition time, which is not always optimal,
making the segmentation dif cult and prone to intra and inter-
observer variability.
These reasons motivate the use of a robust and automatic

segmentation algorithm. In this context, the most intuitive
idea is to threshold image intensities. Different works propose
to automatically compute the best threshold and characterize
hyper-enhanced regions [1, 2, 3]. The main drawback of these
methods is the lack of spatial coherence, leading to numerous
false positives or, on the contrary, under-segmented patho-
logical regions. To improve this, Hsu alternates threshold-
ing and feature analysis [4], assuming that abnormal tissues
are mainly sub-endocardial and reasonably large. Heiberg in-
troduces a level set algorithm to regularize thresholding [5],
while in Hennemuth’s recent approach, the threshold result-
ing of image intensity analysis is used to initialize a watershed
segmentation [6]. However, besides the spatial coherence
brought by all these methods, it is always necessary to use
a connectivity-based post-processing to re ne the results. In
this paper, we propose a new method with two main contribu-
tions: (1) the generalization of the intensity analysis presented
in [6] and (2) an original variational segmentation method, the
Fast Region Competition, leading to accurate results without
any assumption concerning the location of abnormal tissues
nor need for post-processing.

2. DETECTION AND SEGMENTATION

Assuming that the myocardium contours have already been
automatically obtained [7], our automatic segmentation
method consists of four steps, as illustrated in Fig. 2. First
we analyze myocardium intensities and estimate normal and
pathological tissues distributions. These distributions are
used to generate a fuzzy map indicating, for every pixel,
the membership degree to the abnormal tissue class. After
fuzzy map thresholding and morphological cleaning, the Fast
Region Competition is applied to precisely segment patho-
logical tissues. The fuzzy map is nally superimposed on the
segmentation results to visualize pathological tissue severity.
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Fig. 2. Pathological tissues detection scheme.

2.1. Statistical intensity analysis

In the presence of noise, the magnetic resonance image in-
tensity is shown to be governed by a Rician distribution [8],
which reduces to a Rayleigh distribution when intensity val-
ues are close to zero, and tends to a Gaussian distribution
when values are high. In the case of LECMR and inside
the myocardium, the Rayleigh and the Gaussian distribu-
tions adequately represent respectively normal (dark regions)
and pathological tissues (bright regions). In order to t
a Rayleigh-Gaussian mixture to the image histogram, we
express the distribution function related to myocardium as
follows:

pmyoc(I) = αR.pR(I, σR) + αG.pG(I, μG, σG), (1)

where αR and αG are distributions weights, and σR, μG, and
σG are distributions parameters.
Some signal processing is applied during the acquisition

to view the normal myocardium as dark as possible and help
abnormal tissue identi cation. Consequently, the intensities
are often shifted to the left with an unknown offset a whose
value depends on acquisition parameters. Ignoring this off-
set may lead to inaccurate intensity distribution analysis and
incorrect segmentation of abnormal regions, as illustrated in
Fig.3. Our rst contribution is thus to introduce a as an addi-
tional parameter in the estimation. However, we assume that
it is small enough to ignore the shifted part of the Gaussian
distribution. Eq. (1) can then be written as:

pmyoc(I) = αR.pR(I + a, σR) + αG.pG(I, μG, σG). (2)

The estimation of the distribution parameters can be formal-
ized as maximizing the likelihood between a set of observa-
tions, namely the myocardium histogram, and a Rayleigh-
Gaussian mixture model. This is done with an Expectation-
Maximization (EM) algorithm [9] that we adapted to recover
the additional offset parameter a. In particular, the analysis of
the Rayleigh distribution properties leads to:

σR =

∫ ∞

IM

pR(t).dt

pR(IM )h(IM )
, (3)

where IM is the intensity corresponding to the histogram
maximum and h(IM ) its number of occurences, which im-
mediately yields a = σR − IM . These relationships are
introduced in the maximization step of the EM algorithm to
obtain the distributions representing normal and pathological
tissues (see Fig. 3).
The distributions are then exploited to generate a fuzzy

map indicating, for every pixel, the membership degree to the
abnormal tissues class. To do so, we apply a ramp model such
as the membership value is 0 if i ≤ σR − a, 1 if i ≥ μG and
varies linearly between these bounds. An example of fuzzy
map is visible in Fig. 4(B).

(A) Ignoring parameter a (B) Estimating parameter a

Fig. 3. Intensity analysis: in uence of the offset a parameter.
Black: estimated Rayleigh distribution (healthy tissue), red:
estimation Gaussian distribution (abnormal tissue).

In order to detect abnormal regions, we rst threshold
the fuzzy map, keeping only pixels whose membership value
is over 0.5. The reason for using an arbitrary threshold in-
stead of computing the distributions intersection is that, for
small scars, the abnormal tissue distribution may be under-
represented. In this case, the distributions intersection is
higher than the mean of the Gaussian distribution, which is
not a physiologically acceptable threshold, contrary to the 0.5
membership value. Moreover, the segmentation method that
follows is not sensitive to the threshold value, provided that it
is chosen between the distributions peak values.
After thresholding, a morphological erosion removes the

remaining noise and false positives. However, this process
also reduces the size of detected pathological areas, especially
the thin or elongated parts, (see Fig. 4(D)), and the result-
ing regions are not always smooth and well-connected. The
next part of the paper describes how to recover missing parts
and obtain regularized results with an original segmentation
method.

(A) (B) (C) (D)

Fig. 4. (A) Original slice, (B) Fuzzy map, (C) 0.5 member-
ship thresholding, (D) Morphological cleaning result.
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2.2. Fast Region Competition

In order to provide the abnormal tissue segmentation with ad-
ditional spatial coherence, the previous statistical estimation
of the intensity distributions is embedded into a regularized
variational formulation. As a side contribution, we propose a
novel algorithm to perform segmentation with a smoothness
prior, speci cally designed to be very fast with minimal com-
plexity overhead compared to thresholding approaches.
Based on the the Region Competition framework [10],

many variational two-phase segmentation methods consider
the optimal partition as the best trade-off between smooth-
ness and intra-class consistency. Over the set of all partitions
A of a domain Ω, an objective criterion is de ned as the sum
of a regularization termR(A) and application-dependent ho-
mogeneity measures (r1 and r2) integrated over both the fore-
ground and background regions of the image I:

min
A

{
R(A) +

∫
A

r1 (I(x)) dx +

∫
Ω\A

r2 (I(x)) dx

}
(4)

Since the abnormal tissues can be of arbitrary topology,
we use a level-set representation with an implicit function Φ,
positive in the foreground. Φ represents the foreground region
A, of characteristic function H(Φ) where H is the Heaviside
function. With this representation, (4) is equivalent to:

min
Φ

{
R(Φ) +

∫
Ω

H(Φ(x))r (x)) dx

}
(5)

with r(x) = r1 (I(x)) − r2 (I(x)). To favor smooth results,
the most classical additional regularization term R(Φ) is the
length of the boundary {Φ = 0}, which leads to an evolu-
tion equation that is driven by the curvature of the function
Φ. This has two shortcomings in practice: (a) the curvature
term requires relatively slow iterative schemes to avoid insta-
bilities; (b) weighting the two terms is critical and dif cult to
tune to get stable regularization effects on many images. We
shall now describe our alternative formulation that has none
of these drawbacks. Instead of ensuring smoothness by an ad-
ditional term, the key idea to express the unknown partition as
the super-level set of a smoothed function, which guarantees
by construction that the boundary will indeed be smooth. For
sake of simplicity and ef ciency, we consider such smoothing
to be the result of linear ltering, typically Gaussian. Let wσ

be a symmetric non-negative low-pass kernel of scale σ, and

Φσ(x) = [wσ ∗ Φ](x) =

∫
Ω

wσ(x− y)Φ(y)dy, (6)

the Fast Region Competition formulation is to solve:

min
Φ ∈ [−1, 1]

{
F (Φ) =

∫
Ω

H(Φσ(x))r (x)) dx

}
(7)

where the implicit representation of the region is the smooth
function Φσ and the functional F (Φ) depends on the un-
known function Φ, before smoothing. Φ is further assumed
bounded in [−1, 1] to remove the ambiguity induced by
F (αΦ) = F (Φ) for any positive scalar α. To solve (7), cal-
culus of variation is applied to obtain the optimality condition
for Φ, when all directional derivatives vanish:

∀φ,
∂F (Φ + hφ)

∂h

∣∣∣∣
h=0

= 0

∀φ,

∫
Ω

φ(y)

{∫
Ω

wσ(x− y)δ (Φσ(x)) r(x)dx

}
dy = 0

∫
Ω

wσ(x− y)δ (Φσ(x)) r(x)dx = 0 (8)

Sincewσ is symmetric, the optimality condition (8) can be
re-written as a convolution, using a continuous approximation
δε of the Dirac distribution, i.e. wσ ∗ [δε(Φσ).r] = 0. Thus,
a local minimizer of (7) can be found with a gradient-descent
evolution equation of the form:

∂Φ

∂t
= −wσ ∗ [δε(Φσ).r]

This suggests a very simple iterative algorithm to perform
regularized two-phase segmentation, with a single intuitive
smoothness scale parameter σ, that does only require Gaus-
sian convolutions: from an initial guess Φ0 at k = 0 and for a
given time stepΔt, iterate until convergence:
- Compute Φk

σ

- Update Φk+1 = min
(
max

(
Φk
−Δt.wσ ∗ [δε(Φ

k

σ).r],−1
)
, 1

)
A natural choice for the homogeneity measures is to use

maximum-loglikelihood criteria using the parameters esti-
mated from the statistical analysis of myocardial abnormal
(μG, σG) and healthy (σR) tissues:

r1(I) = −λ1 log (pG(I|μG;σG))
r2(I) = −λ2 log (pR(I|σR))

(9)

λ1 and λ2 can usually be xed to 1. However, in our experi-
ments, a slightly higher weight is assigned to healthy tissues
(λ1 = 0.7 and λ2 = 1.3). This bias offers additional control
by favoring an healthy membership for pixels whose posterior
probability is not very discriminative, and gives better results
in the case of partial volume effect or when there is no patho-
logical image evidence (single distribution).

3. QUANTIFICATION RESULTS

The method was tested on 11 short-axis LECMR volumes
(100 slices) acquired in a multi-center study between 2004
and 2007 (Philips Intera scanner 1.5T, Fast Field Echo se-
quence, TE=1.1ms, TR=3.8ms, ip angle=15). All slices
are 256x256, spaced with 10mm and with pixel size around
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1.5mm. For various enhancement patterns, the segmentation
results are satisfactory and obtained in around 0.2 second per
slice. See Fig. 5 for illustrations.

(A) (B) (C) (D)

Fig. 5. Detection examples: (A) original slice, (B) corre-
sponding fuzzy map, (C) cleaning result, (D) Final segmenta-
tion result overlayed with fuzzy map.

In order to validate our method, we quantify the seg-
mented areas and derive clinically relevant parameters. We
focus on two principal characteristics: the percentage of ab-
normal tissues and the transmurality or extent of abnormal
tissue in the radial direction.
To evaluate the percentage of pathological tissues, we di-

vide the myocardium in angular sectors, in which we com-
pute the average of detected voxels membership to the ab-
normal class. The transmurality is computed from a normal-
ized representation independent of both myocardium shape
and size. First the distance of the segmented regions to the
endocardium and epicardium contours are computed and nor-
malized. The transmurality error is expressed as a percentage
with respect to myocardium thickness.
The tested database was studied by an experienced ob-

server, who manually segmented pathological regions with
the interactive thresholding procedure offered in the Philips
ViewForum 4.3 MR Cardiac Package. 100 slices are avail-
able with manual references, used to evaluate the proposed
method, as well as two classical thresholding approaches,
noted 2SD th. and 3SD th., which consist of thresholding the
myocardium intensity respectively at 2 and 3 standard devi-
ations above the average healthy myocardium intensity. As
shown in Tab. 1, our method shows better agreement with the
expert segmentations than thresholding approaches, though
the ground truth was de ned with manual thresholding.
Moreover for all tested slices, including images without

apparent pathological tissues, our method avoids false posi-
tive detections and provides spatially coherent results, con-
trary to intensity-based thresholdings.

Measure Our method 2SD th. 3SD th.
Volumic error 3.6±5.6 4.7±6.1 4.6±7.7

(% w.r.t. heart volume)
Transmur. error (% w.r.t. 12±11 12±10 14±10
myocardium thickness)

Table 1. Comparison of automatic method and manual detec-
tion of pathological areas.

4. CONCLUSION

We proposed a novel fully automatic method for myocardium
pathological tissues segmentation and provided quanti cation
parameters allowing a reliable viability assessment. Experi-
ments were promising and have demonstrated the robustness
and accuracy of the segmentation when compared with man-
ual detections. Future work will be based on fully 3D MR
scans to improve the results with 3D connectivity analysis.
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