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~~" Dynamics of solids with microperiodic nonconnected

fluid inclusions

F. dell'lsola, L. Rosa, Cz. Wozniak

Summary A new model for the description of micro- and macro-dynamics of linear elastic solid
body with micro-periodic nonconnected fluid filled inclusions is proposed. Using the model we
are able to account for the microstructural length-scale effect on the global dynamic behavior of
the body. The effect falls out of the scope of the known homogenized models obtained by
asymptotic approaches. The general equations obtained in the model proposed here are applied
in order to investigate dispersion phenomena in wave propagation problems. The obtained
results are compared with those for the asymptotic model when the length-scale effect vanishes.
It is shown that this effect plays an important role in the analysis of dynamic problems.

Key words elastodynamics, microperiodic media, two-phase media

1
Introduction
The main aim of this paper is to propose and apply a new model describing the dynamical
behavior of a linear elastic solid matrix with a microperiodical system of cells containing non
connected fluid inclusions. The characteristic feature of the proposed model is that it is able to
describe the microstructural length-scale effect on the global dynamic behavior of the body.
Effects of this kind cannot be taken into account when the well-known homogenized models
are used. Indeed, they are based either on the asymptotic procedure in which all quantities of
an order higher or equal to the cell length dimensions are neglected, [1, 2, 3], or on the ideal
mixture assumptions introduced in the known theories of saturated porous media [4, 5, 6].

The procedure used here takes into account the approach proposed in [7], and recently
developed in a series of papers [8, 9, 10]. The general idea relies on the introduction of so called
“microshape functions” (msf) and “macro functions” (mf). They allow to represent the dis-
placement field in terms of some macrodescriptors, one of which being the average (on a cell)
displacement, and the others describing, among the microdisturbances in displacements
caused by inhomogeneity of the medium, those which are relevant in the considered phe-
nomena. We assume that displacements of the fluid inclusions are described by the same msf
and macrodescriptors as those of the solid matrix. Because of this hypothesis, our analysis is
limited to the case of a porous matrix with fully saturated nonconnected fluid inclusions. For
the sake of simplicity the investigations are carried out in the framework of the linear elasticity
theory and for a perfect fluid; more general cases will be treated separately.

The general evolution equations determining the model which we propose are applied to the
analysis of some dynamical problems. The main results are:
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i) by comparing the proposed model with the asymptotic one, it is shown that in investigating
high-frequency vibrations of the fluid-saturated solid matrix the length scale effect cannot
be neglected;

ii) the incompressibility of the fluid filling the inclusions implies that the highest frequency of
free vibration becomes infinity.

The proposed approach allows to obtain the aforementioned results using analytical methods
only, without any numerical simulation.

2
Fundamental notations and concepts

We start describing the geometry of the typical cell V, which periodically reproduced will allow
for the construction of the considered body. Let

( ll ll) ( 12 lZ> ( l3 13>
V.= T R A X\ —=H5 X\ =75 )
2°2 2°2 2°2

and define

l::g/Zle lf

as the microstructure length parameter (cf. [7] and references quoted there). It is assumed that
the smallest characteristic length dimension Lq of (2 satisfies condition:

)
— << 1.
Lo

Let Vi be a subset of V whose boundary does not intersect with the boundary of V; we will
assume that VF is a regular region. We remark that Vr can be eventually partitioned in different
simply-connected subsets. We define Vs: = V\Vy. In what follows, we will assume that Vg is

occupied by a solid medium while Vi by a fluid one. For an arbitrary point x in the physical 3-
space E, we will use the following notation:

V(x): =x+V, Vs(x): =x+ Vs, Vp(x): =x+ Vp.

We now define the geometry of the region Q occupied by the body B in the reference con-
figuration. We assume that there exists a lattice A of places in E such that

[V(XI,XZ) € AZ} [Xl 7é X) — V(Xl)mV(XZ) = Q)] ’

Q = int [UXGA V(x)} :

is a regular region, where int (A) means the interior topological part of A.
In the following we will also set

Qs = int [UxeAVS(x)}, Q: = int [UXGAVF(X)}, Q= {xeQ: V(x)C Q} ,

which represent respectively the placement of solid matrix, of fluid inclusions and of what is
called the macrointerior of Q. For a generic function f defined respectively in V(x), Vs(x) and
Vi(x), we denote the mean values as follows:

el = | -
(), = V] /fodV, s V] /Vs(x)de, UE \4 VF(X)de 7

If f is a periodic function then for every x € E we obtain



<fosr=<f> <f>=<f>5<f>E=cf>F

where < f >, < f >5, < f > are constants.

An exact dynamical description of the body B at a microlevel is obtained by introducing
displacement fields whose variations in every cell V(x) can be relevant. Different coarse de-
scriptions, i.e. descriptions at a macrolevel (in which only some overall averaged properties of
the body are to be considered) can be obtained. The “homogenized” description accounts for
the average displacement in V only. More refined descriptions are obtained by introducing
“macrodescriptors” of displacement which are nearly constant within every V(x).

Following [7] we introduce two concepts which we will need in the subsequent sections. We
call microshape functions (msf) a system of sufficiently regular V-periodic linearly in-
dependent functions hf(:), a =1,...,n such that:

K (x) € O(l), VHi(x) € O(1), <hf >5 =< h?>F =0, x€E , | (1)

where the index I displays the dependence of the msf on the microstructure length parameter;
O(I) represents a set of functions of ! which are infinitesimal of equal or higher order than /, and
O(1) is a set of functions of ! whose maximum value remains finite when [ — 0.

For some ¢ > 0, we call a real-valued function F defined on @ an ¢-macrofunction

if

(Vx € Q°)[Vz € V(x)] F (z) ~ F(x) , (2)

where
a ~ b means |la — b|| < e.

The parameter ¢ is assigned to F(x), ¢ = &f, and will be interpreted as an error implied by the
choice of giving up the microscopically accurate description of the system. In the sequel, it will
be assumed that for every ¢-macrofunction F(x) the accuracy parameter ¢ = & is known, and
F(x) will be referred to as a macrofunction.

3

Kinematical macrodescriptors and their evolution equations

In this paper, we will assume that the solid matrix is linear elastic and that the inclusions are
constituted by a perfect fluid. Therefore, on the macrolevel, we assume that, with

e=sym(Vu) ,
the following constitutive equations hold:
s=C:e t=pl. (3)
Here and in the sequel, we use the conventions
3 3
Cv:= Z C,jklvl, Ciw:= Z C,'jklwkl
I=1 kl=1
where u is the microdisplacement vector field defined in Qg for every substantial point be-
longing to the matrix, C is the microlinear elasticity fourth-order tensor, p is the pressure field,
defining in the fluid inclusions the Cauchy tensor t, and I is the identity tensor.
Moreover, let pg, pr represent mass density fields of the solid and fluid components, re-

spectively, and let b stand for an external body force. We will assume that the following weak
form of balance equations holds, see for instance [11]:

d
/ s:6edV+ [ p(div(éu))dV + — (/ psu - doudV +/ pru - 5udV>
Qs QF dt Qs QF

J Qg

Qr
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for every du admissible by possible constraints, continuous in € and of class C! in QL Q7
and such that du|,, = 0, where de = sym (Véu). The dynamical problem for the body B is
given by Egs. (3) and (4), together with a constitutive equation for the fluid. It describes
completely the microbehavior of considered continuum. Its solution - because of the micro
periodical shape of Qg and Qr - is not feasible, even using complicated numerical methods. For
these reasons we resign from describing the details of the considered system, and introduce the
two following hypotheses:

Macro Constraint Hypothesis (MCH)
The displacement field u is represented as

u(x, t) =U(x, t) + i{(x)Q*(x,1), xe€Q, 1€ (to,tf), (5)

where summation over a holds and hf(-),a = 1,...n, are msf describing the kinematics of the
system at the microscopic level. These msf have to be postulated a priori in order to account
for those features of the solutions at the microlevel which are more relevant at the macrolevel in
the considered phenomena. Moreover, functions U and Q are sufficiently regular macro-
functions which will be treated as new kinematical independent variables. They will be called
macrodisplacements and macrointernal variables respectively.

Macro-Modelling Approximation (M A A)

In the integrals appearing in Eq. (4) we will neglect all addends which are of the same or higher

order as the accuracy parameter ¢ related to the macrofunctions U(-, t),Q%(-,¢) and all their

derivatives. In the sequel, this kind of approximation will be denoted by ~, cf. Eq. (2). We

remark explicitly that in the proposed approach the microstructure length parameter [ is

assumed to be a known physical constant independent of ¢ and will be not neglected.
Because of the definition of msf given in Sec. 2, for every x € Q°, we obtain

<u>y=<u>;= Ux1),te (f,tf) .

Therefore, the macrodisplacements of the matrix are described in the same way as the mac-
rodisplacements of the fluid inclusions. The hypotheses formulated for msf are therefore
suitable for describing the behavior of a solid matrix with nonconnected fluid inclusions.
Because of MCH we see that on a microlevel the motion, described by u, is a superposition of
microdisturbances hf Q% over the macromotion U. Hence Q“(-,t) are macroquantities de-
scribing those disturbances on the microlevel which are relevant at the macrolevel. Choosing
different msf allows for the study of different aspects of the considered process, whose more
detailed description can be obtained increasing the number n of msf. In what follows, we will
assume, coherently with MCM and MCH, that

e =E+sym[V(h{Q")] = E+ sym(Vh] @ Q* + h{VQ*) ~ E + sym(Vh! ® Q°) ,

where we have denoted

E :=sym(VU) ,

and

ou = o6U + hjoQ® |

de = OE + sym(V(h{ ® Q*) + sym(h{V3Q?) ~ SE + sym(Vh{ ® Q%) ,

with U, 0Q” as e-macrofunctions together with all derivatives.

Using the above relations we obtain, manipulating each term in Eq. (4), the weak form of
balance equations involving U and Q“. To this aim observe that after denotations

S(x,t): = <s>3 H'(xt):=<s-Vh >} (6)

for every x € Q° we obtain from (4)



/ s:5edV:Z/ s:5edV:Z{/ [s:5E+s:(Vh“®5Q“)]dV}
Qs Vs(x) Vs(x)

XEA x€A

3 [<s >y i 0B+ <5 VA >, 0Q7| V] ~ /(s : 6E + H* - 6Q)dV . (7)
XEA Q

Because of Eq. (3) we also have
S=<C>%E+<C-Vh>5.Q°, (8)
H*=<C VI >%E+ < C: (VH* @ VH) >5.QF . (9)

The above equations are to be referred to as macroconstitutive equations.
We remark that the last two equations imply that both S and H* are e-macrofunctions.
In the same way we find:

/pﬁ~5udV+/ pa-oudv ~
Qr Qs

Z Sy PO+ hQ") - (8U + h2oQY)dV + 3,4 Sy P(U + hQ") - (8U + h2oQ?)dv

XEA
:/{(<p>U+<ph“>Qa)~5U
Q
+ (< ph* > Ut < phr! > Q') - 0Q*}av | (10)
/pb~5udV+/pb-5udV:
Qp J Qs

Z/ [pb - 86U + pb - h*6Q%|dV + Z/ [pb - 8U + pb - h*6Q%]dV
Ve(x) Vs(x)

xEA xEA
~ /[< pb > - 60U+ < pbh® > - 6Q%dV | (11)
Q
pdiv(Su)dV ~ / (—VP. U +P°-5Q%) dV (12)
QF Q

where we have defined
P:=<p>h Pi=<pVh* >E (13)

for every x € Q°. Finally

/(S:6E+H“-5Q“) dV+/
Q

{(<p>ﬁ+<ph“>éa)-5U
Q

+ (< ph* > U+ < phh® > Qb)aqa} av
= /[(< pb > -0U+ < pbh® > -6Q%) + (VP - dU + P* - 6Q“)|dV (14)
Q

for every dU, 4Q%, with
5U\OQ =0, 5Q“|aQ =0 .

In this way we obtain the following system of equations of motion for macrodisplace-
ments
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divs— < p>U—<ph®*>Q" +VP+<pb>=0 , (15)

and evolution equations for macrointernal variables
< ph®ht > Q"+ < ph* > U+ H* + P*— < pbh® > =0 . (16)

Egs. (15), (16) together with (8), (9) represent the system of equations for macrodisplacements
U and macrointernal variables Q“, provided that the fluid pressure in the inclusions is known.
We remark that the coefficients of the system are constant. This fact is a consequence of the
periodicity of the medium. Note that some of the above coefficients depend on the size of the
microstructure since

< phfh? > € O(F*) and < phf >€ 0(]) .

In order to obtain a full description of the medium, we have to introduce some extra con-
stitutive specification relative to the fluid filling the cavities. This will be done in the subsequent
section.

4
Evolution equations for a micro-structured model
In the sequel, we neglect the body forces and assume p to be piecewise constant so that

< phf >=0 .

Under these assumptions equations (14) and (15) become:

divS—<p>U+VP=0, (17)
<phh> Q" +H 4P =0 | (18)

with § and H® given by (8) and (9).
We will distinguish two cases:

Compressible fluid
Denoting by p° and « the initial pressure and the compressibility parameter, respectively, we
have

p =p° + adivu =~ p° + a(divU + VA] - Q%) .

Incompressible fluid
In this case the macroincompressibility condition will be derived by

<divu>:0:><l>FdivU+<Vh7 >F.Qi=0 .

and considerations will be restricted to the case in which p can be treated as an unknown
macrofunction; hence

<p>F=<1>Fp <pVH >F=<VH >Tp .

We remark that (see also [7]):

1. Equations (8) and (9) are regarded as macroconstitutive equations. It means that once the
msf are chosen, all coefficients in (8) and (9) can be analytically determined by performing
integration on the typical cell V. Therefore Eqgs. (17) and (18) combined with (8) and (9)
lead to a system of differential equations whose coefficients can be explicitly calculated.
This is not the case when homogenized models [1, 2, 3] are considered: indeed the for-
mulation of those models requires the solution of a special boundary-value problem at the
microlevel, i.e. inside a cell V which is called the unit cell.



2. Since < phfhf > € O(I?) then Eqs. (18) take into account the effect of the microstructure
size on a global behavior.

3. Equations (18) are ordinary differential equations in Q®. Hence, for the determination of
the evolution of the macrointernal variable Q" no boundary conditions are necessary.

5
The asymptotic model equations

In this section, we assume that the microstructure length parameter [ tends to zero and hence
we pass to what can be called an asymptotic approximation of the model proposed. Then Egs.
(14) and (15) combined with (7) and (8) become:

dis(K C>E+<C-Vh*> -QY)~<p>U+VP=0, (19)
<C-VhH > E+<C:(VE®@VH)> -Q+P'=0 . (20)

In Eq. (20) the time derivatives have disappeared and therefore it allows for the determination
of macrointernal variables Q% in terms of macrodeformation E. Using the positive-definiteness
condition of strain-energy function it can be proved that < C: (Vh? ® Vh?) > represents an
invertible linear transformation. Hence, from Eq. (20) we obtain

Q'=-<C: (VR ®Vh) > . (< CVh > E)— < C: (VAL @ VA" >7" . P* . (21)
After defining

C=<C>-<CVhE > <C:(VHQVh)>'.<CVH > | (22)
Eq. (19) becomes

dio(C* : E) — div[< C: (VR{ @ VA*) >~ .PY]— < p>U+VP=0 . (23)

Hence, the asymptotic approximation of the model proposed leads to a system of partial
differential equations for macrodisplacement U. It can be also proved that the quadratic form
E: (C*: E) with C* defined by (22) is positive-definite.

6

Applications

We consider a two-dimensional problem, see Fig. 1, assuming that all fields are independent of
the x3 coordinate. Also assume that the solid phase is homogeneous and isotropic, hence

C:E=2pE + Jtr(E)I

with constants p and /. To study the dispersion relation analyze a free vibration problem,
setting:

U = asin (kx) cos (wt)e; ,

Q' = a, cos (kx) cos (wt)e; , (24)
Q* = a; cos (kx) cos (wt)e, |

where k = 27/L is the wave number,  is the angular frequency, and e, and e, are versors
related to the x and x axes, respectively. Fields U, Q! and Q2 as functions of x are ¢-macro-

functions only if I/L < ¢ which is the applicability condition of the model proposed. Using the
denotation shown in Fig. 1 we choose as msf the following ones:

hy — 20y ifo<x<g,
1 R 1 — g1 — -
W (x.y) «=h'(x) {—h1+2h1% if g <x<1 ,
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>
X
J ., 1L
| ]
QzI Fig. 1. Shape and size of a typical cell,
1 | plots of used microshape functions
_qh f0<
Wlny) =i =)ty T0sr s (25
—hy + 2h, s itg <y<l.

Substituting the right-hand side of (24) into Eqs. (17) and (18) combined with Eq. (8) and (9),
the following system of equations for amplitudes a, a;, a, can be derived for the compressible
fluid:
(<a>kK-—<p> o)a + ckay + cska, =0
ka+ (cs — P < p; > w*)ay + cgka, =0 , (26)
cska+ csar + (co — P < p, > wP)a, =0

where

1
<p>= (gt ppll = )k - £);

2
=1
3L

2

h .
Py = i (psg2 + pp(l — )72

P1 (psg2 + pr(lh — g ))I*

a=<1>2u+)+<1>Fo;

h h
G=2<— >Foc—2<—l>s(2u+i);
ll_gl 81
h
=2< >Foc—2<—2>5/1;
lz—gz ) 9]
h
s = 4(< >PV o4+ 4(< = > 02p+ 1) ;
11—g1 S



h h .
! >Fo<—2<—1>SA;
1 — &1 &1

hy

L — &

g =2<

h .
co = 4(< >F)2c<+4(<§3>5 (2u+4) .
2

Note that the values of < p >, p;, p,,¢c1...co are independent of I. The characteristic equation
for the system (26) leads to the following polynomial equation in w%

—lPdo(®) + (d P+ KBy (0?)? + (ds + KPdy)w? + KPds = 0 | (27)
with the extra moduli

do=<p>pp; ;

dy =< p > (p1co + pycs) ;

dy =c1p1p; ;

dy=<p> (c§¥c5c9) ;

ds = py(c3 = c169) + (5 — se1)

ds = —cgcs + 2¢3¢3¢6 — clcé — C%Cg + c1¢5¢9

which are independent of the microstructure length parameter 1.

Defining g = kl:= 27L, as a consequence of (25) we have g < 1. Expanding solutions of Eq.
(27) in terms of g we can represent them in the following asymptotic form

o} = bk (1 + byq*) +0(q*) |
w5 = 17%bs + byk* + 0(q*) | (28)
w3 = I7%bs + bsk? + 0(g*) ,

with
- d5 B d1d5 — d3d4
b, = 5’ b, = T )
. _ = /@ 4dods
3= b
2d,

by — d%dz -+ 2d0d2d3 + d0d1d4 + Zd(z]ds — (d]dz + d0d4)\/ d% + 4d0d3
4 =

do(d} + 4dods — dy/d? + 4dod;) ’
_di ++\/d} + 4dyd;
B 2d, '

&y + 2dydyds + dodidy + 2d2ds + (dydy + dody) /B + 4dods

do(d? + 4dods + dy\/d* + 4dyd;) ’

where always d? + 4dyd; > 0.

we note that solutions w; and w; depend on ["? and represent higher vibration frequencies
of the solid-fluid system under consideration.

This kind of behavior cannot be revealed in the framework of the asymptotic model de-
scribed in Sec. 5.
In the case of inclusions filled by an incompressible fluid we must regard the pressure as an
extra unknown. We have stated before that in this case the pressure can be treated as a
macrofunction. Assuming p = a, cos (kx;) sin (wt) after simple manipulations we obtain
homogeneous system of equations:

bs

bs

(<c'1>k2~<p>w2)a+cgka1+c'3ka2+<1>FkaP=0 ,
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hy

L - b4
h,

L — by

h
Sfag+<2—=2—>Fa =0, (29)
11—81 lz—gz

chka+(ck — P < pp > of)ay + cgkay + < 2 >fa, =0,

chka +cia +(ch—P<py>ot)a+<2 >fa, =0,

h
ka+ <2—"

where
,-_ ‘_
¢:==c¢il,g, i=1,...6, and 9 .

224
The non trivial solutions to (29) exist only if

(tllz + kzl4t2)((02)2 + (t3 + k212t4)(l)2 + kzt5 =0 (30)
where

= < >—< >4( ha >2+< >4< m )2 -
1 P L P1 L—g P [ 5

h=<1><p ><p,>;

i h2>2, hihy : <h1>2,
th=<p> |4 ¢l —8 ¢l +4 el
’ P L (12—82 > (h—g)(h — &) 6 L—-—a ’
h o \?
b= <oy > {g-z(lz _2g2>cg+4(ll _1g1> cg}
1 hl [ h2 2/
+<p2> C5—2 m C2+4 127g2 [on} )

h h
5= (e~ eseh 2 ()l = ety 2 (i ey — i)

+4 i 2((c’)z—c’c’)-|-4 h 2((c’)z—c’c’)
T 2 165 A 3 1€o
hih,

b -

Using the same asymptotic expansion as before, solutions to (30) can be given in the explicit

! ! !
(cic6 — €3C3

form:
t fi1ts — t3t
i {qui# +0(g") , (31)
I3 13
1t 21+ titsty — Bt
A B E et UL L TP (32)
Pt tits

We see that ws represents the higher free vibration frequency.

7

Conclusions and numerical example

We start comparing the results obtained for the compressible case with the incompressible one.
To this aim we have to calculate the values of w?, w3 and wj when « tends to infinity. Indeed we
observe that

d;

21—>F;’l = 115 .

t = lim, .o



This can be easily seen after dividing both sides of Eq. (27) by < 1 >f « and then letting « go
to infinity. Therefore we prove that the coefficient dy in Eq. (27) vanishes, and Eq. (27) turns

into Eq. (30).

Consequently, if « — co then w} — @] and ®} — 2. Moreover, we remark that the con-
dition wj — oo is consistent with the lowering of the order of the characteristic equations in
3 g q

the incompressible case.
We underline that:

i) the limit case « — 0 is physically meaningless with the present choice of msf.
ii) In the case of the asymptotic model the characteristic equation for o? is of the first order. It
can be obtained easily by setting h; = g; = 0, i = 1,2 in Egs. (27) and (30). In this case,

the free vibration frequency for the compressible fluid is:

ds
Wl =k

ds

200
150
100
50

350

300 +
250

200

150 +
100 }
50 F

180 +
170 +
160
150 +
140
130 t

120

02 04 06 08 10

S=1/2

R

Fig. 2. Plots of b3/b; as a function of the ratios S: = g;/l; and R: = ,/l; with g,/l, = 1/2

2 4 6 8 10
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and for the incompressible one we obtain

t
l = -2 (34)
5]

Let us compare the asymptotic solutions with the complete ones. To this extent we study the
ratios:

2
1
(ﬂ) = 1+b2q2+PO(q4) ,

We
2
wy N b4 b31 1 4
(%) = E+E?+7O(Q) ,

160

140 |

120 +

100 + /\
i A i i L g

160 |-

140}
120
100 F
80+

Fig. 3. The same as Fig. 2, with g/, = 1/4



2
w3 b6 b5 1 1 4
<0)6> b, + b P + @ 0(q%). (35)
In this paper, we confine ourselves to waves verifying the so called ‘macro-wave’ approximation
[12], i.e. we deal with waves for which not only q < 1, but also terms /5 O(q*) in Egs. (35) are
neglected.

To supply a numerical application we consider compressed concrete with water inclusions,
setting: 4 = 4.91-10°/cm?, p = 1.52-10°N/cm?, o = 0.22 - 105N /cm?, py/pp = 2.2. It is ea-
sily seen that the term b,q° is negligible with respect to 1, and that by/b; (resp. bs/b;) are
negligible with respect to Z—?q_z (resp. Z—fq”).

In Fig. 2-5 we show how the coefficients b3 /b, and bs/b; vary in terms of the geometrical
shape of the typical cell. Finally, we note that the used macromodelling procedure allows to
obtain the aforementioned results using analytical methods only, without any numerical si-
mulation. It is worth to emphasize the fact how relatively easy it is to obtain meaningful
applications of the proposed model in many technologically interesting problem which cannot
be investigated within the framework of asymptotic models.
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Fig. 4. Plots of bs/b; as a function of the ratios S: = g, /I, and R: = L/l with g/l = 1/2
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