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Identification of LPV Output-Error and Box-Jenkins Models via
Optimal Refined Instrumental Variable Methods

V. Laurain∗, M. Gilson∗, R. Tóth∗∗, H. Garnier∗

Abstract— Identification of Linear Parameter-Varying (LPV)
models is often addressed in an Input-Output (IO) setting.
However, statistical properties of the available algorithms are
not fully understood. Most methods apply auto regressive
models with exogenous input (ARX) which are unrealistic
in most practical applications due to their associated noise
structure. A few methods have been also proposed for Output
Error (OE) models, however it can be shown that the estimates
are not statistically efficient. To overcome this problem, the
paper proposes a Refined Instrumental Variable (RIV) method
dedicated to LPV Box-Jenkins (BJ) models where the noise part
is an additive colored noise. The statistical performance of the
algorithm is analyzed and compared with existing methods.

I. INTRODUCTION

Despite the advances of the LPV control field, identifi-
cation of this system class is not well developed. Existing
LPV identification approaches are mainly characterized by
the type of LPV model structure used: Input-Output (IO)
[3], [1], [13] State Space (SS) [7], [12], or Orthogonal Basis
Functions (OBFs) based models [11]. In the field of system
identification, IO models are widely used as the stochastic
meaning of estimation is much better understood for such
models, for example via the Prediction-Error (PE) setting,
than for other model structures. Moreover, an important ad-
vantage of IO models is that they can be directly derived from
physic/chemical laws in their continuous form. Therefore, it
is more natural to express a given physical system through
an IO operator form or transfer function modeling [9].

In the LPV case, most of the methods developed for
IO models based identification are derived under a linear
regression form [13], [4], [3]. By using the concepts of the
linear time invariant (LTI) PE framework, recursive least
squares (LS) and instrumental variable (IV) methods have
been also introduced [4], [3].

Due to the linear regressor based estimation, the usual
model structure in existing methods is assumed to be ARX.
This assumption is unrealistic in most practical applications
as it assumes that both the noise and the process part of
the system contain the same dynamics (for the reasoning see
[6]). Even if some IV methods have been developed for LPV
Output Error (OE) models in [3], it can be shown that the
obtained estimates are not statistically efficient. The under-
lying reason is that statistically optimal estimates cannot be
reached by using linear regression as presented so far in the
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literature because the identification methods are commonly
based on the concept of the LTI framework and hence, they
do not consider the non-commutativity of LPV filters. In
other words, there is lack of a LPV identification approach,
which is able to yield statistically efficient estimates for LPV-
IO models under colored noise conditions, e.g. as in a Box-
Jenkins (BJ) setting, which is the case in many practical
applications (see [6]).

By aiming at fulfilling this gap, an estimation method
is developed in this paper for LPV-IO BJ discrete-time
models in the SISO case. The properties of the method
are compared to the existing theory showing the increased
statistical performance of the estimation.

The paper is organized as follows: In Section II, IO
representation based models of LPV systems are introduced
together with the concept of LPV identification in the
prediction-error framework. A reformulation of the dynami-
cal description of LPV data generating plants in the consid-
ered setting is presented in Section III which makes possible
the extension of LTI-IV methods to the LPV framework. In
Section IV, LPV-IV methods are introduced and analyzed,
while their performance increase compared to other methods
is shown in Section V. Finally in Section VI, the main
conclusions of the paper are drawn and directions of future
research are indicated.

II. PROBLEM DESCRIPTION

A. System description

Consider the data generating LPV system described by the
following equations:

So

{
Ao(pk, q−1)χo(tk) = Bo(pk, q−1)u(tk−d)
y(tk) = χo(tk) + vo(tk)

(1)

where d is the delay, χo is the noise-free output, u is the
input, vo is the additive noise with bounded spectral density,
y is the noisy output of the system and q is the time-
shift operator, i.e. q−iu(tk) = u(tk−i). Ao(pk, q−1) and
Bo(pk, q−1) are polynomials in q−1 of degree na and nb

respectively:

Ao(pk, q−1) = 1 +
na∑
i=1

ao
i (pk)q−i, (2a)

Bo(pk, q−1) =
nb∑
j=0

boj (pk)q−i, (2b)

where the coefficients ai and bj are real meromorphic
functions, e.g. rational functions, with static dependence on



the so-called scheduling parameter p : Z→ P. It is assumed
that these coefficients are non-singular on the scheduling
space P ⊆ RnP thus the solutions of So are well-defined and
the process part is completely characterized by the coefficient
functions {ao

i }
na
i=1 and {boj}

nb
j=0.

Most methods in the literature assume an ARX type
of data generating system, but this assumption is often
unrealistic in practical applications as it is based on the
concept that both the noise and the process part of So contain
the same dynamics. Often the colored noise associated with
the sampled output measurement y(tk) has a rational spectral
density which has no dependence on p. Therefore, it is a
more realistic assumption that vo is represented by a discrete-
time autoregressive moving average (ARMA) model:

vo(tk) = Ho(q)eo(tk) =
Co(q−1)
Do(q−1)

eo(tk), (3)

where Co(q−1) and Do(q−1) are monic polynomials with
constant coefficients and with respective degree nc and nd.
Furthermore, all roots of zndDo(z−1) are inside the unit disc.
It can be noticed that in case Co(q−1) = Do(q−1) = 1, (3)
defines an OE noise model.

B. Model considered

Next we introduce a discrete-time LPV Box-Jenkins (BJ)
type of model structure that we propose for the identification
of the data-generating system (1) with noise model (3). In
the proposed model structure the noise model and the process
model is parameterized separately.

1) Process model: The process model is denoted by Gρ
and defined in a form of a LPV-IO representation:

Gρ :
(
A(pk, q−1, ρ), B(pk, q−1, ρ)

)
= (Aρ,Bρ) (4)

where the p-dependent polynomials A and B are parameter-
ized as

Aρ


A(pk, q−1, ρ) = 1 +

na∑
i=1

ai(pk)q−i,

ai(pk) = ai,0 +
nα∑
l=1

ai,lfl(pk) i = 1, . . . , na

Bρ


B(pk, q−1, ρ) =

nb∑
j=0

bj(pk)q−i,

bj(pk) = bj,0 +
nβ∑
l=1

bj,lgl(pk) j = 0, . . . , nb

In this parametrization, {fl}nαl=1 and {gl}
nβ
l=1 are meromor-

phic functions of p, with static dependence, allowing the
identifiability of the model (pairwise orthogonal functions
on P for example). The associated model parameters ρ are
stacked columnwise in the parameter vector,

ρ =
[
a1 . . . ana b0 . . . bnb

]> ∈ Rnρ , (6)

where
ai =

[
ai,0 ai,1 . . . ai,nα

]
∈ Rnα+1

bj =
[
bj,0 bj,1 . . . bj,nβ

]
∈ Rnβ+1

and nρ = na(nα + 1) + (nb + 1)(nβ + 1). Introduce also
G = {Gρ | ρ ∈ Rnρ}, as the collection of all process models
in the form of (4).

2) Noise model: The noise model is denoted by H and
defined as a LTI transfer function:

Hη : (H(q, η)) (7)

where H is a monic rational function given in the form of

H(q, η) =
C(q−1, η)
D(q−1, η)

=
1 + c1q

−1 + . . .+ cncq
−nc

1 + d1q−1 + . . .+ dndq
−nd

. (8)

The associated model parameters η are stacked columnwise
in the parameter vector,

η =
[
c1 . . . cnc d1 . . . dnd

]> ∈ Rnη , (9)

where nη = nc + nd. Additionally, denote H = {Hη | η ∈
Rnη}, the collection of all noise models in the form of (7).

3) Whole model: With respect to a given process and
noise part (Gρ,Hη), the parameters can be collected as

θ =
[
ρ
η

]
, (10)

and the signal relations of the LPV-BJ model, denoted in the
sequel as Mθ, are defined as:

Mθ


A(pk, q−1, ρ)χ(tk)=B(pk, q−1, ρ)u(tk−d)

v(tk)=
C(q−1, η)
D(q−1, η)

e(tk)

y(tk)=χ(tk) + v(tk)

(11)

Based on the previously defined model structure, the model
set, denoted as M, with process (Gρ) and noise (Hη) models
parameterized independently, takes the form

M
{

(Gρ,Hη) | col(ρ, η) = θ ∈ Rnρ+nη
}
. (12)

This set corresponds to the set of candidate models in which
we seek the model that explains data gathered from So the
best, under a given identification criterion (cost function).

C. Identification problem statement

Based on the previous considerations, the identification
problem addressed in the sequel can now be defined.

Problem 1: Given a discrete time LPV data generat-
ing system So defined as (1) and a data set DN =
{y(tk), u(tk), pk}Nk=0 collected from So. Based on the LPV-
BJ model structureMθ defined by (11), estimate the param-
eter vector θ using DN under the following assumptions:

A1 So ∈ M, i.e. there exits a Go ∈ G and a Ho ∈ H

such that (Go,Ho) is equal to So.
A2 In the parametrization Aρ and Bρ, {fl}nαl=1 and

{gl}
nβ
l=1 are chosen such that (Go,Ho) is identifi-

able for any trajectory of p.
A3 u(tk) is not correlated to eo(tk).
A4 DN is informative with respect to M.
A5 So is uniformly frozen stable, i.e. for any p ∈ P, the

roots of zna(A(p, z−1)) are in the unit disc [10].



III. REFORMULATION OF THE SYSTEM EQUATIONS

All methods for LPV-IO parametric identification pro-
posed in the literature so far are based on linear regression
methods such as least squares or instrumental variables [2]
[3]. The currently accepted view in the literature is that if the
system belongs to the model set defined in (12), then y(tk)
can be written in the linear regression form:

y(tk) = ϕ>(tk)ρ+ ṽ(tk) (13)

with ρ as defined in (6),

ϕ(tk) =



−y(tk)f0(pk)
...

−y(tk)fnα(pk)
u(tk)g0(pk)

...
u(tk)gnβ (pk)


∈ Rnρ , (14a)

y(tk) =

 y(tk−1)
...

y(tk−na)

, u(tk) =

 u(tk−d)
...

u(tk−nb−d)

, (14b)

and
ṽ(tk) = A(pk, q−1, ρ)v(tk). (14c)

For an LPV-ARX system, a LS algorithm based on (13)
leads to statistically optimal estimates as it minimizes the
prediction error on ṽ which is a white noise in this case.
However, for LPV-BJ systems, the LS estimate is biased.
Moreover, in opposition to the LTI case, it can be proven
that in general it is impossible to yield statistically optimal
estimates using (13). The proof is only briefly explained
due to space restrictions. For LTI-BJ systems, statistically
optimal methods require an optimal prefiltering of the data
contained in the regressor [8]. However, for LPV systems,
the property of commutativity in filtering does not hold as
q−1A(pk, q−1) 6= A(pk, q−1)q−1 (see [11]) and it can be
shown that no optimal filtering can be applied to the regressor
(14a). In other word, no existing method in the LPV literature
can deal in a statistical optimal way with the identification
of LPV-BJ data generating systems.

The existing theory needs to be modified in order to
solve the identification problem stated in Section II-C. One
particular way is to rewrite the signal relations of (11) into
the form:

Mθ



χ(tk) +
na∑
i=1

ai,0χ(tk−i)︸ ︷︷ ︸
F (q−1)χ(tk)

+
na∑
i=1

nα∑
l=1

ai,lfl(pk)χ(tk−i)︸ ︷︷ ︸
χi,l(tk)

=

nb∑
j=0

nβ∑
l=0

bj,lgl(pk)u(tk−d−j︸ ︷︷ ︸)
uj,l(tk)

v(tk)=
C(q−1, η)
D(q−1, η)

e(tk)

y(tk)=χ(tk) + v(tk)
(15)

where F (q−1) = 1 +
∑na
i=1 ai,0q

−i. Note that in this way
the LPV-BJ model is rewritten as a Multiple-Input Single-
Output (MISO) system with (nb + 1)(nβ + 1) + nanα
inputs {χi,l}na,nα

i=1,l=1 and {uj,l}
nb,nβ
j=0,l=0. Given the fact that

the polynomial operator commutes in this representation
(F (q−1) does not depend on pk), (15) can be rewritten as

y(tk) = −
na∑
i=1

nα∑
l=1

ai,l
F (q−1)

χi,l(tk)

+
nb∑
j=0

nβ∑
l=0

bj,l
F (q−1)

uk,j(tk) +H(q)e(tk), (16)

which is a LTI representation. As (16) is an equivalent form
of the model (11), thus under the Assumption A1, it holds
that the data generating system So has also a MISO-LTI
interpretation.

IV. REFINED INSTRUMENTAL VARIABLE APPROACH FOR
LPV SYSTEMS

Based on the MISO-LTI formulation (16), it becomes
possible to achieve optimal prediction error minimization
(PEM) using linear regression and to extend the Refined In-
strumental Variable (RIV) approach of the LTI identification
framework to provide an efficient way of identifying LPV-BJ
models.

A. Optimal PEM for LPV-BJ models

Using (16), y(tk) can be written in the regression form:

y(tk) = ϕ>(tk)ρ+ ṽr(tk) (17)

where,

ϕ(tk)=
[
−y(tk−1) . . . −y(tk−na) −χ1,1(tk) . . .

−χna,nα(tk) u0,0(tk) . . . unb,nβ (tk)
]>

ρ=
[
a1,0 . . . ana,0 a1,1 . . . ana,nα b0,0 . . . bnb,nβ

]>
and

ṽr(tk) = F (q−1, ρ)v(tk). (18)

It is important to notice that (17) and (13) are not equivalent.
The extended regressor in (17) contains the noise-free output
terms {χi,k}. By following the conventional PEM approach
on (17), the prediction error εθ(tk) is given as:

εθ(tk) =
D(q−1, η)

C(q−1, η)F (q−1, ρ)

(
F (q−1, ρ)y(tk)−

−
na∑
i=1

nα∑
l=1

ai,lχi,l(tk) +
nb∑
j=0

nb∑
l=0

bj,luj,l(tk)

)
(19)

where D(q−1, η)/C(q−1, η) can be recognized as the inverse
of the ARMA(nc,nd) noise model in (11). However, since the
system written as in (16) is equivalent to a LTI system, the



polynomial operators commute and (19) can be considered
in the alternative form

εθ(tk) = F (q−1, ρ)yf(tk)−
na∑
i=1

nα∑
l=1

ai,lχ
f
i,l(tk)

+
nb∑
j=0

nβ∑
l=0

bj,lu
f
j,l(tk) (20)

where yf(tk), uf
k,j(tk) and χf

i,l(tk) represent the outputs of
the prefiltering operation, using the filter (see [16]):

Q(q−1, θ) =
D(q−1, η)

C(q−1, η)F (q−1, ρ)
. (21)

Based on (20), the associated linear-in-the-parameters model
takes the form [16]:

yf(tk) = ϕ>f (tk)ρ+ ṽf(tk), (22)

where

ϕf(tk)=
[
−yf(tk−1) . . . −yf(tk−na) −χf

1,1(tk) . . .

−χf
na,nα(tk) uf

0,0(tk) . . . uf
nb,nβ

(tk)
]>

and

ṽf(tk) = F (q−1, ρ)vf(tk) =

F (q−1, ρ)
D(q−1, η)

C(q−1, η)F (q−1, ρ)
v(tk) = e(tk). (23)

B. The refined instrumental variable estimate

Many methods of the LTI identification framework can
be used to provide an efficient estimate of ρ given (22)
where ṽf(tk) is a white noise. Here, the refined instrumental
variable method is chosen as it leads to optimal estimates
if So ∈ M [8] and provides consistent estimates in case
Ho /∈ H.

Aiming at the application of the RIV approach for the esti-
mation of LPV-BJ models, consider the relationship between
the process input and output signals as in (17). Based on this
form, the extended-IV estimate can be given as [8]:

ρ̂XIV(N) = arg min
ρ∈Rnρ

∥∥∥∥∥
[

1
N

N∑
k=1

L(q)ζ(tk)L(q)ϕ>(tk)

]

−

[
1
N

N∑
t=1

L(q)ζ(tk)L(q)y(tk)

]∥∥∥∥∥
2

W

, (24)

where ζ(tk) is the instrumental vector, ‖x‖2W = xTWx, with
W a positive definite weighting matrix and L(q) is a stable
prefilter. If Go ∈ G, the extended-IV estimate is consistent
under the following conditions1:

C1 Ē{L(q)ζ(tk)L(q)ϕ>(tk)} is full column rank.
C2 Ē{L(q)ζ(tk)L(q)ṽ(tk)} = 0.

Moreover it has been shown in [8] and [14] that the minimum
variance estimator can be achieved if:

1The notation Ē{.} = limN→∞
1
N

PN
t=1 E(.) is adopted from the

prediction error framework of [6].

C3 W = I .
C4 ζ is chosen as the noise-free version of the extended

regressor in (17) and is therefore defined in the
present LPV case as:

ζ(tk)=
[
−χ(tk−1) . . . −χ(tk−na) −χ1,1(tk) . . .

−χna,nα(tk) u0,0(tk) . . . unb,nβ (tk)
]>

C5 Go ∈ G and nρ is equal to the minimal number
of parameters required to represent Go with the
considered model structure.

C6 L(q) is chosen as Q(q−1, θo) in (21).

C. Remarks on the use of the RIV approach

• Full column rank of Ē{L(q)ϕ(tk)L(q)ϕ>(tk)} follows
under Assumption A4 [2]. To fulfill C1 under A4, the
discussion can be found in [8].

• In a practical situation none of F (q−1, ρ),
{ai,l(ρ)}na,nα

i=1,l=0, {bj,l(ρ)}nb,nβ
j=0,l=0, C(q−1, η), D(q−1, η)

is known a priori. Therefore, the RIV estimation
normally involves an iterative (or relaxation) algorithm
in which, at each iteration, an ‘auxiliary model’ is
used to generate the instrumental variables (which
guarantees C2), as well as the associated prefilters. This
auxiliary model is based on the parameter estimates
obtained at the previous iteration. Consequently, if
convergence occurs, C4 and C6 are fulfilled. It is
important to note that convergence of the iterative RIV
has not been proved so far and is only empirically
assumed [15], [5].

D. Iterative LPV-RIV Algorithm

Based on the previous considerations, the proposed RIV
algorithm for LPV systems is given:

Algorithm 1 (LPV-RIV):

Step 1 An ARX estimate of Mθ is computed using the
LS approach, θ̂(0) = [ (ρ̂(0))> (η̂(0))> ]>. Set
τ = 0.

Step 2 Compute an estimate of χ(tk) by simulating the
auxiliary model:

A(pk, q−1, ρ̂(τ))χ̂(tk) = B(pk, q−1, ρ̂(τ))u(tk−d)

based on the estimated parameters ρ̂(τ) of
the previous iteration. Deduce the output terms
{χ̂i,l(tk)}na,nα

i=1,l=0 as given in (15) using the model
Mθ̂(τ) .

Step 3 Compute the estimated filter:

Q̂(q−1, θ̂(τ)) =
D(q−1, η̂(τ))

C(q−1, η̂(τ))F (q−1, ρ̂(τ))

along with the associated filtered signals
{uf

j,l(tk)}nb,nβ
j=0,l=0, yf(tk) and {χf

i,l(tk)}na,nα
i=1,l=0.



Step 4 Build the filtered estimated regressor ϕ̂f(tk) and in
terms of C4 the filtered instrument ζ̂f(tk) as:

ϕ̂f(tk)=
[
−yf(tk−1) . . . −yf(tk−na) −χ̂f

1,1(tk)

. . . −χ̂f
na,nα(tk) uf

0,0(tk) . . . uf
nb,nβ

(tk)
]>

ζ̂f(tk)=
[
−χ̂f(tk−1) . . . −χ̂f(tk−na) −χ̂f

1,1(tk)

. . . −χ̂f
na,nα(tk) uf

0,0(tk) . . . uf
nb,nβ

(tk)
]>

Step 5 The IV optimization problem can now be stated in
the form

ρ̂(τ+1)(N) = arg min
ρ∈Rnρ

∥∥∥∥∥
[

1
N

N∑
k=1

ζ̂f(tk)ϕ̂>f (tk)

]
ρ

−

[
1
N

N∑
k=1

ζ̂f(tk)yf(tk)

]∥∥∥∥∥
2

(25)

This results in the solution of the IV estimation
equations:

ρ̂(τ+1)(N)=

[
N∑
k=1

ζ̂f(tk)ϕ̂>f (tk)

]−1N∑
k=1

ζ̂f(tk)yf(tk)

where ρ̂(τ+1)(N) is the IV estimate of the process
model associated parameter vector at iteration τ+1
based on the prefiltered input/output data.

Step 6 An estimate of the noise signal v is obtained as

v̂(tk) = y(tk)− χ̂(tk, ρ̂(τ)). (26)

Based on v̂, the estimation of the noise model
parameter vector η̂(τ+1) follows, using in this case
the ARMA estimation algorithm of the MATLAB
identification toolbox (an IV approach can also be
used for this purpose, see [15]).

Step 7 If θ(τ+1) has converged or the maximum number
of iterations is reached, then stop, else increase τ
by 1 and go to Step 2.

Based on a similar concept, the so-called simplified LPV-
RIV (LPV-SRIV) method, can also be developed for the
estimation of LPV-OE models. This method is based on
a model structure (11) with C(q−1, η) = D(q−1, η) = 1
and consequently, Step 6 of Algorithm 1 can be skipped.
Naturally, the LPV-SRIV is not statistically optimal for LPV-
BJ models, however it still has a certain degree of robustness
as it is shown in Section V.

V. SIMULATION EXAMPLE

The performance of the proposed method is compared to
the existing methods in the literature, based on a represen-
tative simulation example.

A. Data generating system
The system taken into consideration is inspired by [3] and

is mathematically described as follows:

So


Ao(q, pk) = 1 + ao

1(pk)q−1 + ao
2(pk)q−2

Bo(q, pk) = bo0(pk)q−1 + bo1(pk)q−2

Ho(q) =
1

1− q−1 + 0.2q−2

(27)

where v(tk) = Ho(q)e(tk) and

ao
1(pk) = 1− 0.5pk − 0.1p2

k (28a)

ao
2(pk) = 0.5− 0.7pk − 0.1p2

k (28b)

bo0(pk) = 0.5− 0.4pk + 0.01p2
k (28c)

bo1(pk) = 0.2− 0.3pk − 0.02p2
k (28d)

In the upcoming examples, the scheduling signal p is con-
sidered as a periodic function of time:

pk = 0.5 sin(0.35πk) + 0.5, (29)

and u(tk) is taken as a white noise with a uniform distribu-
tion U(−1, 1) and with length N = 4000 to generate data
sets DN of So.

B. Model structures

In the sequel, the instrumental variable method presented
in [3] named here One Step Instrumental Variable (OSIV)
and the conventional Least Square (LS) method such as the
one used in [2] are compared to the proposed methods. Both
methods assume the following model structure:

MLS,OSIV
θ


A(pk, q−1, ρ)=1+a1(pk)q−1+a2(pk)q−2

B(pk, q−1, ρ)=b0(pk)q−1+ b1(pk)q−2

H(pk, q, ρ)=A†(pk, q−1, ρ)

where
a1(pk) = a1,0 + a1,1pk + a1,2p

2
k (30a)

a2(pk) = a2,0 + a2,1pk + a2,2p
2
k (30b)

b0(pk) = b0,0 + b0,1pk + b0,2p
2
k (30c)

b1(pk) = b1,0 + b1,1pk + b1,2p
2
k (30d)

In contrast with these model structures, the proposed LPV
Refined Instrumental Variable method (LPV-RIV) represents
the situation So ∈ M and assumes the following LPV-BJ
model:

MLPV−RIV
θ


A(pk, q−1, ρ) = 1 + a1(pk)q−1 + a2(pk)q−2

B(pk, q−1, ρ) = b0(pk)q−1 + b1(pk)q−2

H(pk, q, η) =
1

1 + d1q−1 + d2q−2

with a1(pk), a2(pk), b0(pk), b1(pk) as given in (30a-d),
while the LPV Simplified Refined Instrumental Variable
method (LPV-SRIV) represents the case when Go ∈ G,
Ho /∈ H and assumes the following LPV-OE model:

MLPV−SRIV
θ


A(pk, q−1, ρ) = 1 + a1(pk)q−1 + a2(pk)q−2

B(pk, q−1, ρ) = b0(pk)q−1 + b1(pk)q−2

H(pk, q, η) = 1

C. Results

In this example, the robustness of the proposed and
existing algorithms are investigated with respect to differ-
ent signal-to-noise ratios (SNR). To provide representative
results, a Monte-Carlo simulation of NMC = 100 runs with
new noise realization is accomplished at different noise levels
from 15dB down to 0dB.



TABLE I
ESTIMATOR BIAS AND VARIANCE NORM AT DIFFERENT SNR

Method 15dB 10dB 5dB 0dB
LS BN 2.9107 3.2897 3.0007 2.8050

VN 0.0074 0.0151 0.0215 0.0326

OSIV BN 0.1961 1.8265 6.9337 10.8586
VN 1.3353 179.4287 590.7869 11782

LPV- BN 0.0072 0.0426 0.1775 0.2988
SRIV VN 0.0149 0.0537 0.4425 0.4781

MIN 22 22 25 30

LPV- BN 0.0068 0.0184 0.0408 0.1649
RIV VN 0.0063 0.0219 0.0696 0.2214

MIN 31 30 30 32

With respect to the considered methods, Table I shows the
norm of the bias and variance of the estimated parameter
vector:

Bias norm = ||ρo − Ē(ρ̂)||2 (31a)
Variance norm = ||Ē(ρ̂− Ē(ρ̂))||2 (31b)

where Ē is the mean operator over the Monte-Carlo simu-
lation and ‖ .‖2 is the L2 norm. The table also displays the
mean number of iterations (MIN) the algorithms needed to
converge to the estimated parameter vector.

It can be seen from Table I that the IV methods are
unbiased according to the theoretical results whereas LS
method shows a strong bias. It might not appear clearly
for the OSIV method when using SNR under 10dB, but
considering the variances induced, the bias is only due to the
relatively low number of simulation runs. In the present BJ
system, the OSIV method does not lead to satisfying results
and cannot be used in practical applications. It can be seen
that for SNR down to 5dB, the LPV-RIV produces variance
in the estimated parameters which are very close to the one
obtained with the LS method, not mentioning that the bias
has been completely suppressed. The suboptimal LPV-SRIV
methods offers satisfying results, considering that the noise
model is not correctly assumed. The variance in the estimated
parameters is twice as much as in the LPV-RIV case and it
is in close range to the variance of the LS method. Finally,
it can be pointed out that the number of iterations is high in
comparison to the linear case for RIV methods (typically, 4
iterations are needed in a second order linear case).

VI. CONCLUSION

It has been shown that there is a lack of efficient meth-
ods in the literature capable of handling the estimation of
LPV models with a noise model different than an ARX
structure. The underlying reason is that in the LPV case,
the conventional formulation of least squares estimation
cannot lead to statistically optimal parameter estimates. As
a solution, the LPV identification problem is reformulated
and a method to estimate efficiently LPV-BJ models was

proposed. The introduced method has been compared to the
existing methods of the literature both in terms of theoretical
analysis and in terms of a representative numerical example.
The presented example has illustrated that the proposed
procedure is robust to noise and outperforms the existing
methods. As continuation of the presented work, extensions
of the method to closed-loop and continuous-time LPV
system identification are intended.
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