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aCentre de Recherche en Automatique de Nancy (CRAN), Nancy-Universit́e, CNRS, BP 70239,
54506 Vandoeuvre-les-Nancy Cedex, France (marion.gilson@cran.uhp-nancy.fr)
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Abstract: The identification of rainfall/runoff relationship is a challenging issue, mainly because
of the complexity to find a suitable model for a whole given catchment. Conceptual hydrological
models fail to describe correctly the dynamic changes of thesystem for different rainfall events
(e.g. intensity or duration). However, the need for such relationship grows with the water pol-
lution increase in agricultural regions. Lately, a well-known type of model in the control field
appears to be a suitable candidate for water processes identification: the Linear Parameter Vary-
ing (LPV) models. This paper depicts a novel refined instrumental variable based method for the
identification of Input/Output LPV models and this algorithm is applied to identify a parsimonious
nonlinear rainfall/flow model of a 42 ha vineyard catchment located in Alsace, France.

Keywords: data-based modelling, linear parameter varying models, refined instrumental variable,
rainfall, runoff, vineyard

1 INTRODUCTION

This work is inscribed in the data-based mechanistic (DBM) framework which delivers some
stochastic solution to the “top-down ” modelling methods atthe catchment scale. The aim is to
deliver a parsimonious model which avoids the identifiability issues linked with the high number
of parameters in conceptual models (Mambretti and Paoletti(1996); Previdi et al. (1999),Young
(2003)). Nonetheless, the obtained model can be classified as hybrid metric–conceptual model
as it is optimized given some set of measured data, but the model set is defined based on some
conceptual assumptions. The far-end goal is to deliver a solution for the simulation of the rain-
fall/pollutant relationship at the catchment scale for intelligent environmental decision support. In
aiming at solving this challenging problem, a solution for rainfall/runoff modelling is proposed as
a preliminary work.
The identification of rainfall/runoff relationship is a challenging issue, mainly because of the com-
plexity to find a suitable model for a whole given catchment (Beven (2000)). The need for such
relationship grows with the size of drainage networks in urban catchments or with the water pollu-
tion increase in agricultural regions. In rural catchments, there is a high spatio-temporal variability
of the soil property whether it lies in the vegetation, in thesoil type or evapotranspiration (Young
and Garnier (2006)) and there is a high difference between the total and efficient rainfall. In this
case, linear models most often completely fail in delivering a satisfying rainfall/flow relationship.
The use of nonlinear models requires the choice for a nonlinearity. Some nonparametric meth-
ods for estimating these nonlinearities such asstate dependent parameters(SDP) were introduced
(Young and Garnier (2006)). Lately, a well-known type of model in the control field appears to
be a suitable candidate for water processes identification (Previdi and Lovera (2009)): theLinear
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Parameter Varying(LPV) models. LPV models depend on so-called scheduling variables and a
challenging issue is to define which variables the system depends on.
The main contribution of this paper lies in the use of a recently developed refined instrumen-
tal variable (RIV) based method for the identification of Input/Output LPV models with colored
ARMA-type added noise for the estimation of the rainfall/runoff relationship in rural catchments.
This method produces consistent estimates even when the noise assumption is not fulfilled, which
is a strong feature for stochastic optimization based methods. The paper is organized as follows.
In Section 2, the main issues for applying data-based identification methods in environmental
framework are given. Then, in Section 3, a new LPV identification method based on the refined
instrumental variable algorithm introduced in Laurain et al. (2010) is fully detailed. Finally, in
Section 4, the full identification process and the model usedfor rainfall/flow modeling is given
while the performance of the presented algorithm are depicted using a data set coming from a 42
ha vineyard catchment located in Alsace, France (Grégoire et al. (2010)).

2 ISSUES IN ENVIRONMENTAL DATA -BASED MODELLING

When considering data-based modelling of dynamic systems, most of the optimization methods
are based on stochastic optimization methods. Nonetheless, a suited optimization method has to
be developed with respect to the field of application considered. In the present context, the fol-
lowing features have to be taken into consideration. Most environmental models derive from the
first principle of physics. These models are therefore naturally expressed in terms of differential
equations which are equivalent to continuous-time transfer functions in the Control community.
Therefore, the first issue is the ability to identify a model under its transfer function form which
offers the ability to interpreta posteriori the data-based model in physical or ecological terms:
data-based mechanistic modelling (Young and Beven (1994)).
The second concern when dealing with environmental data is the inability to control the input
and to only be able to measure it. This leads to a so-calledError-In-Variables (EIV) identifi-
cation problem. However, the methods developed so far concerning EIV problems need strong
hypothesis and knowledge about the noise model (Thil et al. (2009)). In a more general way,
speaking about stochastic optimization implies a stochastic representation of the measurement
noise. However, the usual gaussian noise assumption is not verified in these rural catchments.
When measuring flow, the measurement noise presents complicated characteristics such as non
stationarity. For example, the noise variance increases with the flow whereas the variance be-
comes null when no flow is measured. During strong rainfall events, some transported particules
remain in the channel of the flowmeter, luring him into measuring inexistent flow.
The final challenge concerning rainfall/runoff relationship is to determine the non-linearity of the
studied system. The common approximation of conceptual models for rainfall/flow relationship
is the Hammerstein structure as presented in Fig 1. In order to estimate such models, the SDP
models introduced in Young and Beven (1994) are combined to afixed interval smoothing filter in
order to determine the non-linearity form. This method is very powerful as it is a non-parametric
method which does not need the knowledge about the dynamic ofthe system. The state depen-
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Figure 1: Hammerstein model for rainfall/flow relationship

dant parameter models are similar from a general point of view to LPV models which are widely
used in the control theory. These models rely on models in which the parameters depend on a state
of the system or a external variable. Nonetheless, the SDP models were mainly restrained so far
to Hammerstein structures (Young (2003)) but the relevanceof full LPV models for rainfall/flow
modeling in urban catchments can be found in Previdi and Lovera (2009). However, until recently
(Laurain et al. (2010)), the accurate identification of suchmodels for LPVOutput Error (OE)
model was not clearly defined in the literature. Therefore, the next section introduces the method
from (Laurain et al. (2010)) and the type of model it can be applied to.
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3 ESTIMATION OF LPV OUTPUT ERROR M ODELS

Would the system be linear, a method dealing robustly with the noise conditions depicted in
the previous section is theSimplified Refined Instrumental Variable(SRIV) method proposed in
Young and Jakeman (1980). Moreover, this method was extended to non-linear models (Laurain
et al. (2008)). This section exposes the extension of the SRIV method toLPV-OEmodels: the
LPV-SRIV method. In the LPV case, most of the methods developed for Input/output (IO) mod-
els based identification are derived under a linear regression form (Wei and Del Re (2006); Giarré
et al. (2006); Butcher et al. (2008)). By using the concepts of the Linear Time Invariant(LTI)
prediction error framework, recursiveleast squares(LS) andinstrumental variable(IV) methods
have been also introduced (Giarré et al. (2006); Butcher et al. (2008)). A discussion about the
performances and robustness of these algorithms compared to the one introduced in this paper can
be found in Laurain et al. (2010).

3.1 LPV output error models

The considered models in this application are given as:

M

{

A(pk, q−1)χ(tk) = B(pk, q−1)u(tk−d)

y(tk) = χ(tk) + e(tk)
(1)

whered is the delay,χ is the noise-free output,u is the input,e is the additive noise with bounded
spectral density,y is the noisy output of the system andq is the time-shift operator, i.e.q−iu(tk) =
u(tk−i). p are the so-called scheduling variables. For LTI systems, the coefficients ofA andB

are constant in time while they are time-varying depending on p for LPV models.A(pk, q−1) and
B(pk, q−1) are polynomials inq−1 of degreena andnb respectively:

A(pk, q−1) = 1 +

na∑

i=1

ai(pk)q−i with ai(pk) = ai,0 +

nα∑

l=1

ai,lfl(pk) i = 1, . . . , na (2)

B(pk, q−1) =

nb∑

j=0

bj(pk)q−i with bj(pk) = bj,0 +

nβ∑

l=1

bj,lgl(pk) j = 0, . . . , nb. (3)

In this parametrization,{fl}
nα

l=1 and{gl}
nβ

l=1 are functions ofp, with static dependence, allowing
the identifiability of the model (pairwise orthogonal functions for example). It can be noticed
that the knowledge of{ai,l}

na,nα

i=1,l=1 and{bj,l}
nb,nβ

j=0,l=0 ensures the knowledge of the full model.
Therefore, these model parameters are stacked columnwise in the parameter vectorρ,

ρ =
[
a1 . . . ana

b0 . . . bnb

]⊤
∈ R

nρ , nρ = na(nα + 1) + (nb + 1)(nβ + 1)

ai =
[

ai,0 ai,1 . . . ai,nα

]
∈ R

nα+1 andbj =
[

bj,0 bj,1 . . . bj,nβ

]
∈ R

nβ+1.

The model defined by equations (1),(2) and (3) is denoted asLPV-OE.

3.2 Identification problem statement

For models given in (1) and assuming that:
• the scheduling variablesp are knowna priori,
• the functions{fl}

nα

l=1 and{gl}
nβ

l=1 are knowna priori,
• the ordersna, nb, nα, nβ andd are knowna priori,

the identification problem can then be stated as follows: given the total rainfall datau and the
outlet flow datay sampled at timestk k = 1..N , estimate the associated parameter vectorρ.

3.3 Reformulation of the model

A way to solve the LPV identification problem is to rewrite thesignal relations of (1) into the
following form (Laurain et al. (2010)):

Mρ







χ(tk) +

na∑

i=1

ai,0χ(tk−i)

︸ ︷︷ ︸

F (q−1)χ(tk)

+

na∑

i=1

nα∑

l=1

ai,lfl(pk)χ(tk−i)
︸ ︷︷ ︸

χi,l(tk)

=

nb∑

j=0

nβ∑

l=0

bj,lgl(pk)u(tk−d−j
︸ ︷︷ ︸

)

uj,l(tk)

y(tk)=χ(tk) + e(tk)
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(4)

whereF (q−1) = 1 +
∑na

i=1 ai,0q
−i. Note that in this way, theLPV-OEmodel is rewritten as a

Multiple-Input Single-Output(MISO) system with(nb +1)(nβ +1)+nanα inputs{χi,l}
na,nα

i=1,l=1

and{uj,l}
nb,nβ

j=0,l=0. Given the fact that the polynomial operator commutes in this representation
(F (q−1) does not depend onpk), (4) can be rewritten as

y(tk) = −

na∑

i=1

nα∑

l=1

ai,l

F (q−1)
χi,l(tk) +

nb∑

j=0

nβ∑

l=0

bj,l

F (q−1)
uj,l(tk) + H(q)e(tk), (5)

which is a LTI representation.

3.4 LPV-SRIV algorithm

In this section a detailed RIV based algorithm is described.The choice for such method can be
justified by the facts that in the LTI case, RIV methods lead tostatistically optimal estimates if the
noise model is correct (S̈oderstr̈om and Stoica (1983)) and provides consistent estimates in case
the noise assumption is not fulfilled. This feature is necessary in the present context due to the
noise particularity given in Section 2. Any theoretical justification about the LPV-SRIV algorithm
can be found in Laurain et al. (2010) but due to space restrictions, only the algorithm is detailed
here:
LPV-SRIV algorithm:

Step 1: Use a traditional LS method to obtain̂ρ(0)). Setτ = 0.

Step 2: Compute an estimate ofχ(tk) by simulating the auxiliary model:

A(pk, q−1, ρ̂(τ))χ̂(tk) = B(pk, q−1, ρ̂(τ))u(tk−d)

based on the estimated parametersρ̂(τ) of the previous iteration. Deduce the output terms
{χ̂i,l(tk)}

na,nα

i=1,l=0 as given in (4) using the modelMρ̂(τ) .

Step 3: Compute the estimated filter̂Q(q−1, ρ̂(τ)) =
1

F (q−1, ρ̂(τ))
and filter the signals

{uj,l(tk)}
nb,nβ

j=0,l=0, y(tk) and {χi,l(tk)}na,nα

i=1,l=0 using Q(q−1, ρ̂(τ)) to obtain{uf
j,l(tk)}

nb,nβ

j=0,l=0,
yf(tk) and{χf

i,l(tk)}na,nα

i=1,l=0 respectively.

Step 4: Build the filtered estimated regressorϕ̂f(tk) and the so called filtered instrumentζ̂f(tk)
defined as:
ϕ̂f(tk)=

[
−yf(tk−1) . . . −yf(tk−na

) −χ̂f
1,1(tk) . . . −χ̂f

na,nα
(tk) uf

0,0(tk) . . . uf
nb,nβ

(tk)
]⊤

ζ̂f(tk)=
[
−χ̂f(tk−1) . . . −χ̂f(tk−na

) −χ̂f
1,1(tk) . . . −χ̂f

na,nα
(tk) uf

0,0(tk) . . . uf
nb,nβ

(tk)
]⊤

Note that in IV based identification methods, the optimal choice for the instrument is the noise-
free version of the regressorϕ(tk) (Söderstr̈om and Stoica (1983).

Step 5: The solution of the IV estimation equations can be stated as:

ρ̂(τ+1)(N)=

[
N∑

k=1

ζ̂f(tk)ϕ̂⊤

f (tk)

]−1
N∑

k=1

ζ̂f(tk)yf(tk)

whereρ̂(τ+1)(N) is the IV estimate of the process model associated parametervector at iteration
τ + 1 based on the prefiltered input/output data.

Step 6: If ρ(τ+1) has converged or the maximum number of iterations is reached, then stop, else
increaseτ by 1 and go back to Step 2.

4 IDENTIFICATION OF A RAINFALL /RUNOFF RELATIONSHIP IN A RURAL CATCHMENT

Given the total rainfall datau and the outlet flow datay sampled at timestk, k = 1, . . . , N , the
goal is to estimate the rainfall/runoff relationship. In the given case, the sample time is 6 minutes,
the flow unit isl/s and the rainfall is expressed inmm. The data measured during the year 2008
are shown in Fig 2.
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Figure 2: Rainfall and flow data for the Hohrain catchment (Alsace, France) during 2008

4.1 Catchment description

The studied Hohrain catchment area is located in the Alsatian vineyard (Eastern part of France,
latitude 47579 N; longitude 007173 E; altitude 284 m). The area of the catchment is 42 hectares.
Exceptional annual precipitations maximally reached 867 mm (1999) and minimally 361 mm
(1953). The average annual rainfall calculated since 1946 is 600 mm. The mean slope of the
catchment is 15%. Geologically, Ẅurm loamy loess and Oligocene clayey conglomerates and
marls, as well as compact calcareous substrate largely dominate in the upper and lower parts of
the catchment, respectively. The main soil type is mostly calcareous clay loams with medium
infiltration capacity. 68% of the hydraulic catchment are covered by vineyards (Figure 3). The
land use shows a gradient from mostly forested areas and partly orchard at the upstream of the
basin to agricultural and vineyard areas nearer to the outlet. With more than 120 farming plots,
it should be noted that the road network is dense, mostly impervious and represents about 6%
of the area of catchment. The catchment can be qualified as drycatchment with no permanent
flow (Grégoire et al. (2010)). The hydrological functioning can be summarized in three steps: i)
first of all no river network is observed and no discharge occurs without rainfall, ii) then, from a
total rainfall depth of 4 mm only the road network contributes to the discharge, iii) finally, over a
total rainfall depth of 8 mm, the number of fields contributing to the discharge increases with both
intensity and total rainfall depth. The catchment is depicted in Fig. 3.

Figure 3: Hohrain catchment (Alsace, France)
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4.2 Preliminary study

Over the70000 samples acquired, only5000 are greater than0.3 l/s and are relevant for the iden-
tification process. The dataset has to be split into identification data (on which the identification
algorithm will be run) and validation data. The identification data needs to include the widest
possible dynamic range and therefore needs to incorporate both low rainfall events and strong
rainfall events. Consequently, the chosen identification data are exposed in Fig. 2 and all the
whole dataset is used for the validation of the estimated model. The accuracy of the estimated
models is computed using the NASH coefficient defined as (Nashand Stucliffe (1970)):

NASH = 1 −
‖ŷ(tk) − y(tk)‖

var(y(tk))
. (6)

According to section 3.2, a preliminary study is needed in order to determine i)the choice of the
scheduling variables, ii) the pure delay of the system and iii) the orders of the system. Trying to
optimize all three choices simultaneously is an impossiblegoal considering all possible combina-
tions of scheduling variables. Therefore, the choice of thedelay and of the orders will be treated
separated from the choice of the scheduling variables.

Order determination: The choice of orders is driven using the assumption that the best LPV
model and the best linear model have the same ordersnb andna and delayd. This is mainly mo-
tivated by the fact that the linear model is a truncation of a more precise LPV model (fornα = 0
andnβ = 0).
Both the orders and the delay of the model are computed in an automated manner by identifying
linear models and minimizing the Young’s Information Criterion (YIC) defined as (Young and
Jakeman (1980)):

Y IC = log
var(ŷ(tk) − y(tk))

var(y(tk))
+ log

1

nθ

nθ∑

i=1

π̂ii

ρ̂i

(7)

whereπii is theith, ith element of the covariance matrixPρ associated tôρ. The method used
is the LPV-SRIV algorithm wherenα = 0 andnβ = 0 which is equivalent to the SRIV method
(Garnier and Wang (2008)). Minimizing the YIC criterion is equivalent to jointly minimize the
NASHcoefficient on the one hand and the order of the system on the other hand. The results
obtained for this catchment arenb = 1, na = 1 andd = 1.

Scheduling variables determination:The final task of the preliminary study is the definition of
the scheduling variablespi(tk). The expert knowledge states that the system behavior changes
with the moisture of the catchment. Nonetheless, such measure is unaccessible in practice and in
the presented example, the only accessible data are the total rainfall and the outlet flow. Concern-
ing the determination of these scheduling variables, most of the work presented here is largely
inspired by the recent work of P. Young. In Young (2002), the authors propose a Hammerstein
structure (see Fig. 1) where the non-linearity depends on the measured flow in a forecasting con-
text: this hypothesis reflects the fair assumption that the outlet flow is well correlated with the
moisture of the catchment. More recently ( Young (2003) see and the prior references therein),
P. Young proposed a model for simulation in which the nonlinearity depends on output of a lin-
ear tank model obtained from the data with some successful interpretation capability. Therefore,
based on the same correlation assumption as in Young (2003) and expert knowledge, two schedul-
ing variables are proposed to represent as closely as possible the moisture of the field are:

• the outlet flowŷL(tk) simulated using a linear model estimated from the data usingSRIV
algorithm and(1 + a0q

−1)ŷL(tk) = b0q
−1u(tk).

• The sum of the past rainfall̄u(tk) =
∑∆

i=0 u(tk−i). ∆ is chosen as the minimum number
of samples maximizing theNASH coefficient for the LPV model. In this application it is
set to 20 samples or 2 hours.

As a conclusion of this preliminary study, the LPV model considered (LPV-OE) is given by (1)
where:

{

A(ŷL(tk), ū(tk), q−1) =1 +(a1,0 +a1,1ŷL(tk)+a1,2ū(tk))q−1

B(ŷL(tk), ū(tk), q−1) = (b1,0 + b1,1ŷL(tk) + b1,2ū(tk))q−1.
(8)
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4.3 Results

In this section, the results exposed will focus in showing i)the relevance of the LPV model and ii)
the relevance of using a consistent method for unknown noisestructure. Therefore, the presented
algorithm will be compared to LS based methods which assumeAuto Regressive models with
eXogenous inputs(ARX) where the noise has the same dynamic as the system, whether it is a
linear model (ARX),

(1 + a0q
−1)y(tk) = b0q

−1u(tk) + e(tk), (9)

or a LPV model (LPV-ARX)

A(ŷL(tk), ū(tk), q−1)y(tk) = B(ŷL(tk), ū(tk), q−1)u(tk) + e(tk). (10)

These models are not realistic in practical applications, but they remain widely used because of
their simple algorithmic. On the other side, they are so far the only alternative to IV methods
when estimating LPV models. The ARX models are estimated using LS methods while the Lin-
ear/LPV OE models are estimated using the presented SRIV/LPV-SRIV algorithm. The different
NASHcoefficients computed on the validation dataset from the linear ARX and OE1 models are
NASHARX = 0.54 andNASHOE = 0.63 respectively. Both linear models are unable to ac-
curately fit the data as they cannot model the change of dynamics in the system according to the
amount of rain. Nonetheless, the algorithm used for parameter estimation indubitably plays an
important role as the model estimated using the SRIV method fits the data much better than the
one stemming from the least squares technique.
When estimating theLPV-OEmodel, using the presented algorithm, the computedNASH coef-
ficient isNASHLPV −OE = 0.84. Concerning theLPV-ARXmodel, the LS method was unable
to provide a stable model and therefore the results are not valid.
Fig. 4(b) and 4(a) show the response of the estimatedLPV-OEmodel and linear OE model for an
important rainfall (used for the estimation) and a small rainfall (not used for the estimation) events
respectively. It can be seen that the results corroborate the assumption that the chosen scheduling
variables represent well the moisture of the catchment.
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Figure 4: Comparison of linear and LPV models

Moreover, the presented model is compared to the nonlinear model proposed in Young (2003)
which can be parented to an advanced Hammerstein model. On the validation set, theNASH

coefficient obtained for this Hammerstein model isNASHHamm = 0.835. One of the advantage
in using a full LPV model over an Hammerstein structure can bedepicted in Fig. 5. The Hammer-
stein model only allows changes in the amount of the water reaching the outlet with a fix dynamic
constraint while the LPV model allows a large dynamic variation which results in a slightly better
fit of the model on this event. Nonetheless, some further investigation is needed to emphasis the
physical legitimacy of one or the other model and the only conclusion that can be drawn out is
that both models present equivalent statistical performances.

1Linear OE model:y(tk) = b0q−1

(1+a0q−1)
u(tk) + e(tk)
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Figure 5: Comparison between full LPV model and Hammersteinmodel

5 CONCLUSION

This paper has presented a new algorithm for consistently estimating LPV model when the as-
sumed noise model is unknown or false. The theoretical results from (Laurain et al. (2010)) were
successfully applied to a dataset from a vineyard catchment. The algorithm based on the refined
instrumental variable algorithm outperforms the existingalgorithms based on least squares algo-
rithm: it leads to consistent estimates under harsh noise conditions. Moreover, some scheduling
variables were introduced and their correlation with the moisture of the field has been verified.
In order to completely fulfill the data-based mechanistic process, the identification of continuous-
time LPV models directly deriving from the first principle laws of physics is intended.

REFERENCES

Beven, K. J.Rainfall-Runoff Modelling: The Primer. John Wiley, Hoboken, NJ, 2000.

Boukhris, A., S. Giuliani, and G. Mourot. Rainfall-runoff multi-modelling for sensor fault diag-
nosis.Control Engineering Practice, 9, Issue 6:659–671, June 2001.

Butcher, M., A. Karimi, and R. Longchamp. On the consistencyof certain identification methods
for linear parameter varying systems. InProceedings of the 17th IFAC World Congress, pages
4018–4023, Seoul, Korea, July 2008.

Garnier, H. and L. Wang (Editors).Identification of Continuous-time Models from Sampled Data.
Springer-Verlag, London, March 2008.
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