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Abstract: The identification of rainfall/runoff relationship is a dlenging issue, mainly because
of the complexity to find a suitable model for a whole givercbatent. Conceptual hydrological
models fail to describe correctly the dynamic changes oftrstem for different rainfall events

(e.g. intensity or duration). However, the need for suchti@hship grows with the water pol-

lution increase in agricultural regions. Lately, a wellekam type of model in the control field

appears to be a suitable candidate for water processefiichgmin: the Linear Parameter Vary-
ing (LPV) models. This paper depicts a novel refined instmiiedevariable based method for the
identification of Input/Output LPV models and this algonitlis applied to identify a parsimonious
nonlinear rainfall/flow model of a 42 ha vineyard catchmewhited in Alsace, France.

Keywords. data-based modelling, linear parameter varying moddisge instrumental variable,
rainfall, runoff, vineyard

1 INTRODUCTION

This work is inscribed in the data-based mechanistic (DBM)nework which delivers some
stochastic solution to the “top-down ” modelling methodshegt catchment scale. The aim is to
deliver a parsimonious model which avoids the identifigpiksues linked with the high number
of parameters in conceptual models (Mambretti and Pagl€86); Previdi et al. (1999),Young
(2003)). Nonetheless, the obtained model can be class#idylarid metric—conceptual model
as it is optimized given some set of measured data, but theelnsed is defined based on some
conceptual assumptions. The far-end goal is to deliver atisal for the simulation of the rain-
fall/pollutant relationship at the catchment scale foeliigent environmental decision support. In
aiming at solving this challenging problem, a solution fainfall/runoff modelling is proposed as
a preliminary work.

The identification of rainfall/runoff relationship is a dleanging issue, mainly because of the com-
plexity to find a suitable model for a whole given catchmergy@ (2000)). The need for such
relationship grows with the size of drainage networks iranrbatchments or with the water pollu-
tion increase in agricultural regions. In rural catchmethtsre is a high spatio-temporal variability
of the soil property whether it lies in the vegetation, in od type or evapotranspiration (Young
and Garnier (2006)) and there is a high difference betweenatal and efficient rainfall. In this
case, linear models most often completely fail in delivgrsatisfying rainfall/flow relationship.
The use of nonlinear models requires the choice for a naafitye Some nonparametric meth-
ods for estimating these nonlinearities sucktase dependent parameté&DP) were introduced
(Young and Garnier (2006)). Lately, a well-known type of rabih the control field appears to
be a suitable candidate for water processes identificalcev{di and Lovera (2009)): tHanear
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Parameter VaryindLPV) models. LPV models depend on so-called schedulingbbes and a
challenging issue is to define which variables the systeremfgpon.

The main contribution of this paper lies in the use of a rdgeti¢veloped refined instrumen-
tal variable (RIV) based method for the identification of ih®utput LPV models with colored
ARMA-type added noise for the estimation of the rainfalotf relationship in rural catchments.
This method produces consistent estimates even when tbe assumption is not fulfilled, which
is a strong feature for stochastic optimization based nuisth®he paper is organized as follows.
In Section 2, the main issues for applying data-based ffiieation methods in environmental
framework are given. Then, in Section 3, a new LPV identifisatmethod based on the refined
instrumental variable algorithm introduced in Laurain ket(2010) is fully detailed. Finally, in
Section 4, the full identification process and the model dsedainfall/flow modeling is given
while the performance of the presented algorithm are degigsing a data set coming from a 42
ha vineyard catchment located in Alsace, Franc&{@ire et al. (2010)).

2 |ISSUES IN ENVIRONMENTAL DATA -BASED MODELLING

When considering data-based modelling of dynamic systerast of the optimization methods
are based on stochastic optimization methods. Nonethelessted optimization method has to
be developed with respect to the field of application considieIn the present context, the fol-
lowing features have to be taken into consideration. Mogirenmental models derive from the
first principle of physics. These models are therefore adlfuexpressed in terms of differential
equations which are equivalent to continuous-time trarfsiections in the Control community.
Therefore, the first issue is the ability to identify a modetiar its transfer function form which
offers the ability to interpre& posteriorithe data-based model in physical or ecological terms:
data-based mechanistic modelling (Young and Beven (1994))

The second concern when dealing with environmental datheisnability to control the input
and to only be able to measure it. This leads to a so-célleor-In-Variables (EIV) identifi-
cation problem. However, the methods developed so far eoimgeEIV problems need strong
hypothesis and knowledge about the noise model (Thil e280%)). In a more general way,
speaking about stochastic optimization implies a stoahaspresentation of the measurement
noise. However, the usual gaussian noise assumption isemified in these rural catchments.
When measuring flow, the measurement noise presents coteglicharacteristics such as non
stationarity. For example, the noise variance increas#s tve flow whereas the variance be-
comes null when no flow is measured. During strong rainfahés, some transported particules
remain in the channel of the flowmeter, luring him into measyimexistent flow.

The final challenge concerning rainfall/runoff relatioisis to determine the non-linearity of the
studied system. The common approximation of conceptualetsddr rainfall/flow relationship
is the Hammerstein structure as presented in Fig 1. In oalestimate such models, the SDP
models introduced in Young and Beven (1994) are combinedixed interval smoothing filter in
order to determine the non-linearity form. This method is/y@owerful as it is a non-parametric
method which does not need the knowledge about the dynantieafystem. The state depen-

Dynamic

Total Static Efficient : Outlet
E—— . ) linear N
rainfall nonlinearity rainfall system flow

Figure 1: Hammerstein model for rainfall/flow relationship

dant parameter models are similar from a general point a¥ WelLPV models which are widely
used in the control theory. These models rely on models ickvhie parameters depend on a state
of the system or a external variable. Nonetheless, the SDdelsivere mainly restrained so far
to Hammerstein structures (Young (2003)) but the relevarfidell LPV models for rainfall/flow
modeling in urban catchments can be found in Previdi and tao{@009). However, until recently
(Laurain et al. (2010)), the accurate identification of soubdels for LPVOutput Error (OE)
model was not clearly defined in the literature. Therefdre,rtext section introduces the method
from (Laurain et al. (2010)) and the type of model it can beliapo.
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3 ESTIMATION OF LPV ouTPUT ERROR MODELS

Would the system be linear, a method dealing robustly with ibise conditions depicted in
the previous section is theimplified Refined Instrumental Variall®RIV) method proposed in
Young and Jakeman (1980). Moreover, this method was extietodeon-linear models (Laurain
et al. (2008)). This section exposes the extension of thé&/$Rdthod toLPV-OE models: the
LPV-SRIV method. In the LPV case, most of the methods desldpr Input/output (I0) mod-
els based identification are derived under a linear regredésrm (Wei and Del Re (2006); Gidar
et al. (2006); Butcher et al. (2008)). By using the conceptthe Linear Time Invariant(LTI)
prediction error framework, recursiVeast square¢L.S) andinstrumental variablglV) methods
have been also introduced (Giaret al. (2006); Butcher et al. (2008)). A discussion aboat th
performances and robustness of these algorithms comatieel one introduced in this paper can
be found in Laurain et al. (2010).

3.1 LPV output error models

The considered models in this application are given as:
Alpr, ¢~ ") x(tk) = B(pr, ¢ )u(te—q)
y(te) = x(tx) + elte)

whered is the delayyy is the noise-free output, is the inpute is the additive noise with bounded
spectral densityy is the noisy output of the system aqib the time-shift operator, i.@ " "u(t;) =
u(tx—;). p are the so-called scheduling variables. For LTI systemesctfefficients ofA and B
are constant in time while they are time-varying dependimg for LPV models.A(px, ¢~ ') and
B(pg,q~ ') are polynomials i;—* of degreen,, andny, respectively:

1)

Ape, g™ ") =1+ ailpe)g " With a;(pe) = aio+ Y _aiifilps) i=1,...,n. (2)

i=1 =1
Np ng
Blpr, g~ ") =Y bi(pr)g ™" with bi(pr) =bjo+ Y _bjugi(pk) j=0,...,np. 3)
Jj=0 =1

In this parametrization{ f;};'=, and{g,}%, are functions op, with static dependence, allowing
the identifiability of the model (pairwise orthogonal fuloets for example). It can be noticed

that the knowledge ofa, ;};1"i, and {b;;}; 7", ensures the knowledge of the full model.

Therefore, these model parameters are stacked columnwise parameter vectoy,
p=[ar ... am by ... by | €R™ n,=n.(na+1)+ (n+1)(ng +1)
a; = [ a; 0 Qi1 .- Qing ] € Rn“Jrl andbj = [ bj)o bj,l bjmﬁ ] S Rn[ﬁq.
The model defined by equations (1),(2) and (3) is denotedPasOE
3.2 Identification problem statement

For models given in (1) and assuming that:

e the scheduling varlablqsare knowra priori,
e the functions{ f;}}'=, and{g, },"”; are knowna priori,
e the ordersy,, ny, na, ng andc% are knowna priori,

the identification problem can then be stated as followseryithe total rainfall data and the
outlet flow datay sampled at timeg, £ = 1..V, estimate the associated parameter veator

3.3 Reformulation of the model

A way to solve the LPV identification problem is to rewrite thignal relations of (1) into the
following form (Laurain et al. (2010)):

Na Na n, Mg
x(t) JFZalOX tp—i +Zzazlﬁ )X (te—i) Zzbﬂgz Pr)u(tk—d—j)
~— ——
Mp =1 [=1 X@I(tk) 7=01=0 u]',L(tk)

F(g=")x(tk)
y(te) =x(tx) + e(tr)
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whereF(¢g~!) = 1+ > a; 0 *. Note that in this way, thePV-OE model is rewritten as a
Multiple-Input Single-OutputMISO) system with(ny, + 1)(ng + 1) + nang inputs{x;, };21",
and {uj,l}?;gj’fzo. Given the fact that the polynomial operator commutes ia thpresentation
(F(q~1) does not depend g,), (4) can be rewritten as

iiF le +ZZF uj, tk)+H( ) ( ) (5)
=1 1=1 7=01=0

which is a LTI representation.
3.4 LPV-SRIV algorithm

In this section a detailed RIV based algorithm is describEte choice for such method can be
justified by the facts that in the LTI case, RIV methods leastédistically optimal estimates if the
noise model is correct (Blerstbm and Stoica (1983)) and provides consistent estimategsia ¢
the noise assumption is not fulfilled. This feature is neagsm the present context due to the
noise particularity given in Section 2. Any theoreticattfisation about the LPV-SRIV algorithm
can be found in Laurain et al. (2010) but due to space resint only the algorithm is detailed
here:

LPV-SRIV algorithm:

Step 1: Use a traditional LS method to obtgif)). Setr = 0.
Step 2: Compute an estimate qf(¢;.) by simulating the auxiliary model:

Alpr,a™ A x(te) = Bpr, a7 57 )ulti—a)

based on the estimated parametgfs of the previous iteration. Deduce the output terms
{Xi,z(tk)}?i‘ffzo as given in (4) using the modgH ;.

Step 3: Compute the estimated filtep(¢~*, 5(7) and filter the signals

1
Flg~!, p)
{uj(te) Y20 o, y(te) @and {xa(te) Yy using Q(g~*, pt™)) to obtain {u, (tx)} 20",
ye(tr) and{x; , (tx) };2)"7, respectively.

Step 4: Build the filtered estimated regresspi(t;) and the so called filtered instrumeftt;,)
defined as:

Ge(te)=[—ve(th-1) - —ye(te—n,) —Xi1(tk) - —Xh. oo (k) ubo(te) ... nb,nﬁ (tk)]
éf(tk) = [_Xf(tk—l) s _Xf(tk—na) Xf (tk) s _sza,na (tk) u’(f),O(tk) s nb ng (tk)]
Note that in IV based identification methods, the optimalicdor the instrument is the noise-
free version of the regresse(t;) (Soderstdbm and Stoica (1983).

Step 5: The solution of the IV estimation equations can be stated as:

pUrI(N [ZC tk)$ ] ZCf tr)ye(tr)

T

wherep("t1 (N) is the IV estimate of the process model associated parawesttor at iteration
7+ 1 based on the prefiltered input/output data.

Step 6: If p("t1) has converged or the maximum number of iterations is reathed stop, else
increaser by 1 and go back to Step 2.

4 |DENTIFICATION OF A RAINFALL /RUNOFF RELATIONSHIP IN A RURAL CATCHMENT

Given the total rainfall data and the outlet flow data sampled at times,, £k = 1,..., N, the
goal is to estimate the rainfall/runoff relationship. lethiven case, the sample time is 6 minutes,
the flow unit isl/s and the rainfall is expressed inm The data measured during the year 2008
are shown in Fig 2.
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Figure 2: Rainfall and flow data for the Hohrain catchmens@hle, France) during 2008

4.1 Catchment description

The studied Hohrain catchment area is located in the Alsafizeyard (Eastern part of France,
latitude 47579 N; longitude 007173 E; altitude 284 m). Theaaof the catchment is 42 hectares.
Exceptional annual precipitations maximally reached 86# (h999) and minimally 361 mm
(1953). The average annual rainfall calculated since 19480 mm. The mean slope of the
catchment is 15%. Geologically, ¥m loamy loess and Oligocene clayey conglomerates and
marls, as well as compact calcareous substrate largelyndenin the upper and lower parts of
the catchment, respectively. The main soil type is mostlgazaous clay loams with medium
infiltration capacity. 68% of the hydraulic catchment argered by vineyards (Figure 3). The
land use shows a gradient from mostly forested areas anly pachard at the upstream of the
basin to agricultural and vineyard areas nearer to the todtdth more than 120 farming plots,
it should be noted that the road network is dense, mostly iviques and represents about 6%
of the area of catchment. The catchment can be qualified asadchiment with no permanent
flow (Grégoire et al. (2010)). The hydrological functioning can bemarized in three steps: i)
first of all no river network is observed and no discharge ogeuthout rainfall, ii) then, from a
total rainfall depth of 4 mm only the road network contritsute the discharge, iii) finally, over a
total rainfall depth of 8 mm, the number of fields contribgtio the discharge increases with both
intensity and total rainfall depth. The catchment is deguléh Fig. 3.

Vine
s Orchard
Fallow
I Forest
¥£% Grassland
Il Pervious and impervious roads 0 50 100 200 Meters Outlet

Figure 3: Hohrain catchment (Alsace, France)
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4.2 Preliminary study

Over the70000 samples acquired, onBp00 are greater thaf.3 I/s and are relevant for the iden-

tification process. The dataset has to be split into ideatifio data (on which the identification

algorithm will be run) and validation data. The identificetidata needs to include the widest
possible dynamic range and therefore needs to incorpordteltw rainfall events and strong

rainfall events. Consequently, the chosen identificatiata dire exposed in Fig. 2 and all the
whole dataset is used for the validation of the estimatedaiotihe accuracy of the estimated
models is computed using the NASH coefficient defined as (ldadiStucliffe (1970)):

var(y(tg))
According to section 3.2, a preliminary study is needed deoto determine i)the choice of the
scheduling variables, ii) the pure delay of the system &apthié orders of the system. Trying to
optimize all three choices simultaneously is an imposgibi# considering all possible combina-
tions of scheduling variables. Therefore, the choice oftiblay and of the orders will be treated
separated from the choice of the scheduling variables.

Order determination: The choice of orders is driven using the assumption that ds¢ bPV
model and the best linear model have the same ordeasndn, and delayd. This is mainly mo-
tivated by the fact that the linear model is a truncation ofaerprecise LPV model (fat, = 0
andng = 0).

Both the orders and the delay of the model are computed int@mated manner by identifying
linear models and minimizing the Young’s Information Crite (YIC) defined as (Young and
Jakeman (1980)):

var(g(ty) — y(te)) +log 1 3 Mii (7

YIC =1lo
* T var(y(t) no 2= b,

wherer;; is thei",i*" element of the covariance matri%, associated tg. The method used
is the LPV-SRIV algorithm where,, = 0 andng = 0 which is equivalent to the SRIV method
(Garnier and Wang (2008)). Minimizing the YIC criterion iguévalent to jointly minimize the

NASH coefficient on the one hand and the order of the system on trex band. The results
obtained for this catchment arg = 1, n, = 1 andd = 1.

Scheduling variables determination: The final task of the preliminary study is the definition of
the scheduling variables; (¢;). The expert knowledge states that the system behavior eBang
with the moisture of the catchment. Nonetheless, such me#&sunaccessible in practice and in
the presented example, the only accessible data are thediofall and the outlet flow. Concern-
ing the determination of these scheduling variables, mbttework presented here is largely
inspired by the recent work of P. Young. In Young (2002), théhars propose a Hammerstein
structure (see Fig. 1) where the non-linearity depends emtiasured flow in a forecasting con-
text: this hypothesis reflects the fair assumption that théebdflow is well correlated with the
moisture of the catchment. More recently ( Young (2003) sekthe prior references therein),
P. Young proposed a model for simulation in which the nomiitg depends on output of a lin-
ear tank model obtained from the data with some successérpiretation capability. Therefore,
based on the same correlation assumption as in Young (2683xert knowledge, two schedul-
ing variables are proposed to represent as closely as pots#moisture of the field are:

o the outlet flowj,(¢;) simulated using a linear model estimated from the data USRIY
algorithm and(1 + apq= )9z (tr) = bog~ tu(ty).

e The sum of the past rainfail(t;) = Zf:o u(ty—;). A is chosen as the minimum number
of samples maximizing th& AS H coefficient for the LPV model. In this application it is
set to 20 samples or 2 hours.

As a conclusion of this preliminary study, the LPV model ddesed (PV-OE) is given by (1)
where:
{A@L(tk)» u(tr),q ") =1+4(@1,0 +a119L (tr) + a1 2u(te)g

B (t), u(tr), ¢ ") = (bro + b11r(tk) + b 2tu(tr))g ®
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4.3 Results

In this section, the results exposed will focus in showirthé) relevance of the LPV model and ii)
the relevance of using a consistent method for unknown retiseture. Therefore, the presented
algorithm will be compared to LS based methods which assfinte Regressive models with
eXogenous inputéARX) where the noise has the same dynamic as the systemherhieis a
linear model ARX),

(14 aoq™ My(tr) = bog ™ 'ultr) + e(tr), 9)
or a LPV model (PV-ARX
A (te), alte), a™y(te) = B (te), alte), g ulte) + e(tr)- (10)

These models are not realistic in practical applications they remain widely used because of
their simple algorithmic. On the other side, they are so ffier anly alternative to IV methods
when estimating LPV models. The ARX models are estimatengust methods while the Lin-
ear/LPV OE models are estimated using the presented SRWAHMRV algorithm. The different
NASHcoefficients computed on the validation dataset from thealirARX and OE models are
NASH rx = 0.54 and NASHor = 0.63 respectively. Both linear models are unable to ac-
curately fit the data as they cannot model the change of dysimithe system according to the
amount of rain. Nonetheless, the algorithm used for paramestimation indubitably plays an
important role as the model estimated using the SRIV methsdhé data much better than the
one stemming from the least squares technique.

When estimating thePV-OEmaodel, using the presented algorithm, the compuNetlS H coef-
ficientisNASHpy_or = 0.84. Concerning th&.PV-ARXmodel, the LS method was unable
to provide a stable model and therefore the results are tidt va

Fig. 4(b) and 4(a) show the response of the estimaRdOEmodel and linear OE model for an
important rainfall (used for the estimation) and a smalifiai (not used for the estimation) events
respectively. It can be seen that the results corroboratasbumption that the chosen scheduling
variables represent well the moisture of the catchment.

18 —Measured flow 180} ‘ ‘ —‘Measuréd flow ‘
+t2132-8ir?u'-aﬁon ——Linear Simulation
16 imulation 160f ——LPV Simulation ]
14 140r
2 12 g 120
s 3 100f
= 8 = 80r
6 601
4 401
2 20
"0 200 300 400 500 20 40 60 80 100 120
time (min) time (min)
(a) Small rainfall event (b) Important rainfall event

Figure 4: Comparison of linear and LPV models

Moreover, the presented model is compared to the nonlinealehproposed in Young (2003)
which can be parented to an advanced Hammerstein model. éOratidation set, théV ASH
coefficient obtained for this Hammerstein modeMs\.S H iy 4, = 0.835. One of the advantage
in using a full LPV model over an Hammerstein structure caddygcted in Fig. 5. The Hammer-
stein model only allows changes in the amount of the watethiag the outlet with a fix dynamic
constraint while the LPV model allows a large dynamic vasiatvhich results in a slightly better
fit of the model on this event. Nonetheless, some furthersiigation is needed to emphasis the
physical legitimacy of one or the other model and the onlyctusion that can be drawn out is
that both models present equivalent statistical perfooean

ILinear OE modely(tz) = %u(tk) + e(tr)
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Figure 5: Comparison between full LPV model and Hammerstedel

5 CONCLUSION

This paper has presented a new algorithm for consistentilmaisng LPV model when the as-
sumed noise model is unknown or false. The theoreticaltefoim (Laurain et al. (2010)) were
successfully applied to a dataset from a vineyard catchnidr algorithm based on the refined
instrumental variable algorithm outperforms the existfgprithms based on least squares algo-
rithm: it leads to consistent estimates under harsh noisdittons. Moreover, some scheduling
variables were introduced and their correlation with thestooe of the field has been verified.
In order to completely fulfill the data-based mechanistmcpss, the identification of continuous-
time LPV models directly deriving from the first principleAa of physics is intended.
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