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Abstract: We present here a detailed theoretical analysis for realising an inherently gain 

flattened L+ band Thulium doped fiber amplifier (TDFA), based on a depressed inner-clad 

(W-fiber) design, wherein the inherent gain flattening is achieved by an optimised bend 

induced leakage loss. The leakage loss characteristics of W-fiber have been used to suppress 

higher wavelength amplified stimulated emission (ASE) in the designed TDFA, which 

otherwise depletes the population inversion in the amplifier, making it almost impossible to 

obtain high gain for wavelengths in and close to the conventional L-band. It has been shown 

through simulations that 20 dB net gain (± 0.3 dB ripple) is achievable over 32 nm bandwidth 

(1604-1636 nm), using this design pumped with 160 mW of power. We also show that 

inherent gain flattening leads to redistribution of power among signal wavelengths, and 

hence an inherently gain-flattened TDFA is much more efficient as compared to a 

configuration that uses discrete filters for gain flattening. The net gain value and gain 

flattening of designed TDFA module has been tested against tolerance w.r.t. fiber parameters 

as well as bend radius. This is for the first time to the authors knowledge that inherently gain 

flattened L+ band operation has been shown using TDFAs. 
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1.  Introduction 

Extending optical fiber transmission to newer wavelength bands (S-band ~ 1470-1525 

nm, L-band ~ 1565-1620 nm, O-band ~ 1260-1310 nm) is a potential solution for increasing 

the capacity of current wavelength division multiplexed (WDM) and coarse wavelength 

division multiplexed (CWDM) systems; and gain-flattened optical fiber amplifiers are key 

devices in this direction. There has been a lot of activity in realising efficient L-band Erbium 

doped fiber amplifiers (EDFAs) [1, 2] and also in extending the amplifier bandwidth beyond 

conventional L-band. However, in conventional L-EDFAs, the bandwidth of operation is 

restricted till about 1610 nm only and thus, a number of techniques have been reported in the 

literature to extend the bandwidth of L-band amplifiers. Some of these include the use of 

antimony silicate glass host, instead of Al/Si [3] or the use of Raman amplification [4].  

In this paper, we report an inherently gain flattened, fluoride based thulium doped fiber 

amplifier (TDFA) with  20 dB net gain (± 0.3 dB ripple) over 32 nm wide bandwidth from 

1604 nm to 1636 nm. Thulium (Tm3+) is an important rare earth element which has been 

predominantly used for realising S-band amplifiers [5] based on 3H4-3F4 transition peaked 

around 1.47 µm, and long wavelength lasers [6] based on 3F4-3H6 transition peaked around 1.9 

µm (Figure 1). The 3F4-3H6 transition, however, has an emission tail till 1600 nm, and thus in 

principle, this transition can be used for realising L+ band (1600-1640 nm) fiber amplifiers. 

However, efficient L-band TDFAs cannot be realised using conventional fiber designs 

because the higher wavelength amplified spontaneous emission (ASE) would deplete the 

population inversion in the amplifier, making it virtually impossible to amplify L band 

signals. Thus, to ensure gain at the shorter edge of wavelengths, one must suppress the higher 

wavelength ASE periodically along the length of the fiber. Sakamoto et al [7] have previously 

reported a ZBLYAN based TDFA operating over 1650-1670 nm, where higher wavelength 

(1750-2000 nm) ASE has been suppressed by co-doping the fiber with Terbium (Tb3+) ions, 
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which have a large absorption cross-section for wavelengths > 1750 nm. The problem with 

this technique is that the usable amplifier bandwidth in this case is 1650-1670 nm, and the 

WDM bandwidth between 1600-1650 nm (for which silica based transmission fibers have 

lower losses) could not be exploited. 

In this paper, we propose suppression of higher wavelength ASE in an L-TDFA by an 

appropriate leakage loss to the fundamental mode, in an optimised W-fiber. The fundamental 

mode in the proposed W-fiber becomes leaky at around 1661 nm, so that all the higher 

wavelength ASE is suppressed, and the gain in L+ band (1600-1640) nm is enhanced. A 

similar technique of higher wavelength suppression using leakage loss was reported by 

Arbore et al [8] to realize an S-band EDFA, where C-band ASE is suppressed using leakage 

loss in a W-fiber. This technique has also been applied to filter out strong four level ASE 

transition and enhance three level transition in Neodymium and Ytterbium doped fibers [9]. 

We show, using simulations, that even though ASE suppression in a W-fiber leads to an 

increase in L+ band gain as compared to the case of an ordinary step index fiber design, this 

gain has a large spectral variation, with the gain at 1600 nm being around 20 dB lower than 

that at 1640 nm. To compensate for this gain tilt, use of an optimised wavelength-dependent 

bend induced leakage loss is proposed. Thus, in the proposed module, a high leakage loss (> 3  

dB/m) is provided to suppress the longer wavelengths, outside the signal band and a spectrally 

tuned bend induced leakage loss (0 to 1) dB/m is provided to the signal band wavelengths to 

compensate for the gain tilt. We show that gain flatness upto ± 0.3 dB, over 32 nm bandwidth 

is achievable in the proposed L+ band TDFA, based on optimally bent W-fiber. It is also 

emphasised, through detailed simulations, that inherent gain flattening is achieved by 

suppression of gain at higher signal wavelengths and a simultaneous increase in gain at 

shorter signal wavelengths by a re-distribution of power among the signal channels. This is in 

contrast to gain flattening by discrete filters, which is achieved by a suppression of gain at all 
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the wavelengths. Hence, inherent gain flattening is more efficient than flattening by the use of 

discrete filters. The gain and gain flatness in the proposed module are also tested against 

tolerance with respect to fiber parameters and bend radius. In these simulations, we have 

considered fluoride hosts for realising L+ TDFA; this is essential because the fluorescence 

lifetime of the upper lasing level (3F4) in silica glass is much lower (~0.4 ms) than in 

ZBLYAN glass (~9 ms) , which makes it almost impossible to realise high gain L+ TDFA in 

silica hosts. 

 

2.  Fiber design and basic principle 
 

The solid curve in Figure 2 shows the refractive index profile of a W-fiber, which 

consists of a depressed inner cladding. This profile can be characterized by a specific 

wavelength λc, defined as follows: at λc, the effective index of the fundamental mode equals 

the outer cladding refractive index (n3). Thus at λc, the guided mode gets cut-off and it starts 

to behave like a leaky mode, the leakage loss spectrum of which is governed by the separation 

b-a. Hence, by optimising the fiber parameters, one can have different spectral variation of 

leakage loss for the wavelength range λ>λc. 

The dashed curve in Figure 2 shows the equivalent refractive index profile of a bent W-

fiber [10]. Bending the fiber, shifts the cut-off wavelength λc to shorter wavelengths, and 

hence those wavelengths also start to suffer some leakage loss, the amount of which, can be 

controlled by varying the bend radius. The shorter is the bend radius, the more is the blue-

shifting of λc and higher are the losses at a particular wavelength. The amount of bend-

sensitivity of the fiber design can be easily controlled by the fiber parameters, predominantly 

by the b/a ratio. This implies that to achieve similar bend losses,  fibers with larger b/a ratio 

would require smaller bend radii than fibers with smaller b/a ratio. Bend induced leakage loss 

has an almost linear spectral variation in W-fibers, the slope of which can be tuned by varying 
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the bend radius. Hence, an optimally chosen bend radius can flatten the almost linear gain-tilt 

in an L+ band TDFA, effectively. This is the basic principle behind the proposed inherently 

gain-flattened L+ band TDFA.  

The advantage of having two mechanisms for inducing leakage loss (bend-induced 

leakage loss and inherent leakage loss in a straight W-profile) is that it enables us to control 

the magnitude and spectral variation of leakage loss inside and outside the signal band, almost 

independent of each other. This is because leakage loss induced by bend has a different 

spectral variation than that of the leakage loss in the straight fiber. This gives additional 

degree of freedom to achieve efficient gain flattening. 

 

3.  Modelling 

In order to analyze amplification in the proposed fiber, we have used standard three-level 

rate equation model [11], as applicable in the case of an EDFA. 1210 nm pump has been 

considered for pumping the atoms into 3H5 level, from which, the atoms decay non-radiatively 

into the upper lasing level (3F4) and thus the system acts as a three-level system. One could 

also utilize 800 nm band pumping for realizing populations inversion between 3F4 and 3H6 

levels, but the efficiency of 1210 nm pumping scheme is higher as compared to 800 nm 

pumping.  Assuming a cylindrical co-ordinate system with z-axis as the fiber axis, the per unit 

volume steady state population density of Tm3+ ions, in the ground and excited states, (N1 (r, 

z) and N2 (r, z)), are described by the following equations: 
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Here, ρEr is the total thulium ion concentration, and Wa, We represent the net emission and 

absorption rates, given by: 

 

Here, νp,s is the pump/signal frequency, σa,s is the wavelength dependent absorption/emission 

cross-section and Pp,s(r,z) is the pump/signal power at any position z, along the fiber length. 

Ae is the spontaneous emission rate, Sase(ν,z) is the amplified spontaneous emission (ASE) 

power spectral density at frequency ν and position z and, Is(r) and Ip(r) are the normalized 

intensity distributions of the fundamental mode, at signal and pump wavelengths, 

respectively.  Since, the spontaneous emission generated at any point is amplified in both 

forward and backward directions of the fiber axis, the total ASE spectral density,( Sase(ν,z)), at 

any point z, can be written as a sum of forward (S+
ase) and backward (S-

ase) components. 

 

The propagation equations for the pump, signal and ASE are given as follows: 
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The emission γe(ν,z) and absorption γa(ν,z)  factors in these equations are determined as 

follows: 

 

where a is the core radius of the fiber and I(ν,r) is the normalized intensity at frequency 

ν and radial co-ordinate r. 

Effective refractive indices of the fundamental and leaky modes of W-fiber and the 

leakage loss have been obtained by solving complex eigenvalue equation using matrix method 

[12]. Bend induced leakage loss have been obtained using an analytical analysis given by 

Marcuse [10]. To obtain the overlap integrals, we have assumed the modal fields of the 

segmented-clad fiber to be the same as that of the corresponding unperturbed fiber. Modal 

fields for the unperturbed fiber have been calculated by writing the solutions in each region in 

terms of Bessel functions and applying appropriate boundary conditions to obtain an 

eigenvalue equation, which has been solved numerically.  

 

4.  Numerical Results and Discussion 

The refractive indexes of the designed W- fiber have been chosen in a manner that λc = 

1661 nm; the signal band is over 1604 nm to 1636 nm. Parameters of the core (n1, n2, a) 

primarily decide the virtual cut-off wavelength (λc) for the fundamental mode. As mentioned 

before, the amount of leakage loss in a W-fiber, and its sensitivity towards bend loss depends 

upon b/a ratio. Hence, the fiber dimensions are so chosen that the leakage loss even in a 

straight W-fiber is sufficiently high (> 2.5 dB/m) to eliminate higher wavelength ASE and 

also, the fiber is reasonably sensitive to bend induced leakage losses so that very small bend 
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radii are not required for obtaining desired leakage loss (0-1 dB/m) in the signal band. Figure 

3 shows the leakage loss spectrum in the presence and absence of bend, in the designed fiber. 

The optimised bend radius in this case is 8 cm. The presence of a bend shifts λc to 1604, from 

its original value at 1661 nm in the straight fiber. 

The designed L+ band TDFA consists of 32 meters of optimized W-fiber, pumped with 

160 mW of power at 1210 nm. The core region (r < a) is considered to be doped with thulium 

with a concentration of 1.7 x 1025 m-3. The propagation equations for pump, signals and 

forward and backward ASE (Eqn. 6 and 7) have been solved as boundary value problem using 

fourth order Runge Kutta method. For ASE calculation, 150 nm emission bandwidth, (1550 to 

1700) nm, has been divided into 150 wavelength slots of 1 nm width each. Due to very large 

leakage loss (> 8 dB/m) for wavelengths higher than 1700 nm, the emission band between 

1700 nm to 2200 nm is not included in the simulations.  

Figure 4 shows the small signal gain and noise figure spectra of the designed L+ band 

TDFA; nine equally spaced simultaneous signal channels over 1604-1636 nm have been 

considered with a total signal input power of –10 dBm. The figure shows that ~20 dB net gain 

with a gain ripple of ± 0.3 dB is achievable with this design. The noise figure remains below 7 

dB for all signal wavelengths. To emphasize the significance of an optimum spectral variation 

of leakage loss leading to inherent gain flattening, we simulated the performance of an L+ 

band TDFA for three cases: 1) in a conventional step index fiber with no leakage loss at all, 2) 

in a straight W-fiber, where the higher wavelength ASE were suppressed by a suitably chosen 

cutoff for fundamental mode, but no gain flattening, 3) in an optimally bent W-fiber with 

suppression of higher wavelength ASE alongwith inherent gain flattening provided by 

suitably tuned spectral variation of leakage loss in signal band. Figure 5 shows the results for 

all the three cases. The pump and signal powers and the ion concentration are the same as in 

Figure 4 for all the three cases; fiber lengths are however optimized for each case to obtain 
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maximum gain. One may note that L+ band operation is almost not possible in a conventional 

fiber (dotted curve in figure 5). Higher wavelength ASE suppression in a W-fiber does 

enhance the L+ band gain but the gain is sharply varying with the wavelength (dashed curve). 

If discrete filters at the end of the amplifier are used to flattened this gain, then the net gain of 

the amplifier cannot be better than ~10 dB at all wavelengths. The solid curve shows the gain 

in the proposed bent W-fiber, where one may note that inherent gain flattening is achieved by 

a re-distribution of power along various signal channels. As a result, the higher wavelength 

gain is suppressed and the shorter wavelength gain is enhanced, leading to higher overall 

efficiency.  

Increase in efficiency by inherent gain flattening can also be understood by studying the 

variation of population inversion along the length of the fiber and spectral variation of 

forward ASE power, for the above-mentioned three cases. These results are presented in 

Figures 6 and 7. The suppression of higher wavelength ASE (Figure 6) leads to significant 

increase in population inversion; this increase is further enhanced in the case of gain-flattened 

amplifier. One may note in Figure 7 that leakage loss in a W-fiber shifts the ASE spectrum to 

the shorter wavelengths, and the presence of bend-induced leakage loss flattens it. An 

advantage of the proposed scheme is that the gain-flattened amplification can be shifted to 

longer wavelengths (e.g. 1650-1700) nm also by a suitable choice of λc and bend radius. 

We have also carried out a detailed tolerance analysis for the fiber parameters, with 

respect to net gain and gain flattening in the proposed L+ band TDFA. The analysis shows 

that it is the total leakage loss and its spectral variation, that primarily governs the gain 

flattening in the designed TDFA. We observed that any change in the loss spectrum (due to a 

variation in fiber parameters or in bend radius) can be well compensated by a re-optimization 

of fiber length, pump power and/or bend radius. Figure 8 shows the TDFA gain spectrum for 

different values of bend radius, keeping the fiber parameters and input signal powers to be the 
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same as in Figure 4. DRb represents the deviation in bend radius from its optimized value of 8 

cm, Pp represents the pump power and R represents the gain ripple in each case. The gain 

flatness varies from ± 0.3 dB to ± 0.7 dB for a ± 0.5 cm 

 Figure 9 shows the results of tolerance analysis w.r.t core refractive index n1. Dn1 

represents the deviation from optimum value, R represents the gain ripple and Pp corresponds 

to the pump power in each case. The fiber length, ion concentration and bend radius have been 

re-optimized for each case. One may note that the gain spectra in the modified configuration 

does not deviate too much from the original curve (solid curve) and the gain flatness varies 

between ± 0.3 dB to ± 0.5 dB. The other core parameters (a and n2) have similar effect as of 

n1. Any modification in these parameters basically leads to a shift in the cut-off wavelength, 

λc, and the effect can be compensated for in the same way as for the case of n1. Figure 10 

shows the corresponding analysis w.r.t separation between core and outer cladding, b. Db 

(µm) corresponds to the deviation in the value of b. In this case also, the ion concentration, 

fiber length and bend radius have been re-optimized to ensure that the gain ripple (R), in each 

case, varies between ± 0.3 to ± 0.4 dB only. 

5.  Conclusions 

The paper reports a novel fluoride based inherently gain-flattened L+ TDFA design, based 

on the principle of shifting amplifier gain to shorter wavelengths, by suppressing higher 

wavelength (having higher gain coefficient) amplified spontaneous emission (ASE) using 

distributed leakage loss in a W-fiber. For achieving inherent gain-flattening, additional bend-

induced leakage loss in the signal band has been utilized. Detailed modeling for amplifier 

characteristics has been carried out, including the effects of forward and backward ASE, 

pump depletion etc. L+ band TDFA operation (20 dB gain) using 160 mW of pump power 

has been shown to be achievable over 32 nm bandwidth (1604-1636) nm with a gain ripple of 

± 0.3 dB. We have also shown that in this design, inherent gain flattening actually leads to an 
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increase in overall efficiency. This is because in this design, inherent gain flattening is 

achieved by a suppression of gain at higher signal wavelengths and a simultaneous increase in 

gain at shorter signal wavelengths. This is in contrast to gain flattening by discrete filters, 

which is achieved by a suppression of gain at all wavelengths. A detailed tolerance analysis of 

gain and gain flattening w.r.t fiber parameters, as well as bend radius has been studied and it 

has been confirmed that in each case, the desired characteristics can be retained by a re-

optimization of the amplifier parameters. 

Acknowledgements 

One of the authors (Charu Kakkar) would like to thank the French Embassy in India for 

awarding with a ‘Sandwich’ thesis scholarship. CK would also like to thank Basile Faure, 

University of Nice, for providing emission and absorption cross-sectional data for Thulium 

ions in fluoride-based fibers. 



 12 

References 
1. H. Ono, M. Yamada, T. Kanamori, S. Sudo and Y. Ohishi, Journal of Lightwave 

Technology, 17, (1999), 490. 

2. F. A. Flood, Proc. of Optocal fiber and Communications Conference (OFC-2000), 

(2000), 102. 

3. A. J. G. Ellison, D. E. Goforth, B. N. Samson, J. D. Minelly, J. P. Trentelman, D. L. 

McEnroe and B. P. Tyndell, Proc. Optical Fiber Communication Conference (OFC 

2001), 2, (2001), TuA2-1. 

4. S. V. Chernikov, S. A. E. Lewis and J. R. Taylor, Proc. Optical Fiber Communication 

Conference (OFC 1999), (1999), WG6. 

5. S. Aozasa, T. Sakamato, T. Kanamori, K. Hoshino, K. Kobayashi and M. Shimizu, 

IEEE Photonics Technology Letters, 12, (2000), 1331. 

6. R. Percival, D. Szebesta, C. P. Seltzer, S. D. Perrin, S. T. Davey and M. Louka, IEEE 

Journal of Quantum Electronics, 31, (1995), 489. 

7. T. Sakamoto, M. Shimizu, M. Yamada, T. Kanamori, Y. Ohishi, Y. Terunuma and 

Soichi Sudo, IEEE Photonics Technology Letters, 8, (1996), 349. 

8. M. A. Arbore, Y. Zhou, H. Thiele, J. Bromage and L. Nelson, Proc. Optical Fiber 

Communication Conference, (OFC 2003), (2003), WK 2.  

9. M. A. Arbore, Proc. Optical Fiber Communication Conference, (OFC 2005), 

Anaheim, USA, paper OFB 4, (2005). 

10. D. Marcuse, Applied Optics, 21, (1982), 4208. 

11. B. Pedersen, Optical and Quantum Electronics, 26, (1994), S273-S284. 

12. K. Thyagarajan, S. Diggavi, A. Taneja and A. K. Ghatak, Applied Optics, 30, (1991), 

3877. 



 13 

13. 

3H6
 

3F4
 

3H5
 

3H4
 

3F2,3
 

1G4
 

0.79 

1.21 
1.63 

2.3 
1.47 

1.9 0.8 

0.48 

τ  ~ 9 ms 

τ  ~ 1.35 ms 

3H6
 

3F4
 

3H5
 

3H4
 

3F2,3
 

1G4
 

0.79 

1.21 
1.63 

2.3 
1.47 

1.9 0.8 

0.48 

τ  ~ 9 ms 

τ  ~ 1.35 ms 

Fig. 1. Energy level diagram of Tm3+ ions in fluoride host; the numbers correspond to 
peak wavelength of transition, in microns. τ is the fluorescence lifetime of the level 
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Fig. 2. Refractive index profile of a straight W-fiber (solid curve) and 
equivalent refractive index profile of a bent W-fiber (dashed curve) 
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Fig. 3. Spectral variation of leakage loss in a W-fiber, in the presence and 
absence of bend. Bend radius: 8 cm 
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Fig. 4. Spectral variation of gain and noise figure in an L+ band TDFA designed  
in an optimized, bent W-fiber. Pp=160 mW, L=32 m, Psin=-10 dBm 
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Fig. 5. Comparison of L-TDFA gain in the designed W-fiber in the presence and 
absence of bend loss; corresponding gain variation in a step index fiber is also shown 
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Fig. 6. Variation of population inversion along the length of fiber for the designed W-
fiber, in the presence and absence of bend; corresponding variation in a step index 

fiber is also shown 
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Fig. 7. Spectral variation of forward ASE power for the designed W-fiber, in the presence 
and absence of bend; corresponding variation in a step index fiber is also shown 
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Fig. 8. Spectral variation of gain for different values of bend radius; DRb corresponds to 
the deviation of bend radius from its optimized value of 8 cm and R is the gain ripple 
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Fig. 9. Spectral variation of gain for different values of n1; Dn1 corresponds to the 
deviation in n1 from its optimized value and R is the gain ripple 
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Fig. 10. Spectral variation of gain for different values of b; Db (µm) corresponds to the 
deviation in b from its optimized value and R is the gain ripple 
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