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Random Young diagrams in a Rectangular Box

Dan Beltoft∗, Cédric Boutillier†, Nathanaël Enriquez†,‡
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Abstract

We exhibit the limit shape of random Young diagrams having a distribution
proportional to the exponential of their area, and confined in a rectangular box.
The Ornstein-Uhlenbeck bridge arises from the fluctuations around the limit shape.
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Introduction

A partition of an integer n is a finite non-increasing sequence of integers

π = (π1, π2, . . . , πk),

with π1 + · · ·+ πk = n. A convenient graphical representation in (Z+)2 of the partition
π is its Young diagram, also denoted by π. The Young diagram consists of a stack of πi
unit squares on the i-th column. See Figure 1. The area |π| of the Young diagram π is
the total number of squares, which is equal to n.

If the number of summands k is less than some integer a and all the summands πj
are less than b, then the Young diagram stays in the box [0, a]× [0, b].

In this paper we study the limit shape and fluctuations of large random Young
diagrams assigned to stay inside a (large) rectangular box, when the probability measure
is proportional to q|π|, and q is a suitable parameter. It is easy to see that if one doesn’t
want the system to degenerate in the limit, one has to make q depend on the size of the
box. Namely 1− q has to be taken of the order of the inverse of the side of the box.

The study of the combinatorics of partitions of integers goes back to Hardy and
Ramanujan and then Erdős in the 40’s. The statistical physics point of view was intro-
duced by Vershik [9] in his study of the typical shape of the partition of a large integer
and obtained what we will call Vershik’s curve. Recently, Funaki and Sasada obtained
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Figure 1: The Young diagram for the partition π = (8, 7, 7, 5, 4, 3, 3, 2, 2, 1) of n = 42.

Vershik’s result, in [6], as a by-product of an hydrodynamic result for the corresponding
particle system model.

Our study lies at the intersection of classical topics of probability theory, combina-
torics, and statistical physics.

Along the paper, we make an extensive use of the classical Gauss polynomials, well-
known in combinatorics as the generating functions for the number of Young diagrams
with given area (see e.g. [1]). In order to get to the asymptotic regime, we are led to
state a q-analogue for Stirling’s formula.

For all values of the parameters of the problem (limiting aspect ratio of the box, and
c = limn(1 − q)), the limit shape obtained turns out to be a restriction of Vershik’s
curve as it was recently noticed by Petrov in [7].

The main part of the paper deals with the fluctuations around this limit shape
and requires a fine understanding of the boundary of the random diagram. From a
probabilistic point of view, the boundary is nothing but the q-analogue of the bridge of
the simple random walk. In the classical case (c = 0), the properly rescaled interface
converges to the Brownian bridge. In the general case, the limiting process is an Ornstein-
Uhlenbeck bridge. This sheds a new light on this process. Let us mention that, in the
framework of unlimited partitions, and under some specifications on the summands, the
limiting finite-dimensional marginals of the fluctuations has been computed by Vershik,
and Yakubovich [8, 10]. However, in contrast with the limit shape problem, the problem
of the fluctuations can’t be deduced from the unlimited case.

The paper is organized as follows. After a presentation of the combinatorics of the
problem (Section 2), we perform its asymptotic analysis through a q-version of Stirling’s
formula (Section 3). Section 4 is devoted to the derivation of the limit shape phe-
nomenon. In Section 5, we study the fluctuations around the limit shape: we first com-
pute the limiting 2-correlation function and deduce the convergence of finite-dimensional
marginals. This section ends with the delicate proof of the tightness of the fluctuations.
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1 Presentation of the model

We study the asymptotic distribution of random Young diagrams fitting in a large rect-
angular box with dimensions a×b. Given a real number q > 0, we assign to each diagram
π the probability

P
q
a,b(π) =

q|π|

Za,b(q)
,

where |π| is the number of boxes of π and Za,b(q) is the partition function, the sum of
all q|π|. For the sake of clarity, the probability measure P

q
a,b will be simply denoted, by

P.
We fix a parameter ρ ∈ (0, 1), and choose the dimensions of the box for each n to be

an × bn, where (an) and (bn) are sequences of positive integers satisfying:

an + bn = 2n, lim
n→∞

an
bn

=
ρ

1− ρ
.

We are interested in the limiting behavior when n goes to ∞. To obtain a non-degenerate
limit, q must go to 1 as n goes to infinity. We fix a real parameter c and pose q = e−

c
n .

Note that c = 0 corresponds to a uniform probability measure. We will assume
that c 6= 0. The results for c = 0 can be obtained by taking limits. The physical
meaning of the parameter c is that of a pressure, since it is the variable conjugated to
the (two-dimensional) volume.

2 Combinatorics of the partitions

Let us start with a fixed box with dimensions a × b. The partition function Za,b(q) is
expressed in terms of Gaussian polynomials or q-binomial coefficients, where integers j

are replaced by their q-analogues (j)q =
1−qj

1−q .

Definition 1. Let q > 0,

n!q =

n
∏

j=1

(j)q =

n
∏

j=1

1− qj

1− q

(

n

m

)

q

=
n!q

(n−m)!qm!q
=

m−1
∏

j=0

1− qn−j

1− qm−j
.

Lemma 1. For all (a, b) ∈ (N∗)2, and all q > 0, the partition function Za,b(q) is equal
to

Za,b(q) =

(

a+ b

a

)

q

=

(

a+ b

b

)

q

.

Proof.
(

a+b
a

)

q
and Za,b(q) both follow the recursion relation

Za,b(q) = Za,b−1(q) + qbZa−1,b(q),
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where the first term corresponds to those diagrams with all parts strictly smaller than
b, and the second term to the diagrams with at least one part of size b.

We use the following coordinates. The bounding rectangle is the rectangle in the
plane with corners at the points (0, 0) and (a+ b, b − a) and sides with slopes ±1. The
boundary of a diagram is encoded as a lattice path

(

Xk

)

0≤k≤n
from the origin to the

point (a+ b, b− a) and such that Xk+1 = Xk ± 1 for all k.

2n

−an

bn

2k
X2k

Figure 2: A partition as a lattice path.

Computing the probability P (Xk = ℓ) is straightforward. A lattice path passing
through (k, ℓ) is composed of a path from (0, 0) to (k, ℓ) and a path from (k, ℓ) to
(a+ b, b− a). Since Xk has the same parity as k, the exact formulas also depend on this
parity.

Proposition 1. The 1-dimensional marginal of X under P is given by

P
q
a,b(X2k = 2i) =

q(k+i)(a−k+i)

Za,b(q)
Zk−i,k+i(q)Za−k+i,b−k−i(q) (1)

and

P
q
a,b(X2k+1 = 2i+ 1) =

q(k+i+1)(a−k+i)

Za,b(q)
Zk−i,k+i+1(q)Za−k+i,b−k−i−1(q) (2)

We focus our attention to the behaviour of the process at even times, which is
sufficient to study its scaling limit, since the process has bounded steps (+1/−1).

We now mention a unimodality result for the distribution above which turns out to
be useful later.
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k − i

an

k + i

bn

an − k + i

bn − k − i

2k

2i

Figure 3: Illustration of Equation (1).

Lemma 2. The function ℓ 7→ P
q
a,b(X2k = 2ℓ) is unimodal: there exists an integer

L♯(k) = L♯
a,b,q(k) such that

P
q
a,b(X2k = 2(ℓ+ 1))

P
q
a,b(X2k = 2ℓ)

≤ 1 ⇐⇒ ℓ ≥ L♯(k). (3)

Proof. Writing the ratio

P
q
a,b(X2k = 2(ℓ+ 1))

P
q
a,b(X2k = 2ℓ)

=
Zk−ℓ−1,k+ℓ+1(q)Za−k+ℓ+1,b−k−ℓ−1(q)

Zk−ℓ,k+ℓ(q)Za−k+ℓ,b−k−ℓ(q)
q(a−k+ℓ+1)(k+ℓ+1)−(a−k+ℓ)(k+ℓ)

=
(1− qk−ℓ)(1− qb−k−ℓ)

(1− qk+ℓ+1)(1− qa−k+ℓ+1)
qa+2ℓ+1

This ratio is smaller than 1 if and only if

(1− qk−ℓ)(1− qb−k−ℓ)qa+2ℓ+1 ≤ (1− qk+ℓ+1)(1− qa−k+ℓ+1)

⇐⇒ (qa+b+1 − 1) ≤ qa+1(q − 1)q2ℓ +
(

qk+1(qa − 1) + qa−k+1(qb − 1)
)

qℓ

Both terms on the right hand side are increasing continuous functions of ℓ, proving the
existence of an integer L♯(k) with the asserted property.
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Proposition 2. The 2-dimensional marginal of (X2k)0≤k≤n is given by

P
q
a,b(X2k = 2i,X2l = 2j) =

Zk+i,k−i(q)Zj+l−i−k,l+i−k−j(q)Za−l+j,b−l−j(q)

Za,b(q)
q(a−(k−i))(k+i)+(l+j−k−i)(a−l+j).

Now we have exact expressions for probabilistic quantities, we let the dimensions
of the box depend on n and investigate the limiting behaviour of the random Young
diagram under Pq

an,bn
in the regime

an + bn = 2n → +∞,
an
2n

→ ρ ∈ (0, 1), −n log q → c ∈ R.

3 Asymptotics of q-factorials

In order to study the limit of the process as the size of the box goes to infinity, we first
need the asymptotic behavior of the q-factorial.

Proposition 3 (q-Stirling’s Formula). Let c ∈ R
∗
+ and fix ε > 0 In the limit when n

goes to infinity, with q = e−
c
n , the following asymptotics hold for all ℓ > εn

ℓ!q =
√
2πn

√

e
cℓ
n − 1

c
nℓ exp(nSc(

ℓ
n))
(

1 +O(1ℓ )
)

,

where

Sc(α) =

∫ α

0
log

(

1− e−cx

c

)

dx = αSαc(1).

In particular, there exist positive constants m and M such that for all n, and all ℓ
between 1 and n,

m
√
2πn

√

e
cℓ
n − 1

c
nℓ exp(nSc(

ℓ
n)) < ℓ!q < M

√
2πn

√

e
cℓ
n − 1

c
nℓ exp(nSc(

ℓ
n)).

Proof. Consider log ℓ!q =
∑ℓ

k=1 log

(

1−e−
ck
n

c

)

− ℓ log
(

1−e−
c
n

c

)

. By the Euler-Maclaurin

formula, we have

log ℓ!q =

∫ ℓ

1
log

(

1− e−
c
n
t

c

)

dt+ 1
2

(

log

(

1− e−
cℓ
n

c

)

+ log

(

1− e−
c
n

c

))

+

∫ ℓ

1
B1(t)

c
ne

− c
n
t

1− e−
c
n
t
dt− ℓ log

(

1− e−
c
n

c

) (4)
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where B1(t) = t− ⌊t⌋ − 1
2 is the first periodic Bernoulli polynomial. The first term is

∫ ℓ

1
log

(

1− e−
c
n
t

c

)

dt = nSc(
ℓ
n)−

∫ 1

0
log

(

1− e−
c
n
t

c

)

dt

= nSc(
ℓ
n) + 1 + log n+O( 1n).

(5)

Next, the terms involving log
(

1−e−
c
n

c

)

:

−(ℓ− 1
2) log

(

1− e−
c
n

c

)

= (ℓ− 1
2) log n+ cℓ

2n +O( 1n). (6)

For the second integral in (4), we add and subtract 1
t to get

∫ ℓ

1
B1(t)

c
ne

− c
n
t

1− e−
c
n
t
dt =

∫ ℓ

1
B1(t)

1
t dt+ c

∫ ℓ
n

1
n

B1(nt)

(

e−ct

1− e−ct
− 1

ct

)

dt (7)

The function f(t) = e−t

1−e−t − 1
t is continuous on [0, 1] and its derivative is bounded,

say |f ′(t)| ≤ M for all t. On the interval [k−1
n , k

n ], the function B1(nt) is given by

B1(nt) = nt− k + 1
2 and has the antiderivative B̃n,k(t) =

n
2 t

2 − (k − 1
2)t +

k(k−1)
2n with

B̃n,k(
k−1
n ) = B̃n,k(

k
n) = 0. By partial integration we get

c

∣

∣

∣

∣

∣

∫ ℓ
n

1
n

B1(nt)f(ct) dt

∣

∣

∣

∣

∣

≤ c2M

ℓ−1
∑

k=1

∫ k+1
n

k
n

|B̃n,k(t)| dt =
Mc2ℓ

12n2

proving that this term is O( 1n) as n → ∞. The first term of (7) is found to be

∫ ℓ

1
B1(t)

1
t dt = ℓ− 1− (ℓ+ 1

2) log ℓ+ log ℓ!

= −1 + 1
2 log 2π +O(1ℓ )

(8)

by the classical Stirling approximation ℓ! =
√
2πℓ

(

ℓ
e

)ℓ (
1 +O(1ℓ )

)

. Combining (5), (6)

and (8) and the term 1
2 log

(

1−e−
cℓ
n

c

)

from (4), we have

log ℓ!q = nSc(
ℓ
n) + (ℓ+ 1

2) log n− (ℓ+ 1
2 ) log c+

1
2 log

(

1− e−
cℓ
n

c

)

+ cℓ
2n + 1

2 log 2π +O(1ℓ )

proving the proposition.

We turn now to the the asymptotics of the 1- and 2-dimensional marginals of X
under P given by Propositions 1 and 2. For this purpose, define

fc(x, y) = Sc(x+ y)− Sc(x)− Sc(y) and hc(x, y) =

√

c(ec(x+y) − 1)

(ecx − 1)(ecy − 1)
.
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If x = ℓ
n and y = k

n , the asymptotics of the q-binomial coefficient is given by

Z
(q)
l,k =

(

ℓ+ k

ℓ

)

q

=

√

1

2πn
hc(x, y) exp(nfc(x, y))

(

1 +O( 1n)
)

.

As a consequence,

Corollary 1. For all ε > 0, for all k between εn and (1−ε)n, with s = k/n and x = i/n,
we have

P(X2k = 2i) =

√

1

2πn
H(1)

ρ,c (s, x) exp(nF
(1)
an
2n

,c
(s, x))

(

1 +O( 1n)
)

,

and there exists a constant M > 0 such that for all n, i and k,

P(X2k = 2i) ≤ M

√

1

2πn
H(1)

ρ,c (s, x) exp(nF
(1)
ρ,c (s, x)),

where

F (1)
ρ,c (s, x) = −c(2ρ− s+ x)(s+ x) + fc(s− x, s+ x) + fc(2ρ− s+ x, 2− 2ρ− s− x)− fc(2ρ, 2 − 2ρ),

H(1)
ρ,c (s, x) =

hc(s+ x, s − x)hc(2ρ− s+ x, 2− 2ρ− s− x)

hc(2ρ, 2 − 2ρ)
.

In the first equality, when replacing an
2n by ρ in the indices of H(1), we make an error

of order O( 1n), which is absorbed in the factor (1+O( 1n)). Making the same substitution

in the indices of F (1) would change the multiplicative constant in the asymptotics.

Corollary 2. For all ε > 0, for all k < l between εn and (1 − ε)n then, with s = k/n,
t = l/n and x = i/n, y = j/n

P(X2k = 2i,X2l = 2j) =
1

2πn
H(2)

ρ,c (s, t, x, y) exp(nF
(2)
an
2n

,c
(s, t, x, y))(1 +O( 1n)),

where

F (2)
ρ,c (s, t, x, y) = −c

(

(2ρ− s+ x)(s + x) + (t− s+ y − x)(2ρ− t+ y)
)

+ fc(s− x, s+ x) + fc(t− s+ y − x, t− s− y + x)

+ fc(2ρ− t+ y, 2− 2ρ− t− y)− fc(2ρ, 2 − 2ρ),

H(2)
ρ,c (s, t, x, y) =

hc(s+ x, s− x)hc(t− s+ y − x, t− s− y + x)hc(2ρ− t+ y, 2− 2ρ− t− y)

hc(2ρ, 2 − 2ρ)
.

We give now a slight refinement of Corollary 2 that will be useful in the fluctuations.

Corollary 3. For all ε > 0, for all k < l between εn and (1 − ε)n then, with s = k/n,
t = l/n and x = i/n, y = j/n, for all s′ = s + o(1), t′ = t + o(1), x′ = x + o(1),
y′ = y + o(1):

Pn(X2k = 2i,X2l = 2j) =
1

2πn
H(2)

ρ,c (s
′, t′, x′, y′) exp(nF (2)

an
2n

,c
(s, t, x, y))(1 + o(1)).
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4 Limit Shape

We associate to the lattice path (Xk) the continuous piecewise linear function, X : s 7→
Xs defined on [0, 2n], which coincides with Xk when s = k. The graph of the function
X is the boundary of the random Young diagram we consider.

Let Lρ,c be the function on [0, 1] defined by

∀t ∈ [0, 1], Lρ,c(t) = 1− 2ρ+
1

c
log

sinh(ct) + ec(2ρ−1) sinh(c(1− t))

sinh c

= 1
c log

e−ct − ect + e−c(2−2ρ−t) − e−c(t−2ρ)

e−c(2−2ρ) − e2cρ
. (9)

This is the limit shape of the rescaled random process, in the sense made precise
in Theorem 1 below. First we need to estimate the proximity between the value of the
function Lρ,c and the most probable value for X2k denoted by L♯

n(k) = Lan,bn,e−c/n(k)
in Lemma 2.

Lemma 3. For all n and all 0 ≤ k ≤ n,
∣

∣

∣

1
nL

♯
n(k) − Lρ,c(

k
n)
∣

∣

∣
≤ 1

n +
∣

∣

an
2n − ρ

∣

∣, where

q = e−
c
n .

Consequently, in the limit when n goes to infinity, and an/2n goes to ρ,
∣

∣

∣

1
nL

♯
n(k)− Lρ,c(

k
n )
∣

∣

∣
→ 0. (10)

Proof. The ratio of probabilities (3) used to define L♯(k) = L♯
n(k) can be rewritten in

terms of the function

(ρ, c, t, x) 7→ Rρ,c(t, x) = e−c sinh(
c
2 (t− x)) sinh( c2(2− 2ρ− t− x))

sinh( c2 (t+ x)) sinh( c2 (2ρ− t+ x))
,

namely as Ran
2n

,c(
k
n ,

ℓ
n). The function x 7→ Rρ,c(t, x) is decreasing, and by definition

L♯
n(k) is the smallest integer ℓ such that Ran

2n ,c
( kn ,

ℓ
n) ≤ 1.

On the other hand, a computation shows that for each t ∈ [0, 1], the equation

Rρ,c(t, x) = 1

has the (unique) solution x = Lρ,c(t). Substituting
an
2n for ρ, we conclude that

∣

∣

∣

1
nL

♯
n(k)− Lan

2n ,c(
k
n )
∣

∣

∣
≤ 1

n (11)

for all n and all k ≤ n.
Differentiating Lρ,c with respect to ρ, we find that

∣

∣

∣

∣

∂Lρ,c

∂ρ
(t)

∣

∣

∣

∣

≤ 1

for all t, and so by the mean value theorem,
∣

∣

∣
Lan

2n ,c
( kn)− Lρ,c(

k
n)
∣

∣

∣
≤
∣

∣

∣

an
2n

− ρ
∣

∣

∣
(12)

for all k ≤ n. From (11), (12) and the triangle inequality, we get the expected result.
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Remark 1. It turns out that logRρ,c(t, x) coincides with the derivative of F
(1)
ρ,c (s, x) with

respect to x. As a consequence, Lρ,c(s) can also be viewed as the argmax of F
(1)
ρ,c (s, ·),

which is nonpositive and vanishes at Lρ,c(s). See Corollary 5.

Theorem 1. The boundary of the rescaled random Young diagram converges in proba-
bility, for the uniform topology, to the curve of t 7→ Lρ,c(t).

∀ε > 0, lim
n→0

P
e−c/n

an,bn

(

sup
t∈[0,1]

∣

∣

1
2nX2tn − Lρ,c(t)

∣

∣ > ε

)

= 0,

where

Lρ,c(t) =
1
c log

e−ct − ect + e−c(2−2ρ−t) − e−c(t−2ρ)

e−c(2−2ρ) − e2cρ
.

Remark that in the case of a square box (ρ = 1/2), the expression for Lρ,c boils down
to:

L 1
2
,c(t) =

1

c
log

cosh(c(t− 1
2))

cosh c
2

Proof. Fix ε > 0. For t < ε
2 or t > 1 − ε

2 , the difference
∣

∣

1
2nX2tn − Lρ, c(t)

∣

∣ is always
smaller than ε. We have to control what happens for t ∈ ( ε2 , 1− ε

2). Using the fact that
Lρ,c is differentiable, and its derivative with respect to t is bounded by 1, we have that

∣

∣Lρ,c

(

1
n⌊tn⌋

)

− Lρ,c(t)
∣

∣ ≤ 1

n
,

which is smaller than ε
3 for n sufficiently large. The same is true of

∣

∣

1
2nX2tn − 1

2nX2⌊tn⌋
∣

∣.
Thus, by an ε

3 -argument, to control the sup over ( ε2 , 1 − ε
2), it is sufficient to control

what happens at points of the form t = k
n :

P

(

sup
t∈( ε

2
,1− ε

2
)

∣

∣

1
2nX2tn − Lρ,c(t)

∣

∣ > ε

)

≤
∑

k∈N∩n( ε
2
,1− ε

2
)

P
(

X2k > 2n(Lρ,c(
k
n) + ε) or X2k < 2n(Lρ,c(

k
n)− ε)

)

(13)

But it follows from (10), that for n sufficiently large, 2n
(

L( kn) + ε
)

≥ 2L♯
n(k) for all

k ∈ N ∩ n( ε2 , 1− ε
2), and thus using the unimodality of the law of X2k

P
(

X2k > 2n(Lρ,c(
k
n) + ε)

)

=
∑

l>n(Lρ,c(
k
n
)+ε)

P(X2k = 2l)

≤ n× P
(

X2k = 2
⌊

n(Lρ,c(
k
n) + ε)

⌋)

.

which by Corollary 1 is exponentially small, uniformly in k, as n goes to infinity. Thus
for n sufficiently large, the sum on the RHS of (13) can be made smaller than any
positive number.
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Remark 2. From the proof and Lemma 3, we see that the convergence statement in
the theorem holds uniformly for a family of sequences (an) and (bn), so long as the
convergence an

2n → ρ is uniform for the family.

5 Fluctuations

We now study the fluctuations of the interface around the limit shape. We define for
n ∈ N

∗ a new rescaled process:

∀t ∈ [0, 1] , X̃t = X̃
(n)
t =

√
n

(

1

2n
X2nt − Lρ,c(t)

)

. (14)

We place ourselves in the space D of càd-làg paths on [0, 1] endowed with its usual
topology. We state now our second main result for the convergence of the fluctuations
of the interface to the Ornstein Uhlenbeck bridge. See the appendix for the definition
and some properties of this process.

Define

f(s) =
1√
2

√

(e2cρ − 1)(1 − e−2c(1−ρ))

sinh cs + ec(2ρ−1) sinh(c(1 − s))
=

√

2 sinh(cρ) sinh(c(1− ρ))

ec(
1
2
−ρ) sinh(cs) + ec(ρ−

1
2
) sinh(c(1 − s))

.

Theorem 2. The sequence (X̃
(n)
s /f(s))n, converges weakly in D to the Ornstein-Uhlenbeck

bridge (Ys)s∈[0,1], which the Gaussian process on [0, 1] with covariance

E[YsYt] =
sinh(cs) sinh(c(1− t))

c sinh(c)
,

for 0 ≤ s < t ≤ 1.

5.1 Two-point correlations

To prove convergence of the two-dimensional marginal to a Gaussian process, we apply
a saddle-point method, ie. we need to show that the function F (2), which governs the
exponential decay of 2-dimensional marginals (see Corollary 2), has a critical point ‘on
the limit shape’, and that it takes its maximal value of 0 at this point. We will prove
that this is indeed the case, but first we need a lemma describing the limit shape in a
subrectangle.

Lemma 4. The limit shape L satisfies the relations

1

1− s

(

Lρ,c(t)− Lρ,c(s)
)

= Lρ′,c′
(

t−s
1−s

)

(15)

and
1

t
Lρ,c(s) = Lρ′′,c′′

(

s
t

)

(16)

11



for 0 < s < t < 1, with

ρ′ =
2ρ− s+ Lρ,c(s)

2(1 − s)
, c′ = c(1 − s)

and

ρ′′ =
t− Lρ,c(t)

2t
, c′′ = tc.

Proof. These relations can be checked analytically. We sketch now a less computational
argument for Equation (16). The same strategy applies for Equation (15). Fix t ∈ (0, 1),
and take a sequence of boxes with sidelengths [0, an] × [0, bn] (with an + bn = 2n,
an/2n → ρ). Theorem 1 states that, when n goes to infinity, the probability under

P
e−c/n

an,bn
that Xnt/n converges to Lρ,c(t) goes to 1. As a consequence, the restriction of

the limit shape Lρ,c to the, rescaled by n, lower left subbox [0,
t−Lρ,c(t)

2 ]× [0,
t+Lρ,c(t)

2 ] is

the rescaled limit shape for boxes with ratio
t−Lρ,c(t)

t−Lρ,c(t)+t+Lρ,c(t)
=

t−Lρ,c(t)
2t . The rescaling

factor is the perimeter of the subbox t. The value of the parameter q remains the same.

Since q = e−c/n = e−
c′′
nt , we get c′′ = tc.

This lemma basically describes the limit shape of the process restricted to a subrect-
angle defined by a point (s, Lρ,c(s)) and either the right or left corner of the original
rectangle.

Lemma 5. For all 0 < s < t < 1, the functions F (1) and F (2) satisfy the relations

F (2)
ρ,c (s, t, x, y) = F (1)

ρ,c (s, x) + (1− s)F
(1)
ρ′,c′(t

′, y′) (17)

and

F (2)
ρ,c (s, t, x, y) = F (1)

ρ,c (t, y) + tF
(1)
ρ′′,c′′(s

′′, x′′) (18)

with

ρ′ =
2ρ− s+ x

2(1 − s)
, t′ =

t− s

1− s
, y′ =

y − x

1− s
, c′ = c(1− s)

and

ρ′′ =
t− y

2t
, s′′ =

s

t
, x′′ =

x

t
, c′′ = tc.

Proof. The relation (17) follows from the identity

P(X2k = 2i,X2ℓ = 2j) = P(X2k = 2i)P(X2ℓ = 2j|X2k = 2i).

allied to scaling arguments similar to those used in the proof of the previous lemma.
Equation (18) follows from the conditioning on X2l instead of X2k.

Lemma 6. The partial derivatives of F (1) with respect to ρ, s and x all vanish at
x = Lρ,c(s).

12



Corollary 4. The partial derivatives of F (2) with respect to ρ, s, t, x and y all vanish
at x = Lρ,c(s) and y = Lρ,c(t).

Proof. For the partial derivatives with respect to ρ, use (18). For ∂F (2)

∂s and ∂F (2)

∂x , use

(18) together with (16). Similarly, for ∂F (2)

∂t and ∂F (2)

∂y , use (17) together with (15).

Corollary 5. F
(1)
ρ,c (s, Lρ,c(s)) = 0 and F

(2)
ρ,c (s, t, Lρ,c(s), Lρ,c(t)) = 0.

Proof. By the chain rule and Lemma 6 we get

d

ds
(F (1)

ρ,c (s, Lρ,c(s))) = 0.

Taking the limit s → 0 yields zero, proving the claim. For the second identity, use the
first one together with (18) and (16).

Proposition 4. Assume an
2n = ρ + o

(

1√
n

)

. Let s < t in [0, 1]. The joint law of

(X̃
(n)
s , X̃

(n)
t ) converges to the law of the centered 2-dimensional Gaussian vector

(X̃s, X̃t) = (f(s)Ys, f(t)Yt),

where

f(s) =
ecs
√

2(e2cρ − 1)(1− e−c(2−2ρ))

−1 + e2cs − e−c(2−2ρ−2s) + e2cρ
=

1√
2

√

(e2cρ − 1)(1 − e−2c(1−ρ))

sinh cs+ ec(2ρ−1) sinh(c(1 − s))
,

and (Yt)t∈[0,1] is an Ornstein-Uhlenbeck bridge on the interval [0, 1] with parameter c (see
Appendix).

Remark 3. In the case of a square (ρ = 1
2 ), the expression of f simplifies drastically to

f(x) =
1√

2 cosh
(

c
(

s− 1
2

)) .

Proof. Let a1, b1, a2, b2 be four real numbers such that a1 < b1 and a2 < b2. In the

following, we write L for Lρ,c. Clearly, X̃
(n)
s ∈ [a1, b1] if and only if X2ns is in the

interval
2nL(s) +

[

2a1
√
n, 2b1

√
n
]

.

Since
∣

∣X2ns −X2⌊ns⌋
∣

∣ ≤ 2 and
∣

∣X2nt −X2⌊nt⌋
∣

∣ ≤ 2, we just need to compute the limit of

P
((

X2⌊ns⌋,X2⌊nt⌋
)

∈ A1 ×A2

)

.

as n goes to infinity.
Set kn = ⌊ns⌋ and ℓn = ⌊nt⌋. One has:

P
((

X2⌊ns⌋,X2⌊nt⌋
)

∈ A1 ×A2

)

=
∑

(i,j)∈ 1
2
A1× 1

2
A2

P (X2kn = 2i,X2ℓn = 2j)

=
∑

(i,j)∈ 1
2
A1× 1

2
A2

1

2πn
H(2)

ρ,c (s, t, L(s), L(t)) exp
(

nF
(2)
an
2n

,c

(

kn
n , ℓnn , i

n ,
j
n

))

(

1 + o(1)
)

.
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Here, F (2) ≤ 0 everywhere and the number of terms is O(n), so the error terms o(1)
can be replaced with an o(1) term outside the sum. Thus, we are left with a Riemann
sum for the double integral

1

2πn
H(2)

ρ,c (s, t, L(s), L(t))

∫ nL(s)+b
√
n

nL(s)+a
√
n

∫ nL(t)+d
√
n

nL(t)+c
√
n

exp
[

nF
(2)
an
2n

,c

(

kn
n , ℓnn , un ,

v
n

)

]

dv du (19)

in which we make the substitution

u = x
√
n+ nL(s), v = y

√
n+ nL(t)

to get

1

2π
H(2)

ρ,c (s, t, L(s), L(t))

∫ b

a

∫ d

c
exp

[

nF
(2)
an
2n

,c

(

kn
n , ℓnn , x√

n
+ L(s), y√

n
+ L(t)

)]

dy dx

We make a second degree Taylor expansion of the function F
(2)
an
2n

,c

(

kn
n , ℓnn , ·, ·

)

at the point

(L(s), L(t)). Let zn be the point (knn , ℓnn , L(s), L(t)) in R
4.

nF
(2)
an
2n

,c

(

kn
n , ℓnn , x√

n
+ L(s), y√

n
+ L(t)

)

= nF
(2)
an
2n

,c
(zn) +

∂F
(2)
an
2n

,c

∂x
(zn)x

√
n+

∂F
(2)
an
2n

,c

∂y
(zn)y

√
n

+
1

2

∂2F
(2)
an
2n

,c

∂x2
(zn)x

2 +
1

2

∂2F
(2)
an
2n

,c

∂y2
(zn)y

2 +
∂2F

(2)
an
2n

,c

∂x∂y
(zn)xy +O

(

n− 1
2
)

(20)

We must find the limit of this expression as n → ∞. The first term on the right
has limit zero, which can be seen by Taylor expansion around (s, t, L(s), L(t)), using
Corollaries 4 and 5.

Since F (2) is an analytic function, we have in general

F
(2)

ρ+o
(

n−1
2

)

,c

(

s+ o
(

n− 1
2

)

, t+ o
(

n− 1
2

)

, x, y
)

= F (2)
ρ,c (s, t, x, y) + o

(

n− 1
2

)

(21)

and similarly for all partial derivatives of F (2). Since an
2n = ρ+ o

(

n− 1
2

)

, kn
n = s+ o

(

n− 1
2

)

and ℓn
n = t + o

(

n− 1
2

)

, this shows that the second and third terms on the right in (20)
tend to zero as n → ∞. Thus, if z = (s, t, L(s), L(t)),

nF
(2)
an
2n

,c

(

kn
n , ℓnn , x√

n
+ L(s), y√

n
+ L(t)

)

→ 1

2

∂2F
(2)
ρ,c

∂x2
(z)x2+

1

2

∂2F
(2)
ρ,c

∂y2
(z)y2+

∂2F
(2)
ρ,c

∂x∂y
(z)xy

(22)

as n → ∞. From (21) it also follows that the sequence F
(2)
an
2n

,c
(knn , ℓnn , ·, ·) is equicontinuous,

hence by Ascoli’s theorem that the sequence converges uniformly, hence that the double
integral (19) converges to

1

2π
H(2)

ρ,c (s, t, L(s), L(t))

∫ b

a

∫ d

c
exp

[

1

2

∂2F
(2)
ρ,c

∂x2
(z)x2 +

1

2

∂2F
(2)
ρ,c

∂y2
(z)y2 +

∂2F
(2)
ρ,c

∂x∂y
(z)xy

]

dy dx
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To find these double derivatives, we use (17) and (18). Hence we need

∂2F
(1)
ρ,c

∂x2
(s, L(s)) = c(1− e−2c)e2cs

(1− e−c(2−2ρ) − e−2cs + e−c(2s−2ρ))2

(1− e2cρ)(1− e−2cs)(1− e−c(2−2ρ))(1− e−c(2−2s))

and exploit the fact that

∂2F
(2)
ρ,c

∂x2
(s, t, L(s), L(t)) =

1

t

∂2F
(1)
ρ′′,c′′

∂x2
(s′′, Lρ′′,c′′(s

′′))

∂2F
(2)
ρ,c

∂y2
(s, t, L(s), L(t)) =

1

1− s

∂2F
(1)
ρ′,c′

∂x2
(t′, Lρ′,c′(t

′))

This way, we find the double derivatives of F
(2)
ρ,c (s, t, ·, ·), evaluated at the critical point

(x, y) = (L(s), L(t)), to be

∂2F
(2)
ρ,c

∂x2
(s, t, L(s), L(t)) =

c(1 − e2ct)(1− e2cs + e−c(2−2ρ−2s) − e2cρ)2

(1− e2cs)(e2ct − e2cs)(1− e2cρ)(1− e−c(2−2ρ))

=
−c sinh ct

sinh cs sinh c(t− s)f(s)2
,

∂2F
(2)
ρ,c

∂y2
(s, t, L(s), L(t)) =

c(e2cs − ec)(1 − e2ct + e−c(2−2ρ−2t) − e2cρ)2

(e2cs − e2ct)(ec − e2ct)(1 − e2cρ)(1− e−c(2−2ρ))

=
−c sinh c(1 − s)

sinh c(1− t) sinh c(t− s)f(t)2

∂2F
(2)
ρ,c

∂x∂y
(s, t, L(s), L(t)) =

c(1 − e2cs + e−c(2−2ρ−2s) − e2cρ)(1 − e2ct + e−c(2−2ρ−2t) − e2cρ)

(e2cs − e2ct)(1 − e2cρ)(1− e−c(2−2ρ))

=
c

sinh c(t− s)f(s)f(t)

The last one, the mixed derivative, was calculated from scratch, i.e. by calculating

∂2F
(2)
ρ,c

∂x∂y
(s, t, x, y) =

c(e2ct − e2cs)

(ec(t+y) − ec(s+x))(ec(t−y) − ec(s−x))

and evaluating at the critical point (x, y) = (L(s), L(t)). Thus, the Hessian of F
(2)
ρ,c (s, t, ·, ·)

at the critical point is

H(F (2)
ρ,c ) =

−c

sinh cs sinh c(1− t) sinh c(t− s)
×

(

1
f(s) 0

0 1
f(t)

)

(

sinh ct sinh c(1− t) − sinh cs sinh c(1 − t)
− sinh cs sinh c(1 − t) sinh cs sinh c(1− s)

)

(

1
f(s) 0

0 1
f(t)

)

.
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The covariance matrix of the limiting Gaussian distribution is the negative of the inverse
of H(F (2)), which we compute to be

Σ =
1

c sinh c

(

f(s) 0
0 f(t)

)

·
(

sinh cs sinh c(1− s) sinh cs sinh c(1− t)
sinh cs sinh c(1− t) sinh ct sinh c(1− t)

)

·
(

f(s) 0
0 f(t)

)

(23)
The matrix in the middle together with the factor 1

c sinh c is the covariance matrix of
the Ornstein-Uhlenbeck bridge on the interval [0, 1] with parameter c (see Appendix).
Further computations reveal that

1
√

det(Σ)
= H(2)

ρ,c (s, t, L(s), L(t))

since both sides equal

c

f(s)f(t)

√

sinh c

sinh cs sinh c(t− s) sinh c(1 − t)
.

This completes the proof.

We explain now that for m points 0 < t1 < t2 < · · · < tm < 1, the limit of the cor-

responding m-dimensional marginal
(

X̃
(n)
t1 , X̃

(n)
t2 , . . . , X̃

(n)
tm

)

is Gaussian, with covariance
matrix Σ = (σi,j) defined by

Σi,j =
1

c sinh c
f(ti)f(tj) sinh cti sinh c(1− tj)

for all i ≤ j.
A first approach would be to repeat similar computations as for the 2-dimensional

case, and observe that the matrix σ is the inverse of the m-dimensional Hessian of

F
(m)
ρ,c (t1, . . . , tm).
Another way takes advantage of the Markov property satisfied by the process (X̃n).

Denote by P
(n)
s,t (x, y) the transition kernel of this Markov chain. The law of the m-tuple

(

X̃
(n)
t1 , X̃

(n)
t2 , . . . , X̃

(n)
tm

)

is given by

P
(n)
0,t1

(0, x1)P
(n)
t1,t2(x1, x2) . . . P

(n)
tm−1,tm(xm−1, xm).

Proposition 4 implies the convergence of each
√
nP

(n)
ti,ti+1

(xn, yn) to the density of
the kernel of the Ornstein-Uhlenbeck bridge as n → ∞, and (xn), (yn) converge. The
convergence in law follows from Lebesgue dominated convergence theorem. Domination
is ensured by Lemma 8 below and unimodality stated in Lemma 2.

5.2 Tightness and proof of Theorem 2

We already proved the convergence of the finite-dimensional distributions. We need to
show that the sequence of the distribution is tight. For this we use Theorem 13.5 p.142
of [3]. The criterion is checked in Lemma 10.

Before entering the proof, we need a geometric definition.
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Definition 2. Let ABCD be a rectangle with sides having slopes ±1 in the (s, x)
coordinates. For ε ∈ (0, 1), the ε-parallelogram of the rectangle ABCD is the unique
parallelogram with diagonal AC and sides with slopes 1 − ε and −1 + ε in the (s, x)
coordinates. The ε-interior of the rectangle is the interior of the ε-parallelogram. The
complement of the ε-interior in the rectangle is called the ε-boundary of the rectangle.
See Figure 5.2. For s0 ∈ (0, 1), the sides of the parallelogram intersect the straight line
s = s0 in two points. We denote the ordinates of these two points by g+ε (s0) and g−ε (s0).

A

B

C

D

s0

g−ε (s0)

g+ε (s0)

Figure 4: The ε-parallelogram of a rectangle.

We first state the following useful fact.

Fact 1. For all δ ∈ (0, 1), for all A > 0, there exists ε, such that for all rectangular
boxes of side lengths a, b satisfying ρ = a

a+b ∈ (δ, 1 − δ), and all c ∈ [−A,A], the limit
shape Lρ,c is entirely included in the ε-interior of the box.

The following lemma controls the function F
(1)
ρ,c in an ε-boundary of a rectangular

box with side lengths ρ and 1− ρ.

Lemma 7. Let δ ∈ (0, 1) and A > 0. Take ε as in Fact 1. Then there exists a positive
constant C such that for all ρ ∈ [δ, 1 − δ], and all c ∈ [−A,A],

∀(s, x) ∈ Bε
ρ, F (1)

ρ,c (s, x) ≤ −Cs(1− s),

where Bρ is the (macroscopic) box with perimeter 1 and aspect ratio ρ.

Proof. For a fixed s, the function x 7→ F
(1)
ρ,c (s, x) is concave, and its maximum is reached

at x = Lρ,c(s), and the point (s, Lρ,c(s)) is inside the ε-interior of the box. Therefore

F
(1)
ρ,c (s, x) ≤ max{F (1)

ρ,c (s, g+ε (s)), F
(1)
ρ,c (s, g−ε (s))}.

In a neighborhood of 0, g+ε (s) = (1 − ε)s, and s 7→ F
(1)
ρ,c (s, (1 − ε)s) ≍ s because it

is differentiable and vanishes at s = 0 with a non zero derivative. The same argument
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applied to a neighborhood of s = 1, and for g−ε gives the result. The uniform bound on
C results from a compactness argument.

Lemma 8 (L.U.F.). Let δ ∈ (0, 1) and A > 0. Take ε as in Fact 1. For this ε, there
exist two constants M and κ such that if a + b = 2n and a

a+b ∈ (δ, 1 − δ) and for all
c ∈ [−A,A], then

∀ 0 ≤ k ≤ n, P
e−c/n

a,b (X2k = 2
⌊

nLρ,c(
k

n
) + y

√
n
⌋

) ≤ M√
n

exp
(

− y2

2κs(1−s)

)

√

2πκs(1− s)
.

as soon as (2k,
⌊

nLρ,c(
k
n) + y

√
n
⌋

) is in the ε-interior of the box.

Proof. Use Corollary 1. Notice that hc(x, y) ≍
√

x+y
xy uniformly in c. Therefore

Hρ,c(s, x) ≍
√

ρ(1− ρ)

√

s

(s− x)(s+ x)

√

1− s

(2ρ− s+ x)(2− 2ρ− s− x)
.

The first term is bounded. The second term is of order 1√
s
in a neighborhood of (0, 0)

in the ε-interior of the box. A simple change of variable (s, x) 7→ (1 − s, 2ρ − 1 − x)
exchanges the second and the third term, which shows that the third term is of order

1√
1−s

in a neigborhood of (1, 1 − ρ) in the ε-interior of the box. Therefore,

Hρ,c(s, x) ≍
1

√

s(1− s)
,

as long as (s, x) is in the ε-interior of the box.
In order to bound the exponential term in Corollary 1, we bound from below the

absolute value of
∂2F

(1)
ρ,c (s,x)
∂x2 . Using that S′′

c (u) =
c

ecu−1 , we get

∂2F
(1)
ρ,c (s, x)

∂x2
= −2c− c

ec(s+x) − 1
− c

ec(s−x) − 1
− c

ec(2ρ−s+x) − 1
− c

ec(2−2ρ−s−x) − 1
.

For s close to 0, the main contribution comes from the second and the third term, that
are both negative, and of order s−1. For s close to 1, the main contribution comes from
the fourth and the fifth term, that are both negative, and of order (1− s)−1.

Lemma 9. Let δ ∈ (0, 1) and A > 0, and ε ∈ (0, 1) given by Fact 1. Then there exists
a constant C > 0 such that: for all n ≥ 1, for all c ∈ [−A,A], for all sequences of boxes
(Bn) with sides an, bn such that an + bn = 2n, an2n ∈ (δ, 1 − δ),

∀λ > 0,∀s ∈ [0, 1], P(X̃s 6∈ [−λ, λ]; (X2ns, 2ns) ∈ Bε
n) ≤ C

(s(1− s))2

λ4
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Proof. Lemma 8 gives the following bound:

P(X̃s 6∈ [−λ, λ]; (X2ns, 2ns) ∈ Bε
n) ≤

∑

|y|≥λ

M√
n

exp (− y2

2κs(1−s))
√

2πκs(1 − s)
,

where the index of the sum y runs on the set 1√
n
Z−√

nLρ,c(s).

Comparing the sum on the right-hand side and the corresponding integral, we get

P(X̃s 6∈ [−λ, λ]; (X2ns, 2ns) ∈ Bε
n) ≤ M ′

∫

R\(−λ,λ)

exp (− y2

2κs(1−s))
√

2πκs(1 − s)
ds.

This last integral is equal to P(|N | ≥ λ√
κs(1−s)

), whereN is a standard Gaussian variable.

Conclude by using Markov inequality for the fourth moment.

We can now verify Billingsley’s condition for tightness [3].

Lemma 10. Let ((an, bn))n be a sequence such that an + bn = 2n, and an
2n = ρ+ o( 1√

n
).

Then there exists a constant C such that for all n > 0, for all 0 ≤ r ≤ s ≤ t ≤ 1, for all
λ > 0,

P
e−c/n

an,bn (|X̃s − X̃r| ≥ λ; |X̃t − X̃s| ≥ λ) ≤ C(t− r)2

λ4
. (24)

Proof. Inequality (24) is automatically satisfied, as soon as |r − s| or |t− s| is less than
1/n, or λ is greater than

√
n(|r − s| ∧ |t − s|). We suppose now that none of these

conditions are satisfied.
Introduce now the three following ε-interiors: Bε, the ε-interior of the box B :=

[0, an]× [0, bn], B
ε
L the ε-interior of the box BL := [0, ns− 1

2X2sn]× [0, sn+ 1
2X2sn] and

Bε
R the ε-interior of the box BR := [ns− 1

2X2sn, an]× [sn+ 1
2X2sn, bn]. See Fig. 5.

Let us first control the probability that the random interface exits the ε-interior of
the box. We use unimodality of the distribution of X2ns, Corollary 1, and Lemma 7 to
get:

P((2ns,X2ns) 6∈ Bε) ≤ 4εns(1− s)P(X2ns = ngε±(s))

≤ M
ns(1− s)√

n
Hρ,c(s, g

ε
±(s)) exp(−nCs(1− s)).

Using the uniform bound of Hρ,c ≍ 1√
s(1−s)

obtained in the beginning of the proof of

Lemma 8, we get

P((2ns,X2ns) 6∈ Bε) ≤ M
√

ns(1− s) exp(−nC(s(1− s))) ≤ M

(nCs(1− s))2
.

Using our assumption that n ≥ λ2

|s−r|2∧|t−s|2 , we obtain:

P((2ns,X2ns) 6∈ Bε) ≤ M
|r − s|4 ∧ |t− s|4
λ4s2(1− s)2

≤ M
|r − s|2 ∧ |t− s|2

λ4
≤ M

|t− r|2
λ4

. (25)
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Xns

B
η(ε)
L

B
η(ε)
R

Figure 5: The ε-interiors Bε (grey), B
η(ε)
L (blue) and B

η(ε)
R (red).

Remark 4. The weaker condition n ≥ λ2

s2∧(1−s)2
yields

P((2ns,X2ns) 6∈ Bε) ≤ M
s2 ∧ (1− s)2

λ4
. (26)

Now we consider three cases depending on the values of r and t.
Case 1: r < λ

4
√
n
. Then |X̃r| ≤ 2r

√
n < λ

2 . Thus,

P(|X̃s − X̃r| ≥ λ; |X̃t − X̃s| ≥ λ) ≤ P
e−c/n

an,bn (|X̃s − X̃r| ≥ λ) ≤ P(|X̃s| ≥
λ

2
)

≤ P(|X̃s| ≥
λ

2
, (ns,Xns) ∈ Bε) + P((ns,Xns) 6∈ Bε).

But we just saw in (25) that

P((2ns,X2ns) 6∈ Bε) ≤ M
|t− r|2

λ4
.

Moreover, according to Lemma 9,

P(|X̃s| ≥
λ

2
, (2ns,X2ns) ∈ Bε) ≤ C

s2(1− s)2

λ4
≤ Cs2

λ4
.

Since r < λ
4
√
n
< s

4 , we get that s < 4
3(s − r), and thus

P(|X̃s| ≥
λ

2
, (2ns,X2ns) ∈ Bε) ≤ C(s− r)2

λ4
≤ C(t− r)2

λ4
.
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And the tightness condition (24) is satisfied in that case.
Case 2: 1− t < λ

4
√
n
. This case is treated similarly as the previous one, and (24) is

again satisfied.
Case 3: r ≥ λ

4
√
n
and 1− t ≥ λ

4
√
n
. This is the generic situation.

Conditional on {(2ns,X2ns) ∈ Bε}, the boxes BL and BR have an aspect ratio in the
interval (ε, 1−ε). Applying Lemma 9 with δ = ε in the subboxes BL and BR, we get the
existence of an η(ε) such that with sufficient probability (2nr,X2nr) (resp. (2nt,X2nt))

is in B
η(ε)
L (resp. B

η(ε)
R ). More precisely, the assumptions on r and t allow to repeat the

argument to derive (26) with the proper scaling in the subboxes BL and BR and get for
some constant M :

P((2nr,X2nr) 6∈ B
η(ε)
L |(2ns,X2ns) ∈ Bε) ≤ M

( rs)
2 ∧ (s−r

s )2

(λ/
√
s)4

≤ M
(s− r)2

λ4
, (27)

P((2nt,X2nt) 6∈ B
η(ε)
R |(2ns,X2ns) ∈ Bε) ≤ M

( t−s
1−s)

2 ∧ ( 1−t
1−s)

2

(λ/
√
1− s)4

≤ M
(t− s)2

λ4
. (28)

By the Markov property of X, the variables Xr and Xt are independent conditional
on the value of Xs. Hence we can write

P(|X̃s − X̃r| ≥ λ; |X̃t − X̃s| ≥ λ) =

=
∑

j,k,l
|j−k|≥λ
|l−k|≥λ

P(X̃s = k)P(X̃r = j|X̃s = k)P(X̃t = l|X̃s = k), (29)

where j, k, l runs through all possible values for X̃r, X̃s, X̃t (two successive values of j, k, l
differ by 1/

√
n).

Let Eε
r,s,t = {(2ns,X2ns) ∈ Bε}∩{(2nr,X2nr) ∈ B

η(ε)
L }∩{(2nt,X2nt) ∈ B

η(ε)
R }. From

Inequalities (25), (27), (28), there exists a constant M such that:

1− P(Eε
r,s,t) ≤ M

(t− r)2

λ4
.

As a consequence, it suffices to bound the sum in (29) for values of (j, k, l) such that

{X̃r = j, X̃s = k, X̃t = l} ⊂ {|X̃s − X̃r| ≥ λ} ∩ {|X̃t − X̃s| ≥ λ} ∩ Eε
r,s,t.

By a scaling argument, when looking at what happens on the left of s,

P
e−c/n

an,bn (X̃r = j|Xns) = P
e−c/n

2ns−X2ns
2

,
2ns+X2ns

2

(

X̃ r
s
=

j√
s
+

√

n

s
Lρ,c(r)−

√
nsL 2ns−X2ns

4ns
,sc
(
r

s
)

)

.

Note that on the right hand side, X̃r/s is defined with respect to the limit shape inside

the box [0, 2ns−X2ns
4ns ]× [0, 2ns+X2ns

4ns ]. See Fig. 6.

When summing over the values of j such that |j − X̃s| ≥ λ, one can get an upper
bound for Pan,bn(|X̃r − X̃s| ≥ λ|X̃s) using Lemma 9 as long as the limit shape in the

21



sr t 1

BL BR

Figure 6: Limit shapes in the box B and the subboxes BL and BR. The double arrow
represents the difference of the limit shapes in B and BL at time r, whose expression,
2nLρ,c(r)− 2nsL 2ns−X2ns

4ns
,sc

(

r
s

)

, appears in the sticking condition (30).

original box B and the one in BL are sufficiently close to each other. We express this
proximity by the following sticking condition for BL:

1√
s
[X̃s − λ, X̃s + λ] +

√

n

s
Lρ,c(r)−

√
nsL 2ns−X2ns

2ns
,sc
(
r

s
) ⊃

[

− λ√
2s

,
λ√
2s

]

. (30)

Indeed, when the sticking condition (30) is satisfied, Pe−c/n

an,bn
(|X̃r − X̃s| ≥ λ|X̃s) takes

the form:

P
e−c/n

2ns−X2ns
2

,
2ns+X2ns

2

(

X̃ r
s
6∈ 1√

2s
[X̃s − λ, X̃s + λ] +

√

n

s
Lρ,c(r)−

√
nsL 2ns−X2ns

4ns
,sc
(
r

s
)

)

≤ P
e−c/n

2ns−X2ns
2

,
2ns+X2ns

2

(

X̃ r
s
6∈
[

− λ√
2s

,
λ√
2s

])

≤ M
( rs

s−r
s )2

(λ/
√
2s)4

≤ 4M
(t− r)2

λ4

by Lemma 9 in the small box.
We follow the same idea for the right box BR. Whenever the sticking condition for

BR is satisfied,

P
e−c/n

an,bn (|X̃t − X̃s| ≥ λ|X̃s) ≤ 4M
(t− r)2

λ4
.

Therefore, conditional on one of the sticking conditions to be satisfied, the probability

of {|X̃s − X̃r| ≥ λ} ∩ {|X̃t − X̃s| ≥ λ} is bounded by 4M (t−r)2

λ4 .
Let us now investigate the probability that both of the sticking conditions fail. It is

bounded by the probability that the one for BL fails.
Using Equation (16) of Lemma 4, we replace 1

sLρ,c(r) in (30) by L s−Lρ,c(s)

2s
,sc

(

r
s

)

.
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Condition (30) is equivalent to
∣

∣

∣

∣

X̃s + s
√
n

(

L s−Lρ,c(s)

2s
,sc

(r

s

)

− L s−Lρ,c(s)−X̃sn
−1/2

2s
,sc

(r

s

)

)
∣

∣

∣

∣

≤ λ

2
.

By the mean value theorem applied to ρ 7→ Lρ,sc(r/s), there exists a ρ̄ in the interval

(
s−Lρ,c(s)

2s ,
s−Lρ,c(s)−X̃sn−1/2

2s ) such that

s
√
n

(

L s−Lρ,c(s)

2s
,sc

(r

s

)

− L s−Lρ,c(s)−X̃sn
−1/2

2s
,sc

(r

s

)

)

=
1

2
X̃s

∂Lρ,cs(r/s)

∂ρ

∣

∣

∣

∣

ρ=ρ̄

.

But differentiating (9) with respect to ρ, for generic values of ρ, c, t yields

0 ≤ 1 +
1

2

∂Lρ,c(t)

∂ρ
=

ec(2ρ−1) sinh(c(1 − t))

sinh(ct) + ec(2ρ−1) sinh(c(1 − t))

≤ 1 ∧ ec(2ρ−1) sinh(c(1− t))

sinh(ct)
≤ 1 ∧K

1− t

t

with a constant K which works for all c ∈ [−A,A], all ρ ∈ (0, 1), and all t ∈ [0, 1].
As a consequence, the sticking condition (30) is satisfied as soon as

|X̃s|(1 ∧K
s− r

r
) ≤ λ

2
.

Therefore the probability that (30) is not verified is less than

P (|X̃s|(1 ∧K
s− r

r
) >

λ

2
, (2sn,X2sn) ∈ Bε),

which, by Lemma 9 is bounded by λ−4s2(1 − s)2(1 ∧ K4(s−r
r )4). This bound is less

than some constant times λ−4(s − r)2 ≤ λ−4(t− r)2, as one can check in both regimes
(

s−r
r

)

≶ K. This finishes the proof of Lemma 10.

6 Link with the infinite shape

When writing this paper, we discovered that Petrov recently discussed in [7] the link be-
tween the limit shapes obtained above and the infinite shape of the unbounded problem.
We explain it in this short section.

The family of limit shapes obtained above has the following property: if we fix
s0 ∈ (0, 1) and take the point (s0, Lρ,c(s0)) as the right corner of a new family of bounding
boxes, then the limit shape of this new problem is simply the restriction of Lρ,c to the
interval [0, s0], rescaled by s0 (See Lemma 4).

We are therefore led to the idea that there exists some ‘inverse limit’ of these curves,
from which they can all be recovered by restriction. Indeed, this is the case. The
universal limit shape is Vershik’s curve [9]

L∞(s) = 2π√
3
log 2 cosh

(√
3s

2π

)

,
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Figure 7: The limit shape in a subbox.

the solution of e−
√

3
2π

(x−s)+ e−
√

3
2π

(x+s) = 1. For every ρ ∈ (0, 1) and c ∈ R
∗
+, one can find

two real numbers s0 < s1 such that the restriction of L∞ to [s0, s1] is (up to an affine
transformation) Lρ,c, more precisely.

∀t ∈ [0, 1], Lρ,c(t) =
L∞(s0 + t(s1 − s0))− L∞(s0)

s1 − s0
. (31)

For given values of s0 < s1, the parameter ρ is given by

ρ =
1

2
− L∞(s1)− L∞(s0)

2(s1 − s0)
,

and c is found for example by comparing the slopes of the limit shape in the corner

and identifying ∂L∞
∂s

∣

∣

s=s0
(s1 − s0) and

∂Lρ,c

∂s

∣

∣

∣

s=0
= ec(2ρ−1)−cosh c

sinh c , which is an increasing

function of c.
The limit case c → 0 correspond to s1 → s0. For negative values of c one can take

advantage of the symmetry of the model.

s0 s1

Figure 8: Limit shapes are restrictions of the universal curve.
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7 Concluding remarks and open questions

Another twin model of random partitions in a box is obtained by taking for the proba-
bility measure P the uniform measure on diagrams with a given area. It can be shown
that in that context, the limit shape is one of the curves t 7→ Lρ,c(t) for a suitable value
of c.

When the diagrams fill half of the box, the corresponding value of c is 0, and the limit
shape is a straight line. However we expect the fluctuations to be of a different nature.
Indeed, the integral of the fluctuations should be 0 almost-surely, whereas the integral of
the Brownian bridge is different from 0 almost surely. We conjecture that in that case,
the fluctuations would be described by the Brownian bridge on [0, 1] conditioned to have
an integral equal to 0. In terms of a standard Brownian motion (Bt), this process (Yt)
can be expressed as

∀t ∈ [0, 1], Yt = Bt − (3t2 − 2t)B1 − 6(t− t2)

∫ 1

0
Bsds. (32)

Formula (32) can be easily obtained in the same way as the formula for the Ornstein-
Uhlenbeck bridge (see Appendix). It is a special case of the general tool developed by
Biane and Yor [2] for extensions of Lévy’s formula about the characteristic function of
the Lévy area.

We are not able to formulate an analogous conjecture when c 6= 0.

8 Appendix: The Ornstein-Uhlenbeck Bridge

In this short appendix, we give a short description of the Ornstein-Uhlenbeck bridge.
Let (Bt) be a Brownian motion on [0,∞). The Ornstein-Uhlenbeck process (Zt) is the
Gaussian random process defined by

Zt = Bt − c

∫ t

0
Zs dBs = e−ct

∫ t

0
ecs dBs. (33)

Using the right-hand side of (33), we can also represent Zt as:

Zt = e−ctB∫ t
0
ecs ds = e−ctB e2ct−1

2c

. (34)

From (34) we derive the covariance. For 0 ≤ s ≤ t,

E [ZsZt] = e−c(s+t) e
2cs − 1

2c
= e−ct sinh(cs)

c
. (35)

‘Tying down’ this process at t = 1 gives the Ornstein-Uhlenbeck (Yt)t∈[0,1] bridge of
length 1. Set

h(t) =
sinh(ct)

sinh c
(36)
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and define
Yt = Zt − h(t)Z1. (37)

Observe that, for 0 ≤ t ≤ 1,

E [YtZ1] = E
[

ZtZ1 − h(t)Z2
1

]

= e−c sinh(ct)

c
− sinh(ct)

sinh c
e−c sinh c

c
= 0,

showing that Yt is independent of Z1. Now let f be any test function and consider

E [f(Xt) | X1 = 0] = E [f(Yt + h(t)X1) | X1 = 0]

= E [f(Yt) | X1 = 0]

= E[f(Yt)],

where the last equality is a consequence of the independence just proved. Thus, the
process (Yt) has the probability law of the Ornstein-Uhlenbeck process conditional on
X1 = 0. Its covariance is

E[YsYt] = E [Ys(Zt − h(t)Z1)] = E[YsZt]

= E[ZsZt]− h(s)E[Z1Zt] =
sinh(cs)

c sinh c)

(

e−ct sinh c− e−c sinh(ct)
)

=
sinh(cs) sinh(c(1− t))

c sinh c
,

cf. the middle matrix in (23).
Notice that this covariance is also the Green function of a Brownian motion on [0, 1]

killed an exponential rate c2 [4]. Let us mention also, that this process was used by C.
Donati in her solution of Buffon-Synge problem concerning the typical distance between
the extremities of a string of given length, thrown at random [5].
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