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BRANCHING ON A SIERPINSKI GRAPH

S. LEORATO AND E. ORSINGHER

Abstract. The descending motion of particles in a Sierpinski gasket subject

to a branching process is examined. The splitting on escape nodes of falling

particles makes the event of reaching the base of the gasket possible with pos-

itive probability. The r.v.’s Y (k), representing the number of particles reach-

ing level k (that is the k−th generation) is the main object of our analysis.

The transition probabilities, the means and variances of Y (k) are obtained

explicitely with a number of recursive formulas concerning the probability gen-

erating functions EtY (k), k ≥ 1. A section is also devoted to the analysis of

extinction probabilities for the branching process developing in this specific

fractal set.

1. Introduction and description of the process.

Random motions combined with branching have been studied in the context of

diffusions and have also originated the theory of superprocesses (McKean (1975),

Bramson (1978)).

Branching processes for particles moving at finite velocity have been examined

in some papers appeared in the physical and probabilistic literature (see Ratanov

(2006) and references therein). In both cases the processes develop in Euclidean

spaces. Diffusions on planar fractals have been studied since the Eighties by physi-

cists and probabilists (see Barlow and Perkins (1987) and Barlow (1998), Dafydd-

Jones (1996)). The structures where these diffusions are inserted are the Sierpinski

gaskets and carpets or some of their generalizations (Kumagai (1993), Metz (1993),

Barlow and Bass (1989)). The Sierpinski gasket is perhaps the simplest mathemati-

cally tractable form of fractal structure and for this reason has maintained a central

role throughout the literature, including the most recent one (Teufl (2003), Osada

(2007)).

In our previous paper (2007), we have studied the downward motion under the

action of gravity of a single particle on a vertical Sierpinski gasket. In our case, the

particle cannot repeatedly visit the same point and this makes our model signifi-

cantly different from those leading to diffusions. In the present paper, the downward

motion on the Sierpinski gasket is combined with a branching process. Even in the
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2 S. LEORATO AND E. ORSINGHER

pioneering papers it is remarked that the diffusing particle (on carpets or gaskets)

barely leaves the starting point. The same type of behaviour has been noticed in

the downward motion studied by Leorato and Orsingher (2007). The branching

process introduced here contrasts the disintegration of the moving particles (which

can undergo absorption at each step). Instead of branching, we supposed that a

growing number of particles was poured on the starting point (the upper vertex of

the Sierpinski gasket) in order to make the attainment of the base possible. We here

assume that on the vertex V (corresponding to level 0) of a Sierpinski pregasket

Gn, a particle begins a descending motion with the following rules.

The pregasket Gn possesses 2n knots (called also nodes) which can be classified as

absorbing or escape points (from which further descent is possible). Each particle

lying on escape knots at level k splits into two particles (moving independently)

which can reach the two neighbouring nodes of level k + 1 with equal probability

1/2. If an offspring falls on an absorbing knot, it is absorbed and dies.

Particles of the k−th generation are those located at level k. Thus the particle

located at the vertex V represents the initial generation and the two offsprings lying

at level 1 represent the first generation. The number Y (k) of components of the

successive generations (k ≥ 2) is random and the birth and death rates depend on

the number of escape nodes encountered during the descent.

The principal aim of this paper is the analysis of the distributions and properties

of the process Y (k), k ≥ 0. In particular, we obtain the transition probabilities

Pr {Y (k) = n |Y (k − 1) = m} for all values of k, n and m, the mean value EY (k)

and the explicit expression of VarY (k). Furthermore, recursive relationships for

the factorial moments are derived and the last section is devoted to the analysis of

extinction probabilities. Also the martingale behaviour of the subsequence Y (2n)

is examined.

The original idea which motivated our first paper was to model the falling move-

ment of liquids in pourous materials where the internal structure of the matter

is idealized as a disordered ensemble of intersecting filaments. We here imagine

that the fractal structure causes the splitting of the falling drops, thus igniting the

branching process.

2. Transition probabilities.

We begin by describing the descending motion and the associated branching

process. We assume that at the vertex V (level 0) a single particle is located and

immediately splits into two offsprings, both of which step down to level 1, moving

independently. Since both nodes of the first level are escape nodes, each of the two

offsprings will continue its descent. This means that they are not absorbed (they

”survive”) with probability 1 (i.e. Pr {Y (1) = 2} = 1). Instead, each of their 4

offsprings can fall with probability 1/2 onto an absorbing node (and therefore die)

and thus Y (2) ranges from 0 to 4 (see Figure 1). It is easy to see that each particle

belonging to an even generation, produces two surviving offsprings with probability
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1. This means that, if Y (2k) = i, then Y (2k + 1) = 2i. The transition from odd to

even levels is much more complicated.

Duplication at level k = 0 k = 1 Y (1) = 2 Duplication k = 2 Y (2) = 3

Duplication k = 3 Y (3) = 6 Duplication k = 4 Y (4) = 3

Figure 1. A realization of the process Y (k) after the occurrence of the first

duplication. The symbols “X
′′ refer to particles fallen on absorbing states.

The number of escape knots at level k of the pregasket Gn (denoted by νn(k))

satisfies the following recursive relationships

(2.1) νn+1(k) =

{

νn(k) 0 ≤ k ≤ 2n − 1

2νn(k − 2n) 2n ≤ k ≤ 2n+1 − 1
νn(0) = ν(0) = 1 = 20.

The number n represents the order of fragmentation of Gn, which possesses 2n+1

levels (including the vertex and the base).

The autosimilarity explains why νn+1(k) = νn(k) for 0 ≤ k < 2n (the pregasket

Gn coincides with the upper half of Gn+1) while the lower part of the pre-gasket

Gn+1 is a double copy of Gn and this implies that νn+1(k) = 2νn(k − 2n).

Remark 2.1. The function νn can be expressed in terms of the function βn intro-

duced in Leorato and Orsingher (2007) as follows:

(2.2) νn(k) = 2βn(k), 0 ≤ k ≤ 2n − 1, n = 0, 1, . . .

The function βn(k) is defined by the recursive relationship

(2.3) βn+1(k) =

{

βn(k) 0 ≤ k ≤ 2n − 1

βn(k − 2n) + 1 2n ≤ k ≤ 2n+1 − 1

with βn(0) = 0, n = 0, 1, 2 . . .. From (2.3), with k = 1, we get that βn(1) = 1, for

all n = 1, 2, . . . (namely, because the two levels of the first node are escape nodes).

We first note that νn(0) = 20 = 2βn(0), for all n. Then, the relationship (2.2)

can be easily proved by induction.

From the definition of νn (or of βn), one can easily see that νn(2m) = 2 for all

m < n and νn(2m − 1) = 2m for all m ≤ n. In fact, from (2.1) we have that

νn(2m) = νn−1(2
m) = . . . = νm+1(2

m) = 2νm(2m − 2m) = 2 · νm(0) = 2
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and also that

νn(2m − 1) = . . . = νm(2m − 1) = 2νm−1(2
m − 1 − 2m−1) = 2νm−1(2

m−1 − 1)

= 22νm−2(2
m−2 − 1) = . . . = 2m−1ν1(1) = 2m.(2.4)

We observe that the functions βn and νn are constant in n within their support.

In other words, βn(k) = βm(k) (resp. νn(k) = νm(k)) for all k for which both

functions are defined, i.e. for all k ≤ 2min{n,m} − 1. Therefore, in the following we

shall omit the subscript n in νn.

Some further useful properties of the function ν(k), k ≥ 0 are presented in the

following lemmas.

Lemma 2.1. For all k ≥ 0,

(2.5) ν(k) = 2p

where p is the number of ones in the binary representation of k.

Proof. By definition ν(0) = 1 and ν(1) = 2 while by drawing a picture, it is evident

that ν(2) = 2.

In view of (2.1) for all 2m1−1 ≤ k ≤ 2m1 − 1 we can write that:

(2.6) ν(k) = 2ν(k − 2m1−1).

If k− 2m1−1 = 0 we have that ν(k) = 2ν(0) = 2, otherwise we must continue the

procedure above.

Thus, if k − 2m1−1 ≥ 1, there exists an integer 1 ≤ m2 < m1, such that 2m2−1 ≤

k − 2m1−1 ≤ 2m2 − 1. By applying once again (2.1), we find that

(2.7) ν(k − 2m1−1) = 2ν(k − 2m1−1 − 2m2−1).

By combining (2.6) and (2.7) we have that

ν(k) = 22ν(k − 2m1−1 − 2m2−1).

If k − 2m1−1 − 2m2−1 = 0 we have done, otherwise, we continue our procedure in

the same manner, untill for some integer p we have that

k − 2m1−1 − . . . 2mp−1 = 0

and

ν(k) = 2pν(k − 2m1−1 − . . . − 2mp−1) = 2pν(0) = 2p

which proves the claim. �

Remark 2.2. From the Lemma 2.1, we can easily derive some properties of ν(k),

k ≥ 0.

(i) An immediate consequence of (2.5) is that, for all m ≥ 0, ν(2m) = 2 and

ν(2m − 1) = 2m, as was already proved in Remark 2.1.

(ii) For all k ≥ 0, ν(k) = ν(2k). This follows straightforwardly from the fact that,

if x1x2x3 · · ·xm is the binary representation of k, with xi = {0, 1}, i = 1, . . . , m,

then the sequence x1x2x3 · · ·xm0 is the binary representation of 2k.
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(iii) Moreover, ν(2k)−ν(2k−1) ≤ 0, for all k ≥ 1. In order to check this statement,

we remark that for every number k there is a number qk such that the rightmost

subsequence of length qk + 1 of the binary representation of k – corresponding to

the first qk + 1 powers of 2 – is composed by a 1 and qk consecutive zeros. For

example, for k = 40, we have the binary representation 101000 and q40 = 3. In

particular, qk = 0 if and only if k is odd, otherwise qk ≥ 1.

Now, the binary representations of the two numbers 2k and 2k − 1 differ only

for the last qk + 1 numbers, where ones and zeros are interchanged. For example,

if 2k = 40, the binary representation of 2k − 1 = 39 is in fact 100111. Thus, if

p2k is the total number of ones in the binary representation of 2k, we have that

ν(2k) = 2p2k ≤ 2p2k+q2k−1 = 2p2k−1 = ν(2k − 1).

We are now interested in calculating, for an arbitrary pregasket Gm (with 2m lev-

els), how many layers possess 2j escape knots (from each escape knot two descending

branches originate). In symbols, we want to evaluate the number of elements be-

longing to the sets:

Am,j =
{

0 ≤ k ≤ 2m − 1 : ν(k) = 2j
}

, m ≥ 1, j = 0, . . . , m.

Lemma 2.2. For all m ≥ 1, 0 ≤ j ≤ m,

(2.8) # {Am,j} =

(

m

j

)

.

Proof. We proceed by induction and note that for m = 1 we have two possible

levels, the first one with a single escape knot (i.e. ν(0) = 1) and the other one with

two escape knots (ν(1) = 2) and thus (2.8) holds.

We assume now that (2.8) is valid for some m ≥ 1 and prove that it also holds

for m + 1.

# {Am+1,j} = # {Am,j} + #
{

2m ≤ k ≤ 2m+1 − 1 : ν(k) = 2j
}

(by (2.1))
= # {Am,j} + #

{

2m ≤ k ≤ 2m+1 − 1 : 2ν(k − 2m) = 2j
}

=

(

m

j

)

+ #
{

0 ≤ k ≤ 2m − 1 : ν(k) = 2j−1
}

=

(

m

j

)

+ # {Am,j−1} =

(

m

j

)

+

(

m

j − 1

)

=

(

m + 1

j

)

.

�

Remark 2.3. We have the following straightforward consequences of the lemma

above.

(2.9)

2m−1
∑

k=0

ν(k) =

m
∑

j=0

2j

(

m

j

)

= 3m and

2m−1
∑

k=0

1

ν(k)
=

m
∑

j=0

2−j

(

m

j

)

=

(

3

2

)m

.

Let us introduce the following probabilities

ρ(k) = Pr

{

a particle at level k moves to an

escape knot at level k + 1

}

=
# {escape knots of level k + 1}

# {directions from level k to level k + 1}
=

ν(k + 1)

2ν(k)
.(2.10)
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The number 2ν(k) in the denominator of (2.10) corresponds to the fact that from

each of the ν(k) knots at level k, two branches descend to level k + 1.

In view of (2.10), we are able to give the transition probabilities of the process

Y (k), k ≥ 1.

Proposition 2.1. The transition probabilities for the process Y = {Y (k), k ∈ N ∪

{0}} have the following form:

Pr {Y (2k) = n |Y (2k − 1) = m}

=

(

2m

n

)(

ν(2k)

2ν(2k − 1)

)n(

1 −
ν(2k)

2ν(2k − 1)

)2m−n

, n = 0, . . . , 2m;(2.11)

(2.12) Pr {Y (2k + 1) = n |Y (2k) = m} =

{

1 if n = 2m

0 otherwise

Proof. Let Xi(j − 1) be a r.v. taking values 1 (if the i−th particle lying at level

j − 1 descends to an escape node at level j) and 0 (if the particle is captured by

an absorbing state of level j). This means that Xi(j − 1) is a Bernoulli random

variable with Pr {Xi(j − 1) = 1} = ρ(j − 1). Note that the distribution of Xi(j) is

not affected by i. In the light of all this we can represent the number of particles

at level j by means of the random sum

(2.13) Y (j) =

2Y (j−1)
∑

i=1

Xi(j − 1).

The branching process, which implies the duplication of particles at each step,

explains the 2Y (j − 1) appearing in (2.13). The distribution (2.11) immediately

follows from (2.13) while (2.12) is an immediate consequence of the definition of the

process. �

3. Some results about the moments of Y (k).

From the representation (2.13) we can immediately obtain some results by ap-

plying Wald’s formulas.

Theorem 3.1. We have the following recursive relationships

(3.1) EY (j) = 2ρ(j − 1)EY (j − 1) =
ν(j)

ν(j − 1)
EY (j − 1)

(3.2) VarY (j) = 2ρ(j − 1) (1 − ρ(j − 1)) EY (j − 1) + 4ρ2(j − 1)VarY (j − 1)

(3.3) NY (j)(t) = EtY (j) = NY (j−1)

(

(1 − ρ(j − 1) + tρ(j − 1))2
)

Proof. Formula (3.3) can be obtained straightforwardly because

NY (j) = E

(

EtX(j−1)
)2Y (j−1)

.

Formulas (3.1) and (3.2) are applications of Wald’s formulas for random sums.

�
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Remark 3.1. For odd values j = 2k + 1, the formulas of Theorem 3.1 simplify as

follows:

(3.4) EY (2k + 1) = 2EY (2k)

(3.5) VarY (2k + 1) = 4VarY (2k)

(3.6) NY (2k+1)(t) = NY (2k)(t
2)

because ρ(2k) = ν(2k + 1)/2ν(2k) = 1.

With some effort we can extract from Theorem 3.1 the explicit expressions of the

mean values and variances of Y (j).

Theorem 3.2. We have the following explicit values, for all j ≥ 1

(3.7) EY (j) = ν(j)

(3.8) VarY (2k) =
3

4
ν2(2k)

k
∑

j=0

1

ν(j)
+

ν(2k)

4
− ν2(2k)

while VarY (2k + 1) = 4VarY (2k) because of (3.5).

Proof. From (3.1), since ν(0) = 1 and Y (0) = 1, we have immediately that

EY (j) =
ν(j)

ν(j − 1)
·
ν(j − 1)

ν(j − 2)
· · ·

ν(1)

ν(0)
EY (0) = ν(j).

For the proof of (3.8) we apply successively (3.5) and (3.2):

(3.9) Var Y (2k) = ν(2k)

(

1 −
ν(2k)

2ν(2k − 1)

)

+
ν2(2k)

ν2(2k − 1)
VarY (2k − 1).

We then get that

Var (Y (2k))(3.10)

= ν(2k)
(

1 − ν(2k)
2ν(2k−1)

)

+ ν2(2k)
ν2(2k−1)

ν2(2k−1)
ν2(2k−2)Var (Y (2k − 2))

= ν(2k) − ν2(2k)
2ν(2k−1) + ν2(2k)

ν2(2k−2)

[

ν(2k − 2)
(

1 − ν(2k−2)
2ν(2k−3)

)

+ ν2(2k−2)
ν2(2k−3)Var (Y (2k − 3))

]

= ν(2k) + ν2(2k)
ν(2k−2) −

ν2(2k)
2

(

1
ν(2k−1) + 1

ν(2k−3)

)

+ ν2(2k)
ν2(2k−3)

ν2(2k−3)
ν2(2k−4)Var (Y (2k − 4)) = · · ·

= ν(2k) + ν2(2k)
∑k−1

j=1
1

ν(2k−2j) −
ν2(2k)

2

∑k
j=1

1
ν(2k−2j+1) .

In order to explain the range of the sums appearing in the last member of (3.10)

we note that the final application of (3.9) yields

Var (Y (2k)) = ν(2k) +
∑k−2

j=1
ν2(2k)

ν(2k−2j) −
∑k−1

j=1
ν2(2k)

2ν(2k−2j+1) + ν2(2k)
ν2(3)

[

ν2(3)
ν2(2)Var (Y (2))

]

= ν(2k) +
∑k−2

j=1
ν2(2k)

ν(2k−2j) −
∑k−1

j=1
ν2(2k)

2ν(2k−2j+1)

+ ν2(2k)
ν2(2)

[

ν(2)
(

1 − ν(2)
2ν(1)

)

+ ν2(2)
ν2(1)Var (Y (1))

]

= ν(2k) +
∑k−2

j=1
ν2(2k)

ν(2k−2j) −
1
2

∑k−1
j=1

ν2(2k)
ν(2k−2j+1) + ν2(2k)

ν(2) − ν2(2k)
2ν(1) .

In the last step the reader must take into account that Pr {Y (1) = 2} = 1.
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The result (3.10) can be adjusted in the following manner:

Var (Y (2k))

= 3
4ν(2k) + 1

4ν(2k) + ν2(2k)
∑k−1

j=1

(

1
ν(2k−2j) −

1
2ν(2k−2j+1)

)

− ν2(2k)
2ν(1)

= 3
4

∑k−1
j=0

ν2(2k)
ν(2k−2j) + 1

4ν(2k) − ν2(2k)
4 = 3

4

∑k−2
j=0

ν2(2k)
ν(2k−2j) + 1

4ν(2k) + ν2(2k)
8

where we have used the fact that 2ν(2k − 2j + 1) = 4ν(2k − 2j). The final step

consists in applying Lemma 2.1 and observing that:

k−2
∑

j=0

1

ν(2k − 2j)
=

k
∑

h=0

1

ν(2h)
−

1

ν(0)
−

1

ν(2)
=

k
∑

h=0

1

ν(2h)
−

3

2
=

k
∑

h=0

1

ν(h)
−

3

2

so that

Var(Y (2k)) =
3

4
ν2(2k)

k
∑

j=0

1

ν(j)
−

3

4
ν2(2k)

3

2
+

ν2(2k)

8
+

ν(2k)

4

=
3

4
ν2(2k)

k
∑

j=0

1

ν(j)
+

ν(2k)

4
− ν2(2k)(3.11)

and this concludes the proof of (3.8). �

Remark 3.2. For k = 2m−1 − 1 we can explicitely evaluate (3.11) because of (2.9)

and keeping in mind that ν(2k) = ν(k):

Var
{

Y
(

2
(

2m−1 − 1
))}

=
3

4
ν2(2m−1 − 1)

(

3

2

)m−1

− ν2(2m−1 − 1) +
ν(2m−1 − 1)

4

by (2.4)
=

3

4
22m−2

(

3

2

)m−1

− 22m−2 +
2m−1

22
= 3m · 2m−3 − 22m−2 + 2m−3

= 2m−3
[

3m + 1 − 2m+1
]

.

By similar calculations, since ν(2m−1) = 2, we have that

Var (Y (2m)) = 3
4 · 22

[

∑2m−1−1
h=0

1
ν(h) + 1

ν(2m−1)

]

− 22 + 1
2

= 3
4 · 22

[

(

3
2

)m−1
+ 1

2

]

+ 1
2 − 4 = 3m · 2m−1 − 2.

Remark 3.3. If we write (3.3) as follows

(3.12) NY (k)(t) = N2Y (k−1)

(

1 −
ν(k)

2ν(k − 1)
+

ν(k)

2ν(k − 1)
t

)

and then we derive (3.12) j times with respect to t, we easily get the following

relationship for the factorial moments:

E [Y (k) · · · (Y (k)−j+1)]=

(

ν(k)

2ν(k − 1)

)j

E [2Y (k) (2Y (k)−1) · · · (2Y (k)−j+1)] .

Remark 3.4. By applying (3.3) twice we get that

EtY (k) = E

[

(

1 −
ν(k)

2ν(k − 1)
+

ν(k)

2ν(k − 1)
t

)2
]Y (k−1)

= E

[

1 −
ν(k − 1)

2ν(k − 2)
+

ν(k − 1)

2ν(k − 2)

(

1 −
ν(k)

2ν(k − 1)
+

ν(k)

2ν(k − 1)
t

)2
]2Y (k−2)

.(3.13)
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If k is even, then ν(k − 1)/2ν(k − 2) = 1 and (3.13) becomes

(3.14) EtY (k) = E

(

1 −
ν(k)

2ν(k − 1)
+

ν(k)

2ν(k − 1)
t

)4Y (k−2)

while for an odd k we have that

(3.15) EtY (k) = Et2Y (k−1) = E

(

1 −
ν(k − 1)

2ν(k − 2)
+

ν(k − 1)

2ν(k − 2)
t2
)2Y (k−2)

.

By applying successively the above relationships, one gets a cumbersome formula

which cannot be further developed.

Although an exact expression for EtY (k) cannot be obtained for all k, we are able

to provide a lower bound in the next theorem.

Theorem 3.3. For all k ≥ 1 and 0 < t ≤ 1,

(3.16) NY (k)(t) = EtY (k) ≥

(

1 −
ν(k)

2k
+

ν(k)

2k
t

)2k

= EtBin(2k,ν(k)/2k).

Proof. In view of Theorem 3.1 we have that

EtY (k)= E

(

1 −
ν(k)(1 − t)

2ν(k − 1)

)2Y (k−1)

=E

{

E

(

(

1 −
ν(k)(1 − t)

2ν(k − 1)

)2Y (k−1)
∣

∣

∣

∣

∣

Y (k − 2)

)}

≥ E







(

E

(

1 −
ν(k)

2ν(k − 1)
(1 − t)

)Y (k−1)
∣

∣

∣

∣

∣

Y (k − 2)

)2






(3.17)

where in the last step the conditional Jensen inequality

E

[

u2Y (k−1)
∣

∣

∣
Y (k − 2)

]

≥
[

EuY (k−1)
∣

∣

∣
Y (k − 2)

]2

is applied..

By denoting Z(k) ∼ Bin (ρ(k), 2Y (k)), the conditional mean in the last member

of (3.17) can be easily evaluated as follows:

E

{

(

1 −
ν(k)(1 − t)

2ν(k − 1)

)Y (k−1)
∣

∣

∣

∣

∣

Y (k − 2)

}

= NZ(k−2)

(

1 −
ν(k)(1 − t)

2ν(k − 1)

)

=

(

1 −
ν(k − 1)

2ν(k − 2)
+

ν(k − 1)

2ν(k − 2)

(

1 −
ν(k)

2ν(k − 1)
+

ν(k)

2ν(k − 1)
t

))2Y (k−2)

=

(

1 −
ν(k)

22ν(k − 2)
+

ν(k)

22ν(k − 2)
t

)2Y (k−2)

.(3.18)

By plugging (3.18) into (3.17) we get that

EtY (k) ≥ E

(

1 − ν(k)(1−t)
22ν(k−2)

)22Y (k−2)

= E

(

E

(

1 − ν(k)(1−t)
22ν(k−2)

)22Y (k−2)
∣

∣

∣

∣

∣

Y (k − 3)

)

≥ E

(

E

(

1 − ν(k)(1−t)
22ν(k−2)

)Y (k−2)
∣

∣

∣

∣

∣

Y (k − 3)

)22

= E

(

1 − ν(k)(1−t)
23ν(k−3)

)23Y (k−3)

≥ · · · ≥ E

(

1 − ν(k)(1−t)
2kν(0)

)2kY (0)

and this concludes the proof. �
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Remark 3.5. For k = 2m, m ≥ 1, Theorems 3.1 and 3.3 permit us to write that

(3.19) EtY (2m) = E

(

1 −
1

2m
+

1

2m
t

)2Y (2m−1)

≥

(

1 −
2

22m +
2

22m t

)22
m

.

We now have the following general result for conditional means.

Theorem 3.4. For every 0 < j ≤ k we have that

(3.20) E {Y (k) |Y (j)} =
ν(k)

ν(j)
Y (j).

Proof. For all k ≥ j > 0, we clearly have that

E {Y (k) |Y (j) = h}

=
∑2k−1

l=0 E {Y (k) |Y (k − 1) = l, Y (j) = h}Pr {Y (k − 1) = l |Y (j) = h}

=
∑2k−1

l=0 E {Y (k) |Y (k − 1) = l}Pr {Y (k − 1) = l |Y (j) = h}

=
∑2k−1

l=0 2lρ(k − 1)Pr{Y (k − 1) = l |Y (j) = h} = 2ρ(k − 1)E {Y (k − 1) |Y (j) = h}

which easily implies the result:

E {Y (k) |Y (j) = h} =
ν(k)

ν(k − 1)
·
ν(k − 1)

ν(k − 2)
· · ·

ν(j + 1)

ν(j)
E {Y (j) |Y (j) = h} =

ν(k)

ν(j)
h.

�

Corollary 3.1. We have that

E
{

Y (r · 2k)
∣

∣Y (r · 2j)
}

= Y (r · 2j),

for all r ∈ N and for all k ≥ j > 0. Thus the subsequences Y (r · 2k), k ≥ 0 are

martingales with respect to the natural filtrations (generated by Y (r · 2k)).

Proof. From Proposition 3.4 E
{

Y (r · 2k)
∣

∣Y (r · 2j)
}

= ν(r·2k)
ν(r·2j)Y (r · 2j) while from

Lemma 2.1 ν(r) = ν(2r) = . . . = ν(2j r) = . . . = ν(2k r) and this proves the

claim. �

Remark 3.6. As a particular case, from Corollary 3.1 we derive that the subsequence

Y (2k), k ≥ 0, which represents the number of particles reaching the base of the

pregaskets Gk, is a martingale.

Remark 3.7. If we analyze the subsequence Y (2k), k ≥ 0, we can attack the problem

in a different way. The process Y (2k), k ≥ 0 represents the number of particles on

the outer nodes of the base of the pregasket Gk. If we denote by W1(k) and W2(k)

the number of particles of the left-most and right-most nodes, respectively, then

Y (2k) = W1(2
k) + W2(2

k).

The r.v.’s Wj(2
k), j = 1, 2 form two branching processes which develop indepen-

dently.

The processes Wj(k), j = 1, 2 have Bernoulli offspring distribution with mean

one and therefore are critical (that is, extinguish with probability one). Then, also

Y (2k) disappears with probability one.



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

BRANCHING ON A SIERPINSKI GRAPH 11

4. Extinction probabilities.

We devote this section to the analysis of the probabilities of extinction which are

a major feature of all branching processes.

We now study the probability of the following events:

(4.1) Ek = {Y (k) = 0} = {extinction occurred at or before generation (level) k} .

We remark that the falling particles die if and only if they reach the absorbing

nodes from which the further downward motion is not possible. This means that

extinction of particles is strictly related to the dynamics inside the Sierpinski gasket.

From the relationship (3.3) we can infer that:

(4.2)

Pr {Ek} = NY (k)(0) = NY (k−1)

(

(1 − ρ(k − 1))2
)

= E

(

1 −
ν(k)

2ν(k − 1)

)2Y (k−1)

.

In view of the autosimilarity of the pregasket Gm, we have the following recursive

relationship for the probability of exctinction of the subsequence Y (2m), m ≥ 0.

Loosely speaking, the autosimilarity consists in that the pregasket Gm−1 is identical

to a rescaled version of the three biggest triangles forming the pregasket Gm.

Theorem 4.1. The following recursive relationship holds

(4.3) Pr{E2m} = E

(

1 −
1 − Pr{E2m−1}

2m−1

)2Y (2m−1−1)

.

Proof.

Pr{E2m}=Pr {Y (2m) = 0}=
22

m−1

∑

h=0

Pr
{

Y (2m) = 0
∣

∣Y (2m−1) = h
}

Pr
{

Y (2m−1) = h
}

.

By autosimilarity, the rules governing the branching process are the same for all

the pregaskets Gm−1 composing Gm, for all m ≥ 1. In other words, the sub-

process {Y (2m), m ≥ 0} is stationary, that is Pr
{

Y (2m) = 0
∣

∣Y (2m−1) = h
}

=

Pr
{

Y (2m−1) = 0 |Y (0) = h
}

. Thus, in view of the indipendence of particles,

Pr{E2m} =
∑22

m−1

h=0 Pr
{

Y (2m−1) = 0 |Y (0) = h
}

Pr
{

Y (2m−1) = h
}

=
∑22

m−1

h=0

[

Pr
{

Y (2m−1) = 0
}]h

Pr
{

Y (2m−1) = h
}

= NY (2m−1) (Pr {E2m−1}) = NY (2m−1−1)

(

1 − ρ(2m−1 − 1) (1 − Pr {E2m−1})
)

.

Formula (4.3) emerges once the probability ρ(2m−1 − 1) = 1/2m−1 is taken into

account. �

Remark 4.1. From Theorem 3.3 for t = 0 we get that

(4.4) Pr{Ek} = EtY (k) |t=0 ≥

(

1 −
ν(k)

2k

)2k

.

From (4.2) and Jensen inequality, we have instead the lower bound:

(4.5)

Pr {Ek}=E

(

1− ν(k)
2ν(k−1)

)2Y (k−1)

≥
(

1− ν(k)
2ν(k−1)

)2EY (k−1)

=
(

1− ν(k)
2ν(k−1)

)2ν(k−1)

.
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In the intermediate steps we have applied the Jensen inequality to the convex func-

tion g(x) =
(

1 − ν(k)
2ν(k−1)

)2x

.

In view of the fact that ν(k− 1) ≤ 2k−1 and that the function g(x) = (1 − a/x)x

is increasing, the lower bound (4.4) is stricter than (4.5).

A sequence of lower bounds for {Y (2m), m ≥ 0}, can be written down by applying

recursively (4.3) together with Jensen inequality. For this purpose we consider the

sequence defined by

(4.6) lm =

(

1 −
1 − lm−1

2m−1

)2m

, m ≥ 2,

where l1 = Pr{E2} = 1/16. In order to show that lm ≤ Pr{E2m}, we examine some

special cases which illustrate the procedure. For m = 2,

Pr{E22} = E

(

1 −
1 − Pr{E2}

2

)2Y (1)

≥

(

1 −
1

2
(1 − l1)

)2EY (1)

=

(

1 −
1

2
(1 − l1)

)22

= l2.

By similar steps we have that

Pr{E23} = E

(

1 −
1 − Pr{E22}

22

)2Y (2)

≥

(

1 −
(1 − l2)

22

)2EY (2)

=

(

1 −
(1 − l2)

22

)23

= l3.

By iterating this procedure we arrive at Pr{E2m} ≥ lm.

It is easily seen that the sequence lm is bounded and increasing. Then, by passing

to the limit, we get that

l = lim
m→∞

lm = lim
m→∞

(

1 −
1 − lm−1

2m−1

)2m

= e−2 limm(1−lm) = e−2(1−l).

That is, l = limm lm is the solution to the trascendental equation

(4.7) l = e−2(1−l).

The root of equation (4.7) can be computed numerically and we get that l∗ ≈

0.203. It is to worthwhile to note that lm is a significant lower bound for fi-

nite values of m but not for m → ∞, because from Remark 3.7 we know that

Pr{limm→∞ Y (2m) = 0} = 1.
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