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In this paper, we are concerned with nonparametric estimation of the multivariate regression function in the presence of right censored data. More precisely, we propose a statistic which is shown to be asymptotically normally distributed under the additive assumption, and which could then be used to test for additivity in the multivariate censored regression setting.

Introduction and motivations

A well known issue in nonparametric regression estimation is the so-called curse of dimensionality, i.e. the fact that the rate of convergence of nonparametric estimators dramatically decreases as the dimension of the covariates increases (see, for instance, [START_REF] Stone | Optimal global rates of convergence for nonparametric regression[END_REF]). To get round this issue, one common solution is to work under the additive assumption, i.e. the true regression function is assumed to be the sum of some lower dimension regression functions (typically, univariate or bivariate functions). But, this assumption is strong and has therefore to be checked via one of the available tests [START_REF] Camlong-Viot | Vers un test d'additivité en régression non paramétrique sous des conditions de mélange[END_REF], [START_REF] Gozalo | Testing additivity in generalized nonparametric regression models with estimated parameters[END_REF], [START_REF] Sperlich | Nonparametric estimation and testing of interaction in additive models[END_REF], [START_REF] Derbort | A test for additivity in nonparametric regression[END_REF]) before being used in practice.

When the variable of interest is censored, several nonparametric estimators have been proposed for the multivariate regression function (see, e.g., [START_REF] Fan | Censored regression : Local linear approximations and their applications[END_REF], [START_REF] Carbonez | Partitioningestimates of a regression function under random censoring[END_REF], [START_REF] Kohler | Prediction from randomly right censored data[END_REF], Brunel and Comte Preprint submitted to Elsevier Science 25 June 2008 (2006)). By combining one of this 'initial' estimator with the marginal integration method (see [START_REF] Newey | Kernel estimation of partial means and a general variance estimator[END_REF], [START_REF] Linton | A kernel method of estimating structured nonparametric regression based on marginal integration[END_REF]), estimates can be obtained under the additive assumption. In particular, Debbarh and Viallon (2007a) made use of an initial Inverse Probability of Censoring Weighted estimator such as the one proposed by [START_REF] Koul | Regression analysis with randomly right-censored data[END_REF] in the linear regression setting (see also [START_REF] Lai | Asymptotic normality of a class of adaptive statistics with applications to synthetic data methods for censored data[END_REF] and [START_REF] Carbonez | Partitioningestimates of a regression function under random censoring[END_REF] for nonlinear extensions), and established the uniform convergence rate for the corresponding additive estimator (see also [START_REF] Debbarh | Uniform limit laws of the logarithm for estimators of the additive regression function in the presence of right censored data[END_REF]). However, in this censored setting, no test for additivity has been proposed yet. That will be our concern here. Namely, we first exhibit a statistic evaluating a weighted difference between the observations of the variable of interest and the estimator we derive via the marginal integration method. Then, this statistic is shown to be asymptotically normally distributed under the additive assumption.

To build our estimators, and then our test statistic, the following notations

are needed. Let (Y, C, X), (Y 1 , C 1 , X 1 ), (Y 2 , C 2 , X 2 ), ... be independent and identically distributed R × R × R d -valued random variables.
Here Y is the variable of interest, C the censoring variable and X = (X 1 , ..., X d ) a vector of concomitant variables. In the right censorship model, the only available information on (Y, C) is given by (Z, δ), with Z = min{Y, C} and δ = I {Y ≤C} , I E standing for the indicator function of the set E. As a matter of fact, the observed sample is D

n := (X i , Z i , δ i ) 1≤i≤n , for a given n ≥ 1.
Given a real measurable function ψ, our concern here is the regression function of ψ(Y ) evaluated at X = x, that is,

m ψ (x) = E (ψ(Y ) | X = x) , ∀ x = (x 1 , ..., x d ) ∈ R d . (1.1)
Under the traditional additive assumption, the regression function defined in (1.1) can be written as the sum of some (unknown) univariate regression functions m l ,

m ψ (x) = m ψ,add (x) := µ + d l=1 m l (x l ). (1.2)
In view of (1.2), the functions m l , as well as the constant term µ, are defined up to an additive constant. Therefore, we will work under the common identifiability condition Em l (X l ) = 0, for l = 1, ..., d. This condition implies that µ = E(ψ(Y )).

In the sequel, we set, for all t ∈ R, F (t) = P (Y > t), G(t) = P (C > t) and H(t) = P (Z > t) the survival functions pertaining to Y , C and Z respectively. Further denote by G n the Kaplan-Meier [START_REF] Kaplan | Non parametric estimation for incomplete observations[END_REF]) estimator of G,

G n (y) = 1≤i≤n N n (Z i ) -1 N n (Z i ) , β i
for all y ≥ 0, with

β i = I {Z i ≤y} (1 -δ i ). (1.3)
Here we defined N n (x) = n i=1 I {Z i ≤x} , and the conventions ∅ = 1 and 0 0 = 1 were adopted.

Consider the null hypothesis

H 0 : m ψ ∈ M add := {m : R d → R, m(x) = µ + d l=1 m l (x l ); E(m l (X l )) = 0}.
Following the ideas of [START_REF] Härdle | Comparing nonparametric versus parametric regression fits[END_REF], [START_REF] Camlong-Viot | Vers un test d'additivité en régression non paramétrique sous des conditions de mélange[END_REF] and [START_REF] González-Manteiga | A note on variable selection in nonparametric regression with dependent data[END_REF], we denote by g some fixed weight function, by L a given kernel, i.e. a real measurable function integrating to 1, defined in R d and by ( n ) n≥1 a sequence of positive real numbers. Further let m ψ,add be some estimator of m ψ under the additive assumption (1.2) (or, equivalently, under H 0 ). Now, let us consider the statistic

T n = R d 1 n d n n i=1 L x -X i n δ i ψ(Z i ) Gn(Z i ) -m ψ,add (X i ) fn (X i ) 2 g(x)dx, (1.4)
which is a natural estimator of the quantity E(E( δψ(Z) G(Z) -m ψ,add (X))|X) 2 . Under a useful independence condition (see (C.1) below), the latter quantity equals E(E(ψ(Y ) -m ψ,add (X))|X) 2 , and then equals zero if and only if the hypothesis H 0 is true. Moreover, in Theorem 2.1 below, this statistic is shown to be asymptotically normally distributed under H 0 . It could then be useful to test for additivity in censored nonparametric regression. Properties of the corresponding test will be studied elsewhere.

Remark 1.1 For the sake of brevity, we will borrow the setting of our earlier works (Debbarh and Viallon (2007a) and [START_REF] Debbarh | Mean square convergence for an estimator of the additive regression function under random censorship[END_REF]), which relies on the transformation proposed by [START_REF] Koul | Regression analysis with randomly right-censored data[END_REF] who noticed that, under the independence assumption (C.1) introduced below we have

E δψ(Z) G(Z) |X = E[ψ(Y )|X].
Note however that numerous alternative transformations have been proposed, especially for the standard regression function corresponding to ψ = Id (see, e.g., [START_REF] Leurgans | Linear models, random censoring and synthetic data[END_REF], [START_REF] Lai | Asymptotic normality of a class of adaptive statistics with applications to synthetic data methods for censored data[END_REF] and [START_REF] Fan | Censored regression : Local linear approximations and their applications[END_REF]). These transformations could be handled using similar arguments as those presented in the sequel (see, e.g., Subsection 3.1 in [START_REF] Debbarh | Uniform limit laws of the logarithm for estimators of the additive regression function in the presence of right censored data[END_REF]).

Now, we precise how m ψ,add may be constructed. Let K 1 , K 2 , K 3 and K, be kernels respectively defined in R, R d-1 , R d and R d . Further set fn the kernel estimator of f , with f denoting the density function of X. Namely,

fn (x) = 1 nh d n n j=1 K X j -x h n ,
where (h n ) n≥1 is a given sequence of positive real numbers. Denote by (h j,n ) n≥1 , j = 1, 2, two sequences of positive real numbers. To estimate the multivariate regression function defined in (1.1), the following Nadaraya-Watson type estimators can be used (see [START_REF] Carbonez | Partitioningestimates of a regression function under random censoring[END_REF], [START_REF] Kohler | Prediction from randomly right censored data[END_REF] and [START_REF] Jones | Versions of kernel-type regression estimators[END_REF]),

m ψ,n (x) = n i=1 W n,i (x) δ i ψ(Z i ) G n (Z i ) with W n,i (x) = K 3 x-X i h 1,n nh d 1,n fn (X i ) , (1.5) and, for l = 1, ..., d, m ψ,n,l (x) = n i=1 W l n,i (x) δ i ψ(Z i ) G n (Z i ) with W l n,i (x) = K 1 x l -X i,l h 1,n K 2 x -l -X i,-l h 2,n nh 1,n h d-1 2,n fn (X i )
,

(1.6) where we set, for all x = (x 1 , .., x d ) ∈ R d and every l = 1, ..., d, x -l = (x 1 , .., x l-1 , x l+1 , .., x d ).To estimate the additive components, we use the marginal integration method (see [START_REF] Newey | Kernel estimation of partial means and a general variance estimator[END_REF] or [START_REF] Linton | A kernel method of estimating structured nonparametric regression based on marginal integration[END_REF]). Let q 1 , ..., q d be d given density functions. Then, setting q(x) = d l=1 q l (x l ) and q -l (x -l ) = j =l q j (x j ), we define

η l (x l ) = R d-1 m ψ (x)q -l (x -l )dx -l - R d m ψ (x)q(x)dx, l = 1, ..., d, (1.7)
in such a way that the two following equalities hold,

η l (x l ) = m l (x l ) - R m l (z)q l (z)dz, l = 1, ..., d, (1.8) m ψ (x) = d l=1 η l (x l ) + R d m ψ (z)q(z)dz.
(1.9)

In view of (1.8) and (1.9), the functions η l , l = 1, ..., d, turn out to be some additive components, and, from (1.6) and (1.7), a natural estimator of the l-th component η l is given, for all l = 1, ..., d, by

η l (x l ) = R d-1 m ψ,n,l (x)q -l (x -l )dx -l - R d m ψ,n,l (x)q(x)dx.
(1.10)

From (1.10), an estimator m ψ,add of the censored regression function can be deduced under the additive assumption (1.2) (or, equivalently, H 0 ),

m ψ,add (x) = d l=1 η l (x l ) + R d m ψ,n (x)q(x)dx.
(1.11)

These preliminaries being given, we introduce the assumptions to be made to state our results. First, consider the hypotheses pertaining to (Y, C, X).

We suppose that (X, Y ) has a joint density f X,Y . Moreover, we impose the following conditions. 

sup x ∂ k m ψ ∂x k l (x) < ∞; l = 1, ..., d.
Remark 2.1 It is noteworthy that condition (C.1) is stronger than the conditional independence of C and Y given X, under which [START_REF] Beran | Nonparametric regression with randomly censored data[END_REF] worked to build an estimator of the conditional survival function (see also [START_REF] Dabrowska | Nonparametric regression with censored covariates[END_REF]). Note, however, that the two assumptions coincide if C and X are independent. In other respect, to use Beran's local Kaplan-Meier estimator, the censoring has to be locally fair, that is

P [C ≥ t | X = x] > 0 whenever P [Y ≥ t | X = x] > 0.
Here (see assumption (A)(ii)(b) below), we essentially suppose that G(t) > 0 whenever F (t) > 0, which is, on its turn, a weaker assumption. For a nice discussion on the difference between Beran's estimator and Inverse Probability of Censoring Weighted type estimators, we refer to [START_REF] Carbonez | Partitioningestimates of a regression function under random censoring[END_REF].

Denote by C 1 , ..., C d , d compact intervals of R and set C = C 1 × ... × C d . For every subset E of R q , q ≥ 1, and any α > 0, introduce the α-neighborhood E α of E, i.e. E α = {x : inf y∈E x -y R q ≤ α}, • R q standing for the euclidian norm on R q . We will work under the following regularity assumptions on f and f l , l = 1, ..., d, f l denoting the density function of X l . These functions are supposed to be continuous and we assume the existence of a constant α > 0 such that the following assumptions hold, (F.1) :

∀x l ∈ C α l , f l (x l ) > 0, l = 1, ..., d, and ∀x ∈ C α f (x) > 0. (F.2) : f is k -times continuously differentiable on C α , k > kd.
Regarding the weight function g, we will assume that the condition (G.1) below is satisfied.

(G.1) : g is an indicator function with compact support included in C.

Remark 2.2 Assumption (G.1) is made here to avoid technical issues in the derivation of our results. Moreover, it is not restrictive since g is a given weight function. That being said, this assumption could be relaxed (see, e.g., [START_REF] González-Manteiga | A note on variable selection in nonparametric regression with dependent data[END_REF], [START_REF] Camlong-Viot | Vers un test d'additivité en régression non paramétrique sous des conditions de mélange[END_REF]).

The kernels L, K, and K 3 defined in R d , K 1 defined in R and K 2 defined in R d-1 , are assumed to be continuous, compactly supported and integrating to 1. Moreover, we suppose that, (K.1) : K 1 is Lipschitz; (K.2) : K 1 and K 3 are of order k, and K is of order k .

In addition, we impose the following assumptions on the integrating density functions q -l and q l , l = 1, ..., d.

(Q.1) : q -l is bounded and continuous, l = 1, ..., d. (Q.2) : q l has k + 1 continuous and bounded derivatives, l = 1, ..., d.

Turning our attention to the smoothing parameters n , h n and h j,n , j = 1, 2, we will work under the conditions below.

(H.1) :

h n = c 1 log n n 1/(2k +d)
, for a given 0 < c 1 < ∞.

(H.2) : h 1,n = c 2 log n n 1/(2k+1)
, for a given 0 < c 2 < ∞ and h 2,n = o(1).

(H.3) : n(log n/n) k/(2k+1) d/2 n → 0 and n d n → ∞.
As mentioned in [START_REF] Gross | Nonparametric estimation and regression analysis with left-truncated and right-censored data[END_REF], functionals of the (conditional) law can generally not be estimated on the complete support when the variable of interest is right-censored. Accordingly, we will work under the assumption (A) that will be said to hold if either (A)(i) or (A)(ii) below holds. Denote by T L = sup{t : L(t) > 0} the upper endpoint of the distribution of a random variable with right continuous survival function L, and recall that H(t) = P (Z > t).

(A)(i) There exists a τ 0 < T H such that ψ = 0 on (τ 0 , ∞).

(A)(ii) (a) For a given k/(2k + 1) < p ≤ 1/2, T H 0 F -p/(1-p) dG < ∞; (b) T F < T G ; (c) n 2p-1 h -1 l,n | log(h l,n )| → ∞, as n → ∞, for every l = 1, ..., d.
It is noteworthy that assumption (A)(ii) allows for considering the estimation of the "classical" regression function, which corresponds to the choice ψ(y) = y. On the other hand, asymptotic normality for the statistic derived in the case of estimators of functionals such as the conditional distribution function P (Y ≤ τ 0 |X) can be obtained under weaker conditions, when restricting ourselves to τ 0 < T H .

To state our result, some additional notations are needed.

Set i = δ i ψ(Z i ) G(Z i ) - m ψ (X i ) and σ 2 0 (x) = E( 2 i |X i = x). Further introduce B = [ σ 2 0 (u)f -1 (u)g(u) du] × L 2 (t)dt and V = 2 [ (σ 2 0 (u) 2 f -2 (u)g 2 (u)du] × [ L(t)L(t -r)dt] 2 dr.
Theorem 2.1 Assume the conditions (A), (C.1-4), (F.1-2), (G.1), (K.1-2), (Q.1-2) and (H.1-3) hold. Then, under the null hypothesis H 0 , we have,

n d/2 n T n -B -d/2 n √ V → N (0, 1), as n → ∞.
3 Proof of Theorem 2.1

Here, we present the proof of Theorem 2.1 in the case where (A)(i) holds. The case where (A)(ii) holds follows from similar arguments (especially replacing the result of [START_REF] Földes | LIL type result for the product-limit estimator[END_REF] by that of [START_REF] Gu | Functional laws of the iterated logarithm for the product-limit estimator of a distribution function under random censorship or truncation[END_REF] or that of [START_REF] Chen | On the rate of uniform convergence of the Product-Limit estimator : strong and weak laws[END_REF]); details are then omitted.

We will make frequent use of the following lemma, which was established in Debbarh and Viallon (2007a).

Lemma 3.1 Assume H 0 holds. Then, under the conditions (A), (C.1-4), (F.1-2), (K.1-2), (Q.1-2) and (H.1-2), we have, with probability one,

sup x∈C | m ψ,add (x) -m ψ (x)| = O log n n k 2k+1
.

(3.1)

We will also make frequent use of the following result, due to [START_REF] Földes | LIL type result for the product-limit estimator[END_REF].

For all τ < T H , sup y≤τ |G n (y) -G(y)| = O((log log n/n) 1/2 ) =: ρ n (3.2)
From this last result, we especially get the following type of approximations.

Set i = δ i ψ(Z i ) Gn(Z i ) -m ψ (X i ). Then, from (A)(i), (C.2), (C.3) and (3.2), we have, almost surely as n → ∞, i = i + O(ρ n ). (3.3)
Now, recalling the definition (1.4) of T n , we have

T n = R d 1 n d n n i=1 L x -X i n m ψ (X i ) -m ψ,add (X i ) + i f n (X i )
Consider the quantity

T 1 n = R d 1 n d n n i=1 L x -X i n m ψ (X i ) -m ψ,add (X i ) + i f (X i ) 2 g(x)dx. = T 1 n,1 + T 1 n,2 + T 1 n,3 + 2T 1 n,4 + 2T 1 n,5 ,
with (see [START_REF] Camlong-Viot | Vers un test d'additivité en régression non paramétrique sous des conditions de mélange[END_REF]),

T 1 n,1 = R d 1 n 2 2d n n i=1 L 2 x -X i n i 2 g(x) f 2 (X i ) dx, T 1 n,2 = R d 1 n 2 2d n i =j L x -X i n L x -X j n i j g(x) f (X i )f (X j ) dx, T 1 n,3 = R d 1 n d n n i=1 L x -X i n m ψ (X i ) -m ψ,add (X i ) f (X i ) 2 g(x)dx, T 1 n,4 = R d 1 n d n 2 n i=1 L 2 x -X i n (m ψ (X i ) -m ψ,add (X i )) i g(x) f 2 (X i ) dx, T 1 n,5 = R d 1 n d n 2 i =j L x -X i n L x -X j n m ψ (X i ) -m ψ,add (X i ) f (X i )f (X j ) j g(x)dx.
By (F.1-2), (H.1) and (K.2), it holds that, almost surely as n → ∞ (see for instance Ango-Nze and Rios ( 2000)),

sup x∈C fn (x) -f (x) = O log n nh d n , (3.4) 
in such a way that

T n = T 1 n {1+O[(n -1 h -d n log n) 1/2
]} almost surely as n → ∞. Therefore, to achieve the proof of Theorem 2.1, it is sufficient to establish (3.5)-(3.9) below.

n d n T 1 n,1 = B + o p ( d/2 n ), (3.5) n d/2 n (T 1 n,2 -ET 1 n,2 ) √ V → N (0, 1), (3.6) T 1 n,3 = o p (n -1 -d/2 n ), (3.7) T 1 n,4 = o p (n -1 -d/2 n ), (3.8) T 1 n,5 = o p (n -1 -d/2 n ). (3.9) Proof of (3.5): Set σ 0 2 (x) = E( 2 i |X i = x). Using a conditioning argument, it is straightforward that ET 1 n,1 = 1 n 2d n σ 0 2 (v) f (v) L 2 x -v n dvg(x)dx.
Moreover, since g is an indicator function with compact support included in C, we obtain, for n large enough, that

E(N 2 n (ζ 1 , ζ 2 )) = O(1) as n → ∞, (3.12) E(M 2 n (ζ 1 , ζ 2 )) = -d n V 2 + o( -d n ) as n → ∞, (3.13) E(M 4 n (ζ 1 , ζ 2 )) = O -3d n as n → ∞. (3.14)
Proof of (3.12): Denote by f X, the joint density of (X, ) (the existence of which being ensured by the assumption (C.1), since (X, Y ) is supposed to have a joint density). It holds that

E N 2 n (ζ 1 , ζ 2 ) = 1 8d n ... ... L x 1 -v 1 n L x 1 -η 1 n L x 2 -v 1 n ×L x 2 -η 2 n g(x 1 ) f 2 (v 1 ) g(x 2 ) f 2 (v 2 ) f X, (v 1 , e 1 )e 2 1 e 2 e 3 dv 1 de 1 dx 1 dx 2 2 de 2 de 3 dη 1 dη 2 .
Using classical changes of variables, together with the assumption (G.1) and the fact that L is compactly supported, (3.12) is straightforward.

Proof of (3.13). Set σ 2 n = M 2 n (ω 1 , ω 2 )f X, (ω 1 )f X, (ω 2 )dω 1 dω 2 ,. Then,

σ 2 n = 1 4d n L x 1 -v 1 n L x 1 -v 2 n L x 2 -v 1 n L x 2 -v 2 n ×e 2 1 e 2 2 f X 1 , 1 (v 1 , e 1 )f X 2 , 2 (v 2 , e 2 ) g(x 2 ) f 2 (v 2 ) g(x 1 ) f 2 (v 1 ) dx 1 dx 2 dv 1 dv 2 de 1 de 2 .
Next, noting that e 2 1 f X, (v 1 , e 1 )de

1 = E( 2 i |X i = v 1 )f (v 1 ), it follows that σ 2 n = 1 4d n L x 1 -v 1 n L x 1 -v 2 n L x 2 -v 1 n L x 2 -v 2 n × E( 2 i |X i = v 1 )f (v 1 )E( 2 i |X j = v 2 )f (v 2 ) g(x 2 ) f 2 (v 2 ) g(x 1 ) f 2 (v 1 ) dx 1 dx 2 dv 1 dv 2 .
Using the changes of variables, y 1 = (x 1 -v 1 )/ n , y 2 = (x 2 -v 1 )/ n and r 1 = (v 1 -v 2 )/ n , along with the continuity of f and the dominated convergence theorem, we get,

σ 2 n = ... 1 4d n L(y 1 )L(y 2 )L(y 1 -r 1 )L(y 2 -r 1 )E( 2 i |X i = v 1 ) ×E( 2 j |X j = v 1 + r 1 n ) g(v 1 + y 1 n ) f (v 1 ) g(v 1 + y 1 n ) f (v 1 + r 1 n ) dy 1 dy 2 dr 1 dv 1 , = -d n L(t)L(t -r)dt 2 dr (E( 2 i |X i = r)) 2 g 2 (r) f 2 (r) dr + o( -d n ),
which, recalling the definition of V , is (3.13).

Proof of (3.14): Arguing as before (see also [START_REF] Camlong-Viot | Vers un test d'additivité en régression non paramétrique sous des conditions de mélange[END_REF]), we can show that, for a given C < ∞,

A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT |E(M 4 n (ζ i , ζ j ))| ≤ C 8d n ... L x 1 -v 1 n L x 2 -v 1 n L x 3 -v 1 n L x 4 -v 1 n L x 1 -v 2 n L x 2 -v 2 n L x 3 -v 2 n L x 4 -v 2 n g(x 1 ) f (v 1 ) g(x 2 ) f (v 2 ) g(x 3 ) f 2 (v 1 ) g(x 4 ) f 2 (v 2 ) dv 1 dv 2 dx 1 dx 2 dx 3 dx 4 = O -3d n .
Combining (3.12), (3.13) and (3.14), it is readily shown that [T 3] holds. Then, Hall's Theorem can be applied to ).

T 1 n,2 . Namely, since EM n (ζ i , ζ j ) = 0, we have √ 2(nσ n ) -1 T 1 n,2 → N (0, 1). Recalling that T 1 n,2 = n 2 T 1 n,2 /2, we deduce, from (3.13), that (n d/2 n )T 1 n,2 / √ V → N (0 , 
Proof of (3.9): Arguing as before, we infer that, ultimately as n → ∞, .

Therefore, Bienayme-Tchebychev's inequality leads to (3.9).

  (C.1) : C and (X, Y ) are independent. (C.2) : G is continuous. (C.3) : There exists a constant M < ∞ such that sup 0≤t≤τ |ψ(t)| ≤ M . (C.4) : m ψ is a k-times continuously differentiable function, k ≥ 1, and

.

  1). Slutsky's Theorem is now sufficient to conclude to (3.6), since, as already mentioned,T 1 n,2 = T 1 n,2 + O(ρ n ) almost surely as n → ∞ .Proof of (3.7): By (G.1), dx a.s. . Since, under H 0 , m ψ = m ψ,add ∈ M add , we can apply the result of Lemma 3.1. This latter, when combined with, successively, the boundedness of f , the dominated convergence theorem, Bochner's theorem and the fact that g is compactly supported, yields T 1 n,3 = O (log n/n) 2k/2k+1 almost surely as n → ∞. Thus, under the assumption (H.3),T 1 n,3 = o p (n -1 -d/2 n ) as n → ∞.Proof of (3.8): First consider the mean of T 1 n,4 . By (G.1), it holds that|ET 1 n,4 | ≤ sup x∈C |m ψ (x) -m ψ,add (x)| 1 n 2d n E i |X i = u L 2 xu n ×g(x)dxdu.Next, under the assumptions (H.1-2-3), using, successively, the assumption (G.1), the dominated convergence theorem, the equality (3.3), Bochner's theorem and Lemma 3.1, it can be shown that|ET 1 n,4 | = O((n d n ) -1 (log n/n) k/(2k+1) ) = o(n -1 -d/2 n ). Turning our attention to the variance of T 1 n(X i ) -m ψ,add (X i ))An application of Bienayme-Tchebychev's inequality leads to T 1 n,4 -ET 1 n,4 = o p (n -1 -d/2 n ), which implies (3.8), since |ET 1 n,4 | = o(n -1 -d/2 n

g(x)dx.

A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT

and then, via arguments similar to those used to derive (3.3),

Turning our attention to the variance of T 1 n,1 , we can write,

dx. (3.10)

But, using once again the arguments used to show (3.3), along with the facts that G(τ ) > 0, ψ and g are bounded and L is compactly supported, it holds that, as n → ∞,

Using the Bienayme-Tchebytchev inequality, we infer that, for all ε > 0,

Note that, in view of (3.2) and (3.4), the dominated convergence theorem ensures that T 1 n,2 = T 1 n,2 + O(ρ n ) almost surely as n → ∞, with T 1 n,2 := 2n -2 T 1 n,2 . To establish (3.6), we will make use of a central limit theorem for U-statistics [START_REF] Hall | Integrated square error properties of kernel estimators of regression functions[END_REF]

To apply Hall's theorem to T 1 n,2 , the conditions [T 1], [T 2] and [T 3] below must be verified.

[T 1 ] is readily satisfied by making use of conditioning arguments. Moreover, arguing as before, the statement [T 2 ] follows from routine analysis. To establish [T 3 ], it is sufficient to prove the results (3.12), (3.13) and (3.14) below.