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In this paper, we suggest to use wavelet packet bases as an alternative to the widely used principal component analysis in an estimation of the functional autoregressive processes. By extending the notion of the socalled nonstandard form of operators representation, we search for the "best" basis on a criterion of highest correlation between pairs of wavelet packet coefficients.

Introduction

The problem formulated in this paper is defined as follows. Let H denote the Hilbert space L 2 (0, 1) with the norm ||x|| 2 = 1 0 x 2 (t)dt and with the inner product x, y = 1 0 x(t)y(t)dt. A sequence (ξ i = ξ i (t), t ∈ [0, 1]; 0 < i ≤ N ) of random variables with values in H is said to follow a Hilbert space valued autoregressive process of the first order (ARH(1)) associated with (ε, ρ) if it is stationary and such that

ξ i = ρ(ξ i-1 ) + ε i , (1) 
where (ε i (t), t ∈ [0, 1]; 0 < i ≤ N ) is an H white noise, and operator ρ : H → H is linear and compact [Bosq (2000)].

Let β : [0, 1] 2 → R satisfies (2) Then, the goal of this paper is to suggest a method for an estimation of β when the function β has some singular structures. For the formal definition of the function's singular structure in the context of this paper we suggest to look at some textbook on the wavelet analysis (see [Mallat (1999)] ). In this paper we give an informal presentation and it is shown in the Figure 1.

In the Figure 1 simulation and estimation results of the functional process that follows (1) are presented. The simulations have been done on the grid of 32 points. 4000 functional processes has been generated using model (1) and: 1) kernel β shown in the Figure 1 The rest of the paper is organised as follows. Chapter 1 presents the standard and non-standard forms of the operator decomposition and discuss their extension with the wavelet packet dictionaries. An estimation of the first-order functional autoregressive process based on the wavelet packet transformation is presented in the chapter 2. The chapter 3 presents simulation results, which show that the proposed method improves the prediction results for a certain class of the functional processes.

1 The standard and non-standard form of operator decomposition

The operators with singularities in the kernel have been considered in the papers by [START_REF] Beylkin | Fast Wavelet Transforms and Numerical Algorithm[END_REF] and [START_REF] Fann | Singular operators in multiwavelet bases[END_REF]. They investigated an operator representation in the so-called non-standard form and demonstrated that for some class of operators a sparse representation with an algorithm of order O(N ) can be achieved. For that purpose, the function β(s, t) from ( 2) is represented in the nonstandard form. The standard form is the representation of an operator in the tensor product basis. Let {V j } j∈Z be a multiresolution approximation [Mallat (1999)] of the function β(s, t). If there is the coarsest scale n, then we have V j = V n ⊕ j =n j =j+1 W j , where subspace W j+1 is supplementary of subspace V j+1 and is defined as: V j = V j+1 ⊕W j+1 . In the case of finitely many scales the autoregressive operator is a representation of ρ j = P j ρP j , where P j is the projection on the subspace V j . Using standard form representation we can decompose autoregressive operator by the set of operators acting between subspaces of different scales:

W j → W j , W j → W j , V n → W j , W j → V n , V n → V n .
Alternatively, wavelet bases in L 2 (R 2 ) , may be constructed using the scaling function in addition to the wavelets. In that case, the triplet of functions ψ j,k (t) ψ j,l (s), ψ j,k (t)φ j,l (s), φ j,k (t)ψ j,l (s), where j, k, l ∈ Z , forms a basis of L 2 (R 2 ). Representing operators in these bases leads to the nonstandard form [START_REF] Beylkin | Fast Wavelet Transforms and Numerical Algorithm[END_REF]] as a chain of triplets ρ = {A j B j Γ j } j∈Z acting on the subspaces V j and W j :A j : W j → W j , B j : V j → W j , Γ j : W j → V j . The operators {A j B j Γ j } j∈Z are defined as A j = Q j ρQ j , B j = Q j ρP j and Γ j = P j ρQ j . They admit a recursive definition via the relation

ρ j = A j+1 B j+1 Γ j+1 ρ j+1 ,
where the operators ρ j ,ρ j : V j → V j are defined by ρ j = P j ρP j . If there is a coarsest scale n, then

ρ = {{A j B j Γ j } j∈Z,j≤n , ρ n }
where ρ n = P n ρP n . If the number of the scales is finite, then the operators are organised as blocks of a matrix.

In this paper we extend the notion of the standard and non-standard integral operator representation by considering operator decomposition in the wavelet packet bases. Wavelet packet bases has been introduced by [START_REF] Coifman | Wavelet Analysis and Signal Processing, Wavelets and Their Applications[END_REF] as a generalization of the wavelet transformation. This generalization of the traditional wavelet filter bank structure permits the representation of a function by one of many bases, each of which is constructed by a unique ensemble of scalings and translations of the same wavelet/scaling filter pair.

The motivation for using wavelet packet bases follows from the possibility to have a whole ensemble of localized representations beyond the traditional wavelet transform. Wavelet packet bases can isolate functions behavior in both length (time) and frequency. Following the same approach as above both standard and non-standard forms of autoregressive operator can be introduced for wavelet packet bases (more on the functions decomposition by wavelet packet bases can be found in [START_REF] Coifman | Wavelet Analysis and Signal Processing, Wavelets and Their Applications[END_REF]] or [Mallat (1999)]).

Estimation of the autoregressive operator by wavelet packets

In the previous section we introduced the notion of the operator representation by wavelet packet bases in the non-standard form. In this section we will use this representation to estimate the autoregressive operator ρ in the equation (1). Let Γ 0 be the covariance operator of the random curves {ξ i } defined by

Γ 0 = E ξ i ⊗ξ i so that Γ 0 x, z = E ξ i , x ξ i , z for x, z ∈ H. Let Γ 1 be the cross- covariance operator for the curves {ξ i } and {ξ i-1 } defined by Γ 1 = E ξ i-1 ⊗ ξ i so that Γ 1 x, z = E ξ i-1 , x ξ i , z for x, z ∈ H. The ξ i ⊗ ξ i-1 defines the tensor product for two fixed elements ξ i , ξ i-1 ∈ H and is the bounded linear operator form H to H, defined by x ∈ H → (ξ i ⊗ ξ i-1 )(x) =< ξ i , x > ξ i-1 .
It is easy to see that by multiplying (1) by ξ i-1 and taking expectation we have that the following relationship holds:

Γ 1 = ρΓ 0 .
An intuitive way for ρ estimation is to substitute the covariance and crosscovariance operators with their estimates

Γ 0 (x) = 1 n n i=1 ξ i , x ξ i , . Γ 1 (x) = 1 n -1 n-1 i=1 ξ i , x ξ i+1 .
(3)

In the expression above we have that Γ 0 is singular and we are faced with an ill-posed problem. As a consequence, obtaining a consistent estimate of ρ requires some form of the regularization. One way to achieve that would be to use projection method on the span of principal components. [START_REF] Mallat | Adaptive Covariance Estimation of Locally Stationary Processes[END_REF] suggested to estimate locally stationary process eigenfunctions of the covariance operator by searching for their close match in the dictionary of local cosines bases. The best orthogonal basis provides the means of quickly computing compact, adaptive function approximations. In the case of the functional autoregressive process we have the possibility to chose the basis close to the principal components basis if the principal components basis is the best one or to find better if the principal components basis is not optimal basis for the prediction.

Let D = {φ γ } γ∈Z be a dictionary of waveforms. Wavelet packets and local cosine bases can be as an example of such dictionaries. There are several ways we can proceed to find the best basis for the operator estimation. In paper we suggest an algorithm which is closely related to projection pursuit algorithm used in statistics. Let assume that dictionary D has P > N vectors with a unit norm. N is the grid size on with measurements of function values are taken for our analysis. This dictionary includes N linearly independent vectors that defines a basis of the function space. Next, we define autocovariance function in this dictionary basis as follows:

ν(φ γ 1 , φ γ 2 ) = φ γ 1 , Γ 1 φ γ 2 2 φ γ 1 , Γ 0 φ γ 1 φ γ 2 , Γ 0 φ γ 2 ,
where φ γ 1 and φ γ 2 are two dictionary ( wavelet packet ) bases. Part d) from the Figure 1 is an example of such autocovariance function in wavelet packet bases.

Next, let g γ 1 ,γ 2 = φ γ 1 ⊗ φ γ 2 and B = {g γ 1 ,γ 2 } γ 1 ,γ 2 ∈Z be a dictionary of P 2 vectors. At the begining of the matching pursuit we chose the basis ĝγ 1 ,γ 2 such that | ν, ĝγ 1 ,γ 2 | is maximum or for computational reasons it can be defined as:

| ν, ĝγ1,γ2 | > β sup γ 1 ,γ 2 ∈Z | ν, g γ1,γ2 |,
where β ∈ (0, 1] is an optimality factor. Next step is an estimation of the operator ρ . Let Γ 0 and Γ 1 be an empirical covariance and cross-covariance operators as defined in (5) and let, H i N be the span of k N {g γ 1 ,γ 2 } bases functions found in previous steps. Let π k N be the orthogonal projector on this subspace. Let us define the regularized covariance and cross-covariance estimates as follows: Γ0

= π k N Γ 0 π k N and Γ1 = π k N Γ 1 π k N .
The regularized estimator of the operator ρ will be

ρ = π k N Γ1 Γ0 -1 π k N . ( 4 
)
Row residuals ( ε i ) of the model ( 1) are defined in the usual way by

ε i = ξ i -ρ(ξ i-1 ).
Row residuals covariance and cross-covariance operators estimates are defined as follows:

Γ ε0 (x) = 1 n n i=1 ε i , x ε i , . Γ ε1 (x) = 1 n -1 n-1 i=1 ε i , x ε i+1 .
(5)

We define residuals autocovariance function as follows:

Rν(φ γ 1 , φ γ 2 ) = φ γ 1 , Γ ε1 φ γ 2 2 φ γ 1 , Γ ε0 φ γ 1 φ γ 2 , Γ ε0 φ γ 2 ,
The pursuit iterates this procedure by decomposing residue. At first step, let R 0 ν = ν. Suppose that we have m th order residue, for m ≥ 0. The next iteration chooses

g γ m1 ,γ m2 | R m ν, ĝγ m1 ,γ m2 | > β sup γ 1 ,γ 2 ∈Z | R m ν, g γ 1 ,γ 2 |, projects R m ν on ĝγ m1 ,γ m2 E R m ν, x = E R m ν, ĝγ m1 ,γ m2 ĝγ m1 ,γ m2 , x + E R m+1 ν, x .
By using this iteration procedure we need some criterion when to stop iterations. One way is to use cross validation criterion by measuring forecasting error. Another one is to use some statistic with tabulated distribution. For the second one we tested uniform moving residual sums statistic that was described at [Laukaitis & Rackauskas(2002)].

Simulation results

We now consider three special examples of the simulation that explains the motivation behind this work and demonstrates shortcomings as well as benefits of the suggested algorithm.

1. For the first example, the two randomly generated Dirac basis (peaks) on the surface of the kernel β in the equation (2) (one peak on the diagonal). In that case, the autoregressive operator will have the form

ρ(x) = A < x, v 1 > v 1 + B < x, v 3 > v 2 , ( 6 
)
where {v 1 , v 2 , v 3 } is an orthonormal system in H and 0 < A < 1 and 0 < B < 1. This function is shown on the Figure 1 a).

2. As the second example we consider the kernel with singularities of the form log |t -s|. Application of such operators have been analyzed by Bradley & Alpert (1993). For the simulation studies the following operator has been used

β(s, t) = -log |t -s| -2 log (-|t -s| + 1), |t -s| = 0 or |t -s| = -1 100, |t -s| = 0 or |t -s| = -1.
(7) 3. The Gaussian kernel we chose as an example of a smooth kernel function. It is defined as

Model

Num. of func. 10 2 10 3 10 4 10 5 PCA 0.09559 0.00398 0.001350 0.00104 Vaguelette 0.09130 0.00348 0.001449 0.00101 WPB 0.00140 0.00106 0.00096 0.00091

Table 1: Operator kernel of two Dirac basis (equation ( 6)). Mean quadratic errors for one-step-ahead forecast of the ξ in model (1).

β(s, t) = K exp{(s 2 + t 2 )/2}, s, t ∈ [0, 1]. ( 8 
)
In addition to the wavelet packet basis approach, two methods presented by Bosq (1991) and Antoniadis & Sapatinas (2003) are used in the simulation. First method suggest the projection of the covariance operator on the span of principal components. Let, H i N be the span of k N eigenvectors of Γ 0 associated with the largest eigenvalues, and let π k N be the orthogonal projector on this subspace. Then an estimation will have the form as in equation ( 4). Under certain assumptions on the covariance operator, this estimator is consistent(for details see ([Bosq (1991)])). For less regular space Antoniadis & Sapatinas (2003) proposed the method based on the wavelet-vaguelette decomposition and which is defined as follows

ρξ i = 2 j 0 k=1 ξ i , ρ * φ j0k φ j0k (9)
and

ρ * φ j0k = ( Γ * 0 Γ 0 + λI) -1 Γ * 0 Γ * 1 φ j0k
, where Γ * 0 and Γ * 1 are the adjoint operator of Γ 0 and Γ 1 . A recent study from Laukaitis and Rackauskas (2002) suggest that autoregressive operator estimation based on the Wavelet-vaguelette decomposition shows similar prediction accuracy as the covariance operator principal component projection method. Simulation results in this paper suggests the same conclusion.

The main difference between the wavelet-vaguelette decomposition and the method suggested in this paper is that the wavelet-vaguelette decomposition stays in the class of linear estimations. It considers a Tikhonov-Phillips regularization method additionally with some restriction imposed on approximation grid of functional observations. In contrast , wavelet packet method is a nonlinear estimator.

To conclude this section, Tables 1,2, 3 presents our simulation results for the model (1). Wiener process is used as the noise component ε i . The methods of the principal components, the wavelet-vaguelette decomposition and the wavelet packet bases (see section 2 ) are compared by increasing the number of samples 8)). Mean quadratic errors for one-step-ahead forecast of the ξ in model (1).

from 10 2 to 10 5 and calculating the mean quadratic errors of the forecasted variables. All simulation has been carried in the MATLAB environment.

As we can see from tables 1 and 2, while consistent, method of the principal components perform more poorly when we have small number of samples. It can be explained by the fact that the best predictors of the future evolution have little to do with the largest principal components. On the other hand, we see that the method of wavelet packet basis ((WPB)) gives more accurate estimation when we deal with the low number of observations. But, the PCA method gives the best prediction when we have smooth kernel operator (results from the table 3). The reason for this can be that in present simulations we used Daubechies D3 wavelet bases. Better results are received when we use more smooth wavelet bases, but again, payoff of this is an increase in error when the kernel has some singularities.

Concluding remarks

In this paper we suggested the wavelet packet bases method for functional autoregressive process estimation. As we have seen the method shows better prediction compared with the other known methods when autoregressive kernel exhibits some singular structures and when the number of observations is limited.

  (s, t)dsdt < ∞ and consider the operator ρ : H → H defined by the kernel β ρ(x) = 1 0 β(s, t)x(t)dt, for s ∈ [0, 1].
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 1 Figure 1: An example and motivation: a) kernel β of the operator ρ, b) the estimation by PCA method, c) the resulting (ARH(1)) process d) cross covariance of the wavelet packet coefficients from the process in part c).

  part a, 2) noise components {ε i } defined as Wiener motion processes. The resulting (ARH(1)) process is shown in the part c) of the Figure 1. The estimated kernel by PCA method [Ramsay & Silverman(1997)] is presented in the part b) of the Figure 1. By comparing the true function ρ in part a) of the Figure 1 and it's estimation ρ by PCA method in part b) of the Figure 1 we can see that an estimation is dominated by the noise components {ε i }. Nevertheless, the results of the estimation are not unexpected considering the fact that principal components captures most of the noise variance.

Table 2 :

 2 Operator kernel of the form log |t -s| (equation (7)). Mean quadratic errors for one-step-ahead forecast of the ξ in model (1).

		ACCEPTED MANUSCRIPT	
	Model	Num. of func.	10 2	10 3	10 4	10 5
	PCA Vaguelette WPB Model Num. of func. PCA Vaguelette A C C E P T E D M A N U S C R I P T 0.1302 0.06796 0.03352 0.03122 0.1334 0.05279 0.03218 0.03174 0.1103 0.05072 0.03083 0.02989 10 2 10 3 10 4 10 5 0.1331 0.0069 0.0056 0.0025 0.1366 0.0081 0.0059 0.0026 WPB 0.1497 0.0067 0.00591 0.0027

Table 3 :

 3 Gaussian kernel operator (equation (
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