
HAL Id: hal-00508476
https://hal.science/hal-00508476

Submitted on 4 Aug 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A generalization of a result concerning the asymptotic
behavior of finite Markov chains

Alina Nicolaie

To cite this version:
Alina Nicolaie. A generalization of a result concerning the asymptotic behavior of finite Markov chains.
Statistics and Probability Letters, 2009, 78 (18), pp.3321. �10.1016/j.spl.2008.07.003�. �hal-00508476�

https://hal.science/hal-00508476
https://hal.archives-ouvertes.fr


Accepted Manuscript

A generalization of a result concerning the asymptotic behavior of
finite Markov chains

Alina Nicolaie

PII: S0167-7152(08)00322-2
DOI: 10.1016/j.spl.2008.07.003
Reference: STAPRO 5135

To appear in: Statistics and Probability Letters

Received date: 28 February 2008
Revised date: 4 July 2008
Accepted date: 9 July 2008

Please cite this article as: Nicolaie, A., A generalization of a result concerning the asymptotic
behavior of finite Markov chains. Statistics and Probability Letters (2008),
doi:10.1016/j.spl.2008.07.003

This is a PDF file of an unedited manuscript that has been accepted for publication. As a
service to our customers we are providing this early version of the manuscript. The manuscript
will undergo copyediting, typesetting, and review of the resulting proof before it is published in
its final form. Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.spl.2008.07.003


AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

A GENERALIZATION OF A RESULT CONCERNING THE

ASYMPTOTIC BEHAVIOR OF FINITE MARKOV CHAINS

ALINA NICOLAIE

Abstract. In this paper we give, in a more general context than previous studies, suffi-

cient conditions for weak, strong and C-strong ergodicity of a finite state nonhomogeneous

Markov chain in terms of similar properties of a certain Markov chain of smaller size.

AMS Subject Classification: 60J10.
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1. PRELIMINARIES

Consider a finite homogeneous Markov chain with state space S = {1, ..., r} and transition

matrix P . We shall refer to it as the finite Markov chain P . Assume that the stochastic

matrix P has p ≥ 1 irreducible aperiodic closed classes or equivalently, ergodic classes, and,

perhaps transient states, so that it has the form

(1.1) P =




S(1) 0 ... 0 0
0 S(2) ... 0 0
... ... ... ... ...

0 0 ... S(p) 0
L(1) L(2) ... L(p) T




,

where S(i) are ri × ri transition matrices, 1 ≤ i ≤ p, associated with the p irreducible

aperiodic closed classes, T concerns the transitions of the chain as long as it stays in the

r −
∑p

t=1 rt transient states and the L(i) concern transitions from the transient states into

the ergodic sets Si, 1 ≤ i ≤ p.

Definition 1.1. A probability distribution µ = (µ1, ..., µr) is said to be invariant with

respect to an r × r stochastic matrix P if µP = µ.

We shall need the following result
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THEOREM 1.2. Consider a finite homogeneous Markov chain with state space S and

transition matrix P of the form (1.1). Then

(1.2) lim
n→∞

Pn =




Γ1 0 ... 0 0
0 Γ2 ... 0 0
... ... ... ... ...

0 0 ... Γp 0
Ω1 Ω2 ... Ωp 0




,

where Γi is a strictly positive ri × ri matrix, 1 ≤ i ≤ p; each row of the matrix Γi is the

invariant probability vector µ(i) = (µ
(i)
1 , ..., µ

(i)
ri ) with respect to S(i), 1 ≤ i ≤ p, and

Ωi =




µ
(i)
1 ar1+r2+...+rp+1,i ... µ

(i)
ri ar1+r2+...+rp+1,i

... ... ...

µ
(i)
1 ar,i ... µ

(i)
ri ar,i




is an (r −
∑p

t=1 rt) × ri matrix, where aji= probability that the chain will enter and thus,

will be absorbed in Si given that the initial state is j,
∑p

t=0 rt ≤ j ≤ r, 1 ≤ i ≤ p [with

convention r0 = 1].

Proof. For the form of Γi, 1 ≤ i ≤ p, see, e.g., Iosifescu (1980, p. 123) and for Ωi,

1 ≤ i ≤ p, see, e.g., Karlin et Taylor (1975, p. 91). 2

Remark 1.3. Clearly, aji ≥ 0,
∑p

t=0 rt ≤ j ≤ r, 1 ≤ i ≤ p and

(1.3)

p∑

i=1

aji = 1,

p∑

t=0

rt ≤ j ≤ r.

A vector x ∈ Cn will be understood as a row vector and x
′

denotes the transpose of x.

Set e = (1, 1, ..., 1) and let (ei)1≤i≤r be the canonical basis of the linear space Rr.

THEOREM 1.4 (Nicolaie (2008a)). Let A = −Ir + P with P of the form (1.1). Then

there exists a nonsingular complex r × r matrix Q such that

(1.4) A = QJQ−1,
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where J is a Jordan r × r matrix, and Q reads as

Q =

r1

r2

...

rp

r −
∑p

t=0 rt

{

{

{

{




1 0 ... 0 ...

... ... ... ... ...

1 0 ... 0 ...

0 1 ... 0 ...

... ... ... ... ...

0 1 ... 0 ...

0 0 ... 0 ...

... ... ... ... ...

0 0 ... 0 ...

0 0 ... 1 ...

... ... ... ... ...

0 0 ... 1 ...

ar1+r2+...+rp+1,1 ar1+r2+...+rp+1,2 ... ar1+r2+...+rp+1,p ...

... ... ... ... ...

ar,1 ar,2 ... arp ...




,

where the first column contains 1 in the first r1 rows, the next p−1 columns contain 1 in the

ri−1 + 1, . . . , ri rows, 2 ≤ i ≤ p, and the last r − p columns comprise complex numbers. For

aji,
∑p

t=0 rt ≤ j ≤ r, 1 ≤ i ≤ p, we have the meaning given in Theorem 1.2. The inverse

Q−1 has the form

Q−1 =




µ
(1)
1 ... µ

(1)
r1 0 ... 0 0 ... 0 0 ... 0

... ... ... ... ... ... ... ... ... ... ... ...

0 ... 0 0 ... 0 µ
(p)
1 ... µ

(p)
rp 0 ... 0

qp+1,1 ... ... ... ... ... ... ... ... ... ... qp+1,r

... ... ... ... ... ... ... ... ... ... ... ...

qr,1 ... ... ... ... ... ... ... ... ... ... qrr




,

where µ(i) = (µ
(i)
1 , . . . , µ

(i)
ri ) is the invariant probability vector with respect to S(i), 1 ≤ i ≤ p,

and the last r − p rows comprise complex numbers.

Proof. See Nicolaie (2008a) and also Gidas (1985). 2

Remark 1.5 (Nicolaie (2008a)). (i) We shall need some spectral properties of A, where

A = −Ip + P with P of the form (1.1). We have

(1.5) λ1 = 0

is an eigenvalue of A whose algebraic multiplicity is equal to its geometric multiplicity and

equal to p. All other distinct eigenvalues λ2, ..., λl+s of A satisfy

(1.6) |λi + 1| < 1, 2 ≤ i ≤ l + s.
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(ii) From (1.5) (see Horn et Johnson (1985, pp. 129-131)) we have

J =




J1 0 ... ... ... ... 0
0 J2 ... ... ... ... 0
... ... ... ... ... ... ...

0 0 ... Jl 0 ... ...

0 0 ... 0 Jl+1 ... ...

... ... ... ... ... ... ...

0 0 ... 0 0 ... Jl+s




,

where J1 = 0p×p, Jk is a diagonal mk × mk matrix with entries the eigenvalues λk whose

algebraic and geometric multiplicities are identical, 2 ≤ k ≤ l, and

Jl+i =




λl+i ε
(i)
1 0 ... ... 0

0 λl+i ε
(i)
2 ... ... 0

... ... ... ... ... ...

0 0 ... ... λl+i ε
(i)
ml+i−1

0 0 ... ... 0 λl+i




are ml+i × ml+i matrices corresponding to eigenvalues whose geometric multiplicities are

smaller than their algebraic multiplicities and ε
(i)
t ∈ {0, 1}, 1 ≤ t ≤ ml+i − 1, 1 ≤ i ≤ s.

Clearly, p + m2 + ... + ml+s = r.

If A = (Aij) is an m × n matrix, then for M ⊆ {1, ..., m}, N ⊆ {1, ..., n}, M, N 6= ∅,

define AM×N = (Aij)i∈M,j∈N . Define, also, the matrix norm (see, e.g., Horn et Johnson

(1985, p. 295)) |||A|||∞ = max1≤i≤m

∑n

j=1 |Aij |. Note that such a norm tends to zero if

and only if all elements of A tend to zero.

Let (Pn)n≥1 be a sequence of stochastic r × r matrices. Set S = {1, 2, ..., r}. For all

integers m ≥ 0, n > m, define Pm,n = Pm+1Pm+2...Pn = ((Pm,n)ij)i,j∈S . In the context of

finite Markov chains, the matrix Pm,n has a very simple probabilistic interpretation, namely

being the n − m step transition matrix starting at m.

Definition 1.6 (see, e.g., Isaacson et Madsen (1976, p. 144)). Let P be a stochastic

r × r matrix. The ergodic coefficient of P , denoted by δ(P ), is defined by δ(P ) = 1 −

min1≤i,k≤r

∑r

j=1 min(Pij , Pkj).

THEOREM 1.7 (see, e.g., Isaacson et Madsen (1976, p. 147)). Let R be a real m × n

matrix with Re′ = 0 and P be a stochastic n × p matrix. Then |||RP |||∞ ≤ |||R|||∞δ(P ).

Proof. See, e.g., Isaacson et Madsen (1976, p. 147). 2

Definition 1.8 (see, e.g., Iosifescu (1980, p. 217)). A sequence of stochastic r× r matrices

(Pn)n≥1 is said to be weakly ergodic if ∀m ≥ 0, ∀i, j, k ∈ S, limn→∞[(Pm,n)ik−(Pm,n)jk] = 0.

A stochastic matrix whose rows are identical is said to be stable.
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THEOREM 1.9. Let (Pn)n≥1 be a sequence of stochastic r×r matrices. Then the following

statements are equivalent :

(i) the sequence (Pn)n≥1 is weakly ergodic;

(ii) there exist stable stochastic r×r matrices Πm,n, m ≥ 0, n ≥ 1 such that limn→∞(Pm,n−

Πm,n) = 0, ∀m ≥ 0;

(iii) limn→∞ δ(Pm,n) = 0, ∀m ≥ 0.

Proof. For (i)⇔(ii) see, e.g., Iosifescu (1980, p. 218) and for (i)⇔(iii) see, e.g., Isaacson

et Madsen (1976, p. 149). 2

Definition 1.10 (see, e.g., Iosifescu (1980, p. 223)). A sequence of stochastic r×r matrices

(Pn)n≥1 is said to be strongly ergodic if ∀m ≥ 0, ∀i, j ∈ S, the limit limn→∞(Pm,n)ij =:

(πm)j exists and does not depend on i.

Remark 1.11 (see, e.g., Iosifescu (1980, p. 223)). It is easy to prove that if limn→∞(Pm,n)ij

exists as stated in Definition 1.10, then the (πm)j are also independent of m ≥ 0. Therefore,

a sequence of stochastic matrices (Pn)n≥1 is strongly ergodic if and only if there exists a

stable stochastic matrix Π such that limn→∞(Pm,n − Π) = 0, ∀m ≥ 0.

Definition 1.12 (Isaacson et Madsen (1976)). A sequence of stochastic matrices (Pn)n≥1

is said to be C-strongly ergodic if there exists a stable stochastic matrix Π such that

limn→∞
1
n

∑n

k=1 P0,k = Π.

THEOREM 1.13 (Isaacson et Madsen (1976)). Let (Pn)n≥1 be a sequence of stochastic

matrices such that, for some fixed d, limn→∞ P0,nd+t = Wt, 1 ≤ t ≤ d. Then the limit

limn→∞
1
n

∑n

k=1 P0,k exists and equals W = 1
d

[
W1 + ... + Wd

]
.

Proof. See Isaacson et Madsen (1976, p. 184). 2

Remark 1.14. Note that in Theorem 1.13 the limiting matrices Wt of the Cesaro averages

are not necessarily stable matrices. But if they are stable, this theorem provides sufficient

conditions for the C-strong ergodicity of the sequence (Pn)n≥1.

The next two results will only be used in Section 2 of this paper.

PROPOSITION 1.15 (see, e.g., Isaacson et Madsen (1976, p. 29)). Let (ank)n,k≥1 be a

doubly indexed sequence of real numbers such that limn→∞ ank = ak exists, for all k ≥ 1. If

there exists a sequence of nonnegative numbers (bk)k≥1 such that |ank| ≤ bk, for all n ≥ 1,

k ≥ 1 and
∑∞

k=1 bk < ∞, then limn→∞

∑∞
k=1 ank =

∑∞
k=1 ak.

Proof. See, e.g., Isaacson et Madsen (1976, p. 29). 2
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PROPOSITION 1.16 (see, e.g., Isaacson et Madsen (1976, pp. 34-36)). Let (an)n≥0 be a

sequence of real numbers convergent to 0 and
∑∞

n=0 bn an absolute convergent series. Then

limn→∞

∑n

i=0 aibn−i = 0.

Proof. See, e.g., Isaacson et Madsen (1976, pp. 34-36). 2

2. SOME RESULTS ON RECURRENCE RELATIONS

In this section we give some results related to sequences defined by recurrence relations.

First, we shall need the following

PROPOSITION 2.1. Let (an)n≥0 and (bn)n≥0 be two sequences of nonnegative real num-

bers with limn→∞ bn = 0. If

(2.1) as+d ≤ αas + bs, s ≥ 0,

where d stands for a natural number, d ≥ 1 and α ∈ [0, 1), then

(2.2) lim
n→∞

an = 0.

Proof. Applying the recurrence inequality (2.1) successively we obtain

(2.3) atd+l ≤ αtal +

t−1∑

k=0

αt−k−1bkd+l, t ≥ 0, 0 ≤ l ≤ d − 1.

Since α ∈ [0, 1), we have limt→∞ αt = 0. Moreover, the series
∑∞

t=0 αt < ∞ (the geometrical

series). Also, since limn→∞ bn = 0, all the subsequences of (bn)n≥0 are convergent with limit

zero; in particular, limt→∞ btd+l = 0, 0 ≤ l ≤ d − 1. Applying Proposition 1.16 it follows

that limt→∞

∑t−1
k=0 αt−k−1bkd+l = 0. Next, letting t → ∞ in (2.3), it follows atd+l → 0,

0 ≤ l ≤ d − 1. The conclusion follows. 2

The next result is a generalization of Proposition 2.2 from Nicolaie (2008b).

PROPOSITION 2.2. Let (Xn)n≥1 and (Rn)n≥1 be two sequences of real vectors, each

vector Xn and Rn having p components, Rne′ = 0, n ≥ 1 and
∑∞

n=1 |||Rn|||∞ < ∞. Let

(Cn)n≥1 be a sequence of stochastic p × p matrices and set C̃
(l)
n = C(n−1)d+l+1, for some

fixed d , n ≥ 1, 0 ≤ l ≤ d − 1. Suppose that

(2.4) Xs+d = XsCs + Rs, s ≥ 1,

Then the following statements hold:

(i) If Xne′ = 0, n ≥ 1, and (C̃
(l)
n )n≥1 is weakly ergodic, 0 ≤ l ≤ d−1, then limn→∞ Xn =

0.
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(ii) If Xne′ = 1, n ≥ 1 and (C̃
(l)
n )n≥1 is strongly ergodic with limn→∞ C̃

(l)
m,n = Π = e′ · π,

m ≥ 0, 0 ≤ l ≤ d − 1, then limn→∞ Xn = π.

(iii) If Xne′ = 1, n ≥ 1 and (C̃
(l)
n )n≥1 is strongly ergodic with limn→∞ C̃

(l)
m,n = Π(l+1) =

e′ · π(l+1), m ≥ 0, 0 ≤ l ≤ d − 1, then limn→∞ Xnd+l+1 = π(l+1), 0 ≤ l ≤ d − 1.

Proof. Applying the recurrence relation (2.4) successively we obtain

(2.5) X(t+1)d+l+1 = Xl+1C̃
(l)
0,t+1 +

[
Rtd+l+1 +

t−1∑

k=0

Rkd+l+1C̃
(l)
k+1,t+1

]
, t ≥ 1, 0 ≤ l ≤ d − 1.

First, assuming that (C̃
(l)
n )n≥1 is weakly ergodic, 0 ≤ l ≤ d − 1, we shall prove that

(2.6) lim
t→∞

t−1∑

k=0

Rkd+l+1C̃
(l)
k+1,t+1 = 0, 0 ≤ l ≤ d − 1.

We have

|||
t−1∑

k=0

Rkd+l+1C̃
(l)
k+1,t+1|||∞ ≤

t−1∑

k=0

|||Rkd+l+1C̃
(l)
k+1,t+1|||∞ ≤

(using Theorem 1.7)

≤
t−1∑

k=0

|||Rkd+l+1|||∞δ(C̃
(l)
k+1,t+1).

Next, choose a
(l)
tk = |||Rkd+l+1|||∞δ(C̃

(l)
k+1,t+1), t, k ≥ 1 (take a

(l)
tk = 0 if k > t), 0 ≤ l ≤

d − 1. Then, by Theorem 1.9 (iii), it follows that limt→∞ a
(l)
tk = 0, k ≥ 1, 0 ≤ l ≤ d − 1.

Moreover, |a
(l)
tk | ≤ b

(l)
k := |||Rkd+l+1|||∞, t ≥ 1, since δ(C̃

(l)
k,t) ≤ 1, 0 ≤ k < t, 0 ≤ l ≤ d − 1.

The conditions of Proposition 1.15 are fulfilled, so limt→∞

∑t

k=1 a
(l)
tk = limt→∞

∑∞
k=1 a

(l)
tk =

0, 0 ≤ l ≤ d − 1, which means (2.6).

(i) Let l ∈ {0, 1, ..., d− 1}. By Theorem 1.9 (ii), it follows that there exists a sequence of

stable stochastic matrices Π
(l)
m,t such that limt→∞

(
C̃

(l)
m,t − Π

(l)
m,t

)
= 0.

Letting t → ∞ in (2.5), using Xte
′ = 0, t ≥ 1,

∑∞
n=1 |||Rn|||∞ < ∞ and (2.6), we

get limt→∞ X(t+1)d+l+1 = Xl+1 limt→∞

(
C̃

(l)
0,t+1 − Π

(l)
0,t+1

)
= 0. (because Xl+1Π

(l)
m,t = 0,

0 ≤ m < t). Since l was chosen arbitrarily, it follows limt→∞ X(t+1)d+l+1 = 0, 0 ≤ l ≤ d− 1.

Therefore, the sequence (Xn)n≥1 is convergent and limn→∞ Xn = 0.

(ii) Letting t → ∞ in (2.5), using Xte
′ = 1, t ≥ 1,

∑∞
n=1 |||Rn|||∞ < ∞ and (2.6), we

get limt→∞ X(t+1)d+l+1 = Xl+1 limt→∞ C̃
(l)
0,t+1 = Xl+1Π = π, 0 ≤ l ≤ d − 1. Therefore, the

sequence (Xn)n≥1 is convergent and limn→∞ Xn = π.

(iii) Letting t → ∞ in (2.5), using Xte
′ = 1, t ≥ 1,

∑∞
n=1 |||Rn|||∞ < ∞ and (2.6), we

get limt→∞ X(t+1)d+l+1 = Xl+1 limt→∞ C̃
(l)
0,t+1 = Xl+1Π(l+1) = π(l+1), 0 ≤ l ≤ d − 1. 2
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3. WEAK, STRONG AND C-STRONG ERGODICITY RESULTS

In this section a previous study of the author from Nicolaie (2008a) and Nicolaie (2008b)

is continued. We give sufficient conditions for weak, strong and C-strong ergodicity of a

finite state nonhomogeneous Markov chain in terms of similar behavior of a certain nonho-

mogeneous Markov chain of smaller size. Our main result is given in Theorem 3.4.

In the sequel, we shall consider a nonhomogeneous Markov chain with state space S =

{1, 2, ..., r} and transition matrices (Pn)n≥1. We shall refer to it as the finite Markov chain

(Pn)n≥1. Assume that ∃d ≥ 1 such that limn→∞ Pn,n+d = P .

Suppose that P has p ≥ 1 ergodic classes Si, 1 ≤ i ≤ p, and, perhaps, transient states,

i.e., P is of the form (1.1). Let µ(i) be the invariant probability vector with respect to S(i),

1 ≤ i ≤ p, and aji,
∑p

t=0 rt ≤ j ≤ r, 1 ≤ i ≤ p as in Theorem 1.2.

The following Remark will illustrate several aspects that characterize this type of nonho-

mogeneous Markov chains.

Remark 3.1. (i) Obviously, the condition limn→∞ Pn,n+d = P , for some d > 1, where P

is of the form (1.1), does not imply the existence of limn→∞ Pn. An example is the chain

(Pn)n≥1, where

P2n−1 =




6
8 − 1

8n
2
8 + 1

8n
0

1
8 + 2

8n
7
8 − 2

8n
0

0 1
n

1 − 1
n


 , P2n =




4
10 − 1

10n
6
10 + 1

10n
0

3
10 + 3

10n2

7
10 − 3

10n2 0

0 1
n

1 − 1
n


 ,

∀n ≥ 1. We see that limn→∞ Pn does not exist, but there exists limn→∞ Pn,n+2 = P , where

P =




3
8

5
8 0

25
80

55
80 0

0 0 1


 .

(ii) A remarkable example for the case when limn→∞ Pn exists is limn→∞ Pn =: R, where

R has p ≥ 1 irreducible closed periodic classes Si, 1 ≤ i ≤ p, and, possibly, transient states,

Si having period di ≥ 1, 1 ≤ i ≤ p. There exists d (e.g., d =lcm{di|1 ≤ i ≤ p} ≥ 1) such

that limn→∞ Pn,n+d = Rd, where Rd has only ergodic classes and, perhaps, transient states,

as the next example shows
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Let (Pn)n≥1 given by

Pn =




0 1 − 1
n

0 1
n

1 − 1
n

0 0 1
n

0 0 1 − 1
n

1
n

1
2

1
2 0 0




, n ≥ 1.

In this section we prove an ergodic theorem for nonhomogeneous Markov chains of this

types.

Let m ≥ 0. By the Chapman-Kolmogorov equation we have Pm,n+d = Pm,nPn,n+d,

n > m. Subtracting Pm,n from both sides, we obtain

(3.1) Pm,n+d − Pm,n = Pm,n

[
− Ir + Pn,n+d

]
, n > m.

Setting

(3.2) z(i)
m,n = ((Pm,n)i,1, ..., (Pm,n)ir), n > m, i ∈ S,

then equations (3.1) read as z
(i)
m,n+d−z

(i)
m,n = z

(i)
m,n

[
−Ir +Pn,n+d

]
, n > m, i ∈ S. We remark

that z
(i)
m,n defined in (3.2) are solutions of equations of the type

(3.3) xm,n+d − xm,n = xm,n

[
− Ir + Pn,n+d

]
, n > m,

under the conditions

(3.4) (xm,n)i ∈ [0, 1], i ∈ S,

r∑

i=1

(xm,n)i = 1, n > m,

or

(3.5) (xm,n)i ∈ [−1, 1], i ∈ S,

r∑

i=1

(xm,n)i = 0, n > m,

where xm,n = [(xm,n)1, ..., (xm,n)r], n > m.

We are interested in the asymptotic behavior of the proposed solutions of (3.3), under

conditions (3.4) or (3.5). A first result is given in the next

LEMMA 3.2.

(3.6) lim
n→∞

(xm,n)i = 0, p + 1 ≤ i ≤ r,

uniformly with respect to m ≤ 0.

Proof. A key step is the choice of

(3.7) A = −Ir + P.
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We can benefit of the result given in Theorem 1.4. Let Q and Q−1 as in Theorem 1.4. A

second key step is the choice of Vn = Pn,n+d − P , n ≥ 1, and

(3.8) Ṽn = Q−1VnQ, n ≥ 1.

Also, setting

(3.9) ym,n = xm,nQ, n > m,

equations (3.3) amount to

(3.10) ym,n+d − ym,n = ym,nJ + ym,nṼn, n > m.

We shall study the asymptotic behavior of (ym,n)i, p + 1 ≤ i ≤ r. First, note that

|||ym,n|||∞ ≤ |||xm,n|||∞|||Q|||∞ ≤ 2|||Q|||∞ =: β, 0 ≤ m < n.

Using the boundedness of ym,n, 0 ≤ m < n, and limn→∞ Vn = 0, it follows that

(Wm,n)i :=

r∑

j=1

(ym,n)j(Ṽn)ji → 0 as n → ∞, m ≥ 0, p + 1 ≤ i ≤ r.

Moreover, the convergence is uniform with respect to m ≥ 0, for p + 1 ≤ i ≤ r.

In the system (3.10) we shall be concerned with the equations corresponding to i ∈

{p+1, ..., p+
∑l

t=2 mt+1}. Equivalently, we can write (ym,n+d)i = (λ2+1)(ym,n)i+(Wm,n)i,

n > m, p + 1 ≤ i ≤ p + m2, and

(ym,n+d)i = (λt + 1)(ym,n)i + (Wm,n)i, n > m, p +

t−1∑

s=2

ms + 1 ≤ i ≤ p +

t∑

s=2

ms, 3 ≤ t ≤ l,

respectively. The conditions of Proposition 2.1 are verified, so

lim
n→∞

(ym,n)i = 0, p + 1 ≤ i ≤ p +

l∑

t=2

mt + 1.

Moreover, this convergence is uniform with respect to m ≥ 0, for p+1 ≤ i ≤ p+
∑l

t=2 mt +1

since ∃β ≥ 0 such that |||ym,n|||∞ ≤ β, 0 ≤ m < n, and the convergence to zero of (Wm,n)i

is uniform with respect to m ≥ 0, for p + 1 ≤ i ≤ r.

Next, we pay attention to the equations corresponding to i from p +
∑l

t=2 mt + 2 to

p+
∑l+1

t=2 mt. The case ε
(i)
k = 0 for some 1 ≤ k ≤ ml+1−1 is similar to the preceding one. We

are interested now in cases for which ε
(i)
k = 1. Set k∗ = min{k ∈ {1, . . . , ml+1 − 1}|ε

(i)
k = 1}

(k∗ is well defined since the set {k ∈ {1, . . . , ml+1−1}|ε
(i)
k = 1} is nonempty, see Remark 1.5

(ii)). If k∗ = 1, then (ym,n+d)p+
P

l
t=2

mt+2 = (λl+1)(ym,n)p+
P

l
t=2

mt+2+(ym,n)p+
P

l
t=2

mt+1+

(Wm,n)p+
P

l
t=2

mt+2, n > m. Using limn→∞(ym,n)p+
P

l
t=2

mt+1 = 0 uniformly with respect to

m ≥ 0, the conditions of Proposition 2.1 are verified, so we get limn→∞(ym,n)p+
P

l
t=2

mt+2 =
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0 uniformly with respect to m ≥ 0. If k∗ > 1, then limn→∞(ym,n)p+
P

l
t=2

mt+k∗−1 = 0

uniformly with respect to m ≥ 0, since ε
(i)
k∗−1 = 0. Also,

(ym,n+d)p+
P

l
t=2

mt+k∗

= (λl + 1)(ym,n)p+
P

l
t=2

mt+k∗

+

+(ym,n)p+
P

l
t=2

mt+k∗−1 + (Wm,n)p+
P

l
t=2

mt+k∗

,

n > m. The conditions of Proposition 2.1 are fulfilled, so limn→∞(ym,n)p+m2+...+ml+k∗
= 0,

uniformly with respect to m ≥ 0. Similarly, limn→∞(ym,n)i = 0 uniformly with respect to

m ≥ 0, for p +
∑l

t=2 mt + 3 ≤ i ≤ p +
∑l+1

t=2 mt.

Moreover, we can conclude that

(3.11) lim
n→∞

(ym,n)i = 0,

regardless of the initial data y0 and uniformly with respect to m ≥ 0, for p+1 ≤ i ≤ r. The

conclusion follows. 2

In the following, we shall prepare the context for the examination of the remaining com-

ponents (xm,n)i, 1 ≤ i ≤ p, of the vector xm,n. Set

(Rm,n)i =

r∑

j=p+1

(ym,n)j(Ṽn)ji, n > m, 1 ≤ i ≤ p.

If the equality (3.9) is multiplied on the right side by Ṽn, we get ym,nṼn = xm,nVnQ. Set q̃i

for the ith column of the matrix Q. From
p∑

i=1

(
ym,nṼn

)
i
=

r∑

j=1

( p∑

i=1

(ym,n)j(Ṽn)ji

)
=

=

p∑

j=1

(ym,n)j

( p∑

i=1

(Ṽn)ji

)
+

r∑

j=p+1

( p∑

i=1

(ym,n)j(Ṽn)ji

)
=

(using
∑p

i=1(Ṽn)ji = 0, 1 ≤ j ≤ p (see Nicolaie (2008b), Proposition 3.1))

=

p∑

i=1

(Rm,n)i, n > m,

and
p∑

i=1

(
xm,nVnQ

)
i
=

p∑

i=1

xm,nVnq̃i = xm,nVn

p∑

i=1

q̃i =

= xm,nVne′ = xm,n0p×1 = 0, n > m,

it follows

(3.12) Rm,ne
′ = 0, n > m.

Setting Ym,n = ((ym,n)1, ..., (ym,n)p), Rm,n = ((Rm,n)1, ..., (Rm,n)p), n > m, and

(3.13) Cn = Ip + (Ṽn)M×M , n ≥ 1, where M = {1, ..., p},
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we have

(3.14) Ym,n+d = Ym,nCn + Rm,n, n > m.

We need a preliminary result on Cn.

PROPOSITION 3.3. (Cn)n≥1 is a sequence of stochastic matrices.

Proof. Similar to the proof of Proposition 3.1 from Nicolaie (2008b). 2

We are now ready to give the main result of this paper. The next theorem is a general-

ization of Theorem 3.2 from Nicolaie (2008b).

THEOREM 3.4. Let (Pn)n≥1 be a Markov chain with state space S for which ∃d ≥ 1 such

that limn→∞ Pn,n+d = P , where P is of the form (1.1) with p ≥ 1. Let Vn = Pn,n+d − P ,

n ≥ 1, and Ṽn = Q−1VnQ, n ≥ 1, with Q and Q−1 as in Theorem 1.4. Then

(3.15) lim
n→∞

(Pm,n)ij = 0, i ∈ S,

p∑

t=0

rt ≤ j ≤ r,

uniformly with respect to m ≥ 0.

Moreover, let Cn, n ≥ 1 as in (3.13) and set C̃
(l)
n = C(n−1)d+l+1, n ≥ 1, 0 ≤ l ≤ d − 1.

Suppose that

(3.16)

∞∑

n=1

|||(Ṽn)(S\M)×M |||∞ < ∞.

Then the following statements hold:

(i) If (C̃
(l)
n )n≥1 is weakly ergodic, 0 ≤ l ≤ d − 1, then (Pn)n≥1 is weakly ergodic, i.e., the

chain (Pn)n≥1 is weakly ergodic ;

(ii) If (C̃
(l)
n )n≥1 is strongly ergodic, 0 ≤ l ≤ d − 1, such that limn→∞ C̃

(l)
m,n = Π, m ≥ 0,

0 ≤ l ≤ d − 1, then (Pn)n≥1 is strongly ergodic, i.e., the chain (Pn)n≥1 is strongly ergodic .

(iii) If (C̃
(l)
n )n≥1 is strongly ergodic, 0 ≤ l ≤ d − 1, such that limn→∞ C̃

(l)
m,n = Π(l+1) =

e′π(l+1), m ≥ 0, 0 ≤ l ≤ d − 1, then (Pn)n≥1 is C-strongly ergodic, i.e., the chain (Pn)n≥1

is C-strongly ergodic.

Proof. For the first conclusion of the theorem, we will use Lemma 3.1 taking xm,n = z
(i)
m,n

in equation (3.3), where z
(i)
m,n is defined in (3.2), n > m, i ∈ S. From (3.9) we get xm,n =

ym,nQ−1, n > m. Next, letting n → ∞ in the last equality, on account of (3.11), we get

(3.15).

(i) We shall take xm,n = z
(i)
m,n − z

(j)
m,n in equation (3.3), n > m, i, j ∈ S, i 6= j, where z

(i)
m,n

is defined in (3.2). Starting from (3.9), using (1.3), we have (for ym,n := xm,nQ)
p∑

k=1

(ym,n)k =

p∑

k=1

xm,nq̃k = xm,n

p∑

k=1

q̃k = xm,ne′ = 0, n > m.
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Let i, j ∈ S. By (3.16) and the fact that ∃β ≥ 0 such that |||ym,n|||∞ ≤ β, 0 ≤ m < n,

it follows that
∑∞

n=m |||Rm,n|||∞ < ∞, m ≥ 0; as concerns equation (3.14), by Proposition

2.2 (i), we get limn→∞ Ym,n = 0, m ≥ 0.

This, (3.11) and xm,n = ym,nQ−1 give us

lim
n→∞

[
(Pm,n)ik − (Pm,n)jk

]
= 0, m ≥ 0, k ∈ S.

Therefore, (Pn)n≥1 is weakly ergodic.

(ii) We shall take xm,n = z
(i)
m,n in equation (3.3), where z

(i)
m,n is defined in (3.2), n > m,

i ∈ S. Starting from (3.9), using (1.3), we have (for ym,n := xm,nQ)

p∑

k=1

(ym,n)k =

p∑

k=1

xm,nq̃k = xm,n

p∑

k=1

q̃k = xm,ne′ = 1, n > m.

Let i ∈ S. By (3.16) and the fact that ∃β ≥ 0 such that |||ym,n|||∞ ≤ β, 0 ≤ m < n, it

follows that
∑∞

n=m |||Rm,n|||∞ < ∞, m ≥ 0; as concerns the equation (3.14), by Proposition

2.2 (ii), it follows that limn→∞ Ym,n = π, m ≥ 0.

This and xm,n = ym,nQ−1 give us

lim
n→∞

(
(Pm,n)i,r0+...+rt−1

, ..., (Pm,n)i,r1+...+rt

)
= (µ

(t)
1 πt, ..., µ

(t)
rt

πt).

m ≥ 0, 1 ≤ t ≤ p. Therefore, using (3.15), (Pn)n≥1 is strongly ergodic.

(iii) Making the same choice in equation (3.3) as in the proof of (ii) above and applying

Proposition 2.3 (iii), it follows limn→∞ Ym,nd+l+1 = π(l+1), m ≥ 0, 0 ≤ l ≤ d − 1. This and

xm,n = ym,nQ−1 give us

lim
n→∞

(
(Pm,nd+l+1)i,r0+...+rt−1

, ..., (Pm,nd+l+1)i,r1+...+rt

)
= (µ

(t)
1 π

(l+1)
t , ..., µ(t)

rt
π

(l+1)
t ).

m ≥ 0, 1 ≤ t ≤ p and 0 ≤ l ≤ d−1. Therefore, using (3.15), limn→∞ Pm,nd+l+1 exists and is

a stable stochastic matrix for m ≥ 0, 0 ≤ l ≤ d − 1. Set Wl+1 = limn→∞ P0,nd+l+1, 0 ≤ l ≤

d − 1. The conditions of Theorem 1.13 are fulfilled; it follows that limn→∞
1
n

∑n

k=1 P0,k =

1
d

[
W1 + . . . + Wd

]
, i.e., the chain (Pn)n≥1 is C-strongly ergodic. 2

Remark 3.5. (i) We can prove that the chains (Pn)n≥1 from Remark 3.1 (i) and (ii),

respectively, are strongly ergodic using Theorem 3.4 (ii) (for the second chain take d = 2).

(ii) Obviously, in the hypothesis (3.16), the condition that any subsequence (C̃
(l)
n )n≥1 is

strongly ergodic, 0 ≤ l ≤ d−1, does not imply that (Pn)n≥1 is strongly ergodic. An example

is the chain (Pn)n≥1, where

P2n−1 =

(
0 1

1 0

)
, P2n =

(
0 1

1 − 1
2n

1
2n

)
, n ≥ 1.
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The chain (C̃
(0)
n )n≥1 is strongly ergodic and

lim
n→∞

C̃(0)
m,n =

(
0 1
0 1

)
:= Π1, m ≥ 0.

Also, the chain (C̃
(1)
n )n≥1 is strongly ergodic and

lim
n→∞

C̃(1)
m,n =

(
1 0
1 0

)
:= Π2, m ≥ 0.

The chain (Pn)n≥1 is not strongly ergodic, but using Theorem 3.4 (iii) we can prove that

the chain (Pn)n≥1 is C-strongly ergodic. Moreover, limn→∞
1
n

∑n

k=1 P0,k = 1
2

[
Π1 + Π2

]
.
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