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In this paper we give, in a more general context than previous studies, sufficient conditions for weak, strong and C-strong ergodicity of a finite state nonhomogeneous Markov chain in terms of similar properties of a certain Markov chain of smaller size.

PRELIMINARIES

Consider a finite homogeneous Markov chain with state space S = {1, ..., r} and transition matrix P . We shall refer to it as the finite Markov chain P . Assume that the stochastic matrix P has p ≥ 1 irreducible aperiodic closed classes or equivalently, ergodic classes, and, perhaps transient states, so that it has the form 

Γ p 0 Ω 1 Ω 2 ... Ω p 0      
, where Γ i is a strictly positive r i × r i matrix, 1 ≤ i ≤ p; each row of the matrix Γ i is the invariant probability vector µ (i) = (µ

(i) 1 , ..., µ (i)
ri ) with respect to S (i) , 1 ≤ i ≤ p, and

Ω i =    µ (i) 1 a r1+r2+...+rp+1,i ... µ (i) ri a r1+r2+...+rp+1,i ... ... ... µ (i) 1 a r,i ... µ (i) ri a r,i   
is an (r -p t=1 r t ) × r i matrix, where a ji = probability that the chain will enter and thus, will be absorbed in S i given that the initial state is j, p t=0 r t ≤ j ≤ r, 1 ≤ i ≤ p [with convention r 0 = 1].

Proof. For the form of Γ i , 1 ≤ i ≤ p, see, e.g., Iosifescu (1980, p. 123) and for Ω i , 1 ≤ i ≤ p, see, e.g., Karlin et Taylor (1975, p. 91). 2 Remark 1.3. Clearly, a ji ≥ 0, p t=0 r t ≤ j ≤ r, 1 ≤ i ≤ p and

(1.3)

p i=1 a ji = 1, p t=0
r t ≤ j ≤ r.

A vector x ∈ C n will be understood as a row vector and x ′ denotes the transpose of x.

Set e = (1, 1, ..., 1) and let (e i ) 1≤i≤r be the canonical basis of the linear space R r .

THEOREM 1.4 (Nicolaie (2008a)). Let A = -I r + P with P of the form (1.1). Then there exists a nonsingular complex r × r matrix Q such that

(1.4) A = QJQ -1 ,
where J is a Jordan r × r matrix, and Q reads as 

Q = r 1 r 2 . . . r p r - p t=0 r t                           1 0 ... 0 
                         
, where the first column contains 1 in the first r 1 rows, the next p -1 columns contain 1 in the r i-1 + 1, . . . , r i rows, 2 ≤ i ≤ p, and the last rp columns comprise complex numbers. For a ji , p t=0 r t ≤ j ≤ r, 1 ≤ i ≤ p, we have the meaning given in Theorem 1.2. The inverse Q -1 has the form 

Q -1 =         µ (1) 1 ... µ ( 
        , where µ (i) = (µ (i) 1 , . . . , µ (i)
ri ) is the invariant probability vector with respect to S (i) , 1 ≤ i ≤ p, and the last rp rows comprise complex numbers.

Proof. See Nicolaie (2008a) and also [START_REF] Gidas | Nonstationary Markov chains and convergence of the annealing algorithm[END_REF]. 2 Remark 1.5 (Nicolaie (2008a)). (i) We shall need some spectral properties of A, where A = -I p + P with P of the form (1.1). We have (1.5) λ 1 = 0 is an eigenvalue of A whose algebraic multiplicity is equal to its geometric multiplicity and equal to p. All other distinct eigenvalues λ 2 , ..., λ l+s of A satisfy (1.6)

|λ i + 1| < 1, 2 ≤ i ≤ l + s.
(ii) From (1.5) (see Horn et Johnson (1985, pp. 129-131)) we have 

J =           J 1 0 ... .
         
,

where J 1 = 0 p×p , J k is a diagonal m k × m k matrix with entries the eigenvalues λ k whose algebraic and geometric multiplicities are identical, 2 ≤ k ≤ l, and

J l+i =        λ l+i ε (i) 1 0 ... ... 0 0 λ l+i ε (i) 2 ... ... 0 ... ... ... ... ... ... 0 0 ... ... λ l+i ε (i) m l+i -1 0 0 ... ... 0 λ l+i       
are m l+i × m l+i matrices corresponding to eigenvalues whose geometric multiplicities are smaller than their algebraic multiplicities and ε

(i) t ∈ {0, 1}, 1 ≤ t ≤ m l+i -1, 1 ≤ i ≤ s. Clearly, p + m 2 + ... + m l+s = r. If A = (A ij
) is an m × n matrix, then for M ⊆ {1, ..., m}, N ⊆ {1, ..., n}, M, N = ∅, define A M×N = (A ij ) i∈M,j∈N . Define, also, the matrix norm (see, e.g., Horn et Johnson (1985, p. 295)

) |||A||| ∞ = max 1≤i≤m n j=1 |A ij |.
Note that such a norm tends to zero if and only if all elements of A tend to zero.

Let (P n ) n≥1 be a sequence of stochastic r × r matrices. Set S = {1, 2, ..., r}. For all integers m ≥ 0, n > m, define P m,n = P m+1 P m+2 ...P n = ((P m,n ) ij ) i,j∈S . In the context of finite Markov chains, the matrix P m,n has a very simple probabilistic interpretation, namely being the nm step transition matrix starting at m. Definition 1.6 (see, e.g., Isaacson et Madsen (1976, p. 144)). Let P be a stochastic r × r matrix. The ergodic coefficient of P , denoted by δ(P ), is defined by δ(P ) = 1min 1≤i,k≤r r j=1 min(P ij , P kj ). THEOREM 1.7 (see, e.g., Isaacson et Madsen (1976, p. 147)). Let R be a real m × n matrix with Re ′ = 0 and P be a stochastic n × p matrix. Then |||RP ||| ∞ ≤ |||R||| ∞ δ(P ).

Proof. See, e.g., Isaacson et Madsen (1976, p. 147). 2 Definition 1.8 (see, e.g., Iosifescu (1980, p. 217)). A sequence of stochastic r × r matrices

(P n ) n≥1 is said to be weakly ergodic if ∀m ≥ 0, ∀i, j, k ∈ S, lim n→∞ [(P m,n ) ik -(P m,n ) jk ] = 0.
A stochastic matrix whose rows are identical is said to be stable. THEOREM 1.9. Let (P n ) n≥1 be a sequence of stochastic r×r matrices. Then the following statements are equivalent :

(i) the sequence (P n ) n≥1 is weakly ergodic;

(ii) there exist stable stochastic r×r matrices Π m,n , m ≥ 0, n ≥ 1 such that lim n→∞ (P m,n - Π m,n ) = 0, ∀m ≥ 0; (iii) lim n→∞ δ(P m,n ) = 0, ∀m ≥ 0.
Proof. For (i)⇔(ii) see, e.g., Iosifescu (1980, p. 218) and for (i)⇔(iii) see, e.g., Isaacson et Madsen (1976, p. 149). 2 Definition 1.10 (see, e.g., Iosifescu (1980, p. 223)). A sequence of stochastic r ×r matrices (P n ) n≥1 is said to be strongly ergodic if ∀m ≥ 0, ∀i, j ∈ S, the limit lim n→∞ (P m,n ) ij =:

(π m ) j exists and does not depend on i.

Remark 1.11 (see, e.g., Iosifescu (1980, p. 223)). It is easy to prove that if lim n→∞ (P m,n ) ij exists as stated in Definition 1.10, then the (π m ) j are also independent of m ≥ 0. Therefore, a sequence of stochastic matrices (P n ) n≥1 is strongly ergodic if and only if there exists a stable stochastic matrix Π such that lim n→∞ (P m,n -Π) = 0, ∀m ≥ 0. Definition 1.12 [START_REF] Isaacson | Markov Chains: Theory and Applications[END_REF]). A sequence of stochastic matrices (P n ) n≥1 is said to be C-strongly ergodic if there exists a stable stochastic matrix Π such that lim n→∞ 1 n n k=1 P 0,k = Π. THEOREM 1.13 [START_REF] Isaacson | Markov Chains: Theory and Applications[END_REF]). Let (P n ) n≥1 be a sequence of stochastic matrices such that, for some fixed d, lim n→∞ P 0,nd+t = W t , 1 ≤ t ≤ d. Then the limit Isaacson et Madsen (1976, p. 184). 2 Remark 1.14. Note that in Theorem 1.13 the limiting matrices W t of the Cesaro averages are not necessarily stable matrices. But if they are stable, this theorem provides sufficient conditions for the C-strong ergodicity of the sequence (P n ) n≥1 .

lim n→∞ 1 n n k=1 P 0,k exists and equals W = 1 d W 1 + ... + W d . Proof. See
The next two results will only be used in Section 2 of this paper. PROPOSITION 1.15 (see, e.g., Isaacson et Madsen (1976, p. 29)). Let (a nk ) n,k≥1 be a doubly indexed sequence of real numbers such that lim n→∞ a nk = a k exists, for all k ≥ 1. If there exists a sequence of nonnegative numbers

(b k ) k≥1 such that |a nk | ≤ b k , for all n ≥ 1, k ≥ 1 and ∞ k=1 b k < ∞, then lim n→∞ ∞ k=1 a nk = ∞ k=1 a k .
Proof. See, e.g., Isaacson et Madsen (1976, p. 29). 2 PROPOSITION 1.16 (see, e.g., Isaacson et Madsen (1976, pp. 34-36)). Let (a n ) n≥0 be a sequence of real numbers convergent to 0 and ∞ n=0 b n an absolute convergent series. Then lim n→∞ n i=0 a i b n-i = 0. Proof. See, e.g., Isaacson et Madsen (1976, pp. 34-36). 2

SOME RESULTS ON RECURRENCE RELATIONS

In this section we give some results related to sequences defined by recurrence relations.

First, we shall need the following PROPOSITION 2.1. Let (a n ) n≥0 and (b n ) n≥0 be two sequences of nonnegative real numbers with

lim n→∞ b n = 0. If (2.1) a s+d ≤ αa s + b s , s ≥ 0,
where d stands for a natural number, d ≥ 1 and α ∈ [0, 1), then

(2.2) lim n→∞ a n = 0.
Proof. Applying the recurrence inequality (2.1) successively we obtain

(2.3) a td+l ≤ α t a l + t-1 k=0 α t-k-1 b kd+l , t ≥ 0, 0 ≤ l ≤ d -1.
Since α ∈ [0, 1), we have lim t→∞ α t = 0. Moreover, the series ∞ t=0 α t < ∞ (the geometrical series). Also, since lim n→∞ b n = 0, all the subsequences of (b n ) n≥0 are convergent with limit zero; in particular, lim t→∞ b td+l = 0, 0

≤ l ≤ d -1. Applying Proposition 1.16 it follows that lim t→∞ t-1 k=0 α t-k-1 b kd+l = 0. Next, letting t → ∞ in (2.3), it follows a td+l → 0, 0 ≤ l ≤ d -1. The conclusion follows. 2 The next result is a generalization of Proposition 2.2 from Nicolaie (2008b). PROPOSITION 2.2. Let (X n ) n≥1 and (R n ) n≥1 be two sequences of real vectors, each vector X n and R n having p components, R n e ′ = 0, n ≥ 1 and ∞ n=1 |||R n ||| ∞ < ∞. Let (C n ) n≥1 be a sequence of stochastic p × p matrices and set C (l) n = C (n-1)d+l+1 , for some fixed d , n ≥ 1, 0 ≤ l ≤ d -1. Suppose that (2.4) X s+d = X s C s + R s , s ≥ 1,
Then the following statements hold:

(i) If X n e ′ = 0, n ≥ 1, and ( C (l) n ) n≥1 is weakly ergodic, 0 ≤ l ≤ d -1, then lim n→∞ X n = 0. (ii) If X n e ′ = 1, n ≥ 1 and ( C (l) n ) n≥1 is strongly ergodic with lim n→∞ C (l) m,n = Π = e ′ • π, m ≥ 0, 0 ≤ l ≤ d -1, then lim n→∞ X n = π. (iii) If X n e ′ = 1, n ≥ 1 and ( C (l) n ) n≥1 is strongly ergodic with lim n→∞ C (l) m,n = Π (l+1) = e ′ • π (l+1) , m ≥ 0, 0 ≤ l ≤ d -1, then lim n→∞ X nd+l+1 = π (l+1) , 0 ≤ l ≤ d -1.
Proof. Applying the recurrence relation (2.4) successively we obtain (2.5)

X (t+1)d+l+1 = X l+1 C (l) 0,t+1 + R td+l+1 + t-1 k=0 R kd+l+1 C (l) k+1,t+1 , t ≥ 1, 0 ≤ l ≤ d -1. First, assuming that ( C (l) n ) n≥1 is weakly ergodic, 0 ≤ l ≤ d -1, we shall prove that (2.6) lim t→∞ t-1 k=0 R kd+l+1 C (l) k+1,t+1 = 0, 0 ≤ l ≤ d -1.
We have

||| t-1 k=0 R kd+l+1 C (l) k+1,t+1 ||| ∞ ≤ t-1 k=0 |||R kd+l+1 C (l) k+1,t+1 ||| ∞ ≤ (using Theorem 1.7) ≤ t-1 k=0 |||R kd+l+1 ||| ∞ δ( C (l) k+1,t+1 ).
Next, choose a

(l) tk = |||R kd+l+1 ||| ∞ δ( C (l) k+1,t+1 ), t, k ≥ 1 (take a (l) tk = 0 if k > t), 0 ≤ l ≤ d -1.
Then, by Theorem 1.9 (iii), it follows that lim t→∞ a

(l) tk = 0, k ≥ 1, 0 ≤ l ≤ d -1. Moreover, |a (l) tk | ≤ b (l) k := |||R kd+l+1 ||| ∞ , t ≥ 1, since δ( C (l) k,t ) ≤ 1, 0 ≤ k < t, 0 ≤ l ≤ d -1.
The conditions of Proposition 1.15 are fulfilled, so lim t→∞ t k=1 a

(l) tk = lim t→∞ ∞ k=1 a (l) tk = 0, 0 ≤ l ≤ d -1, which means (2.6).
(i) Let l ∈ {0, 1, ..., d -1}. By Theorem 1.9 (ii), it follows that there exists a sequence of stable stochastic matrices Π

(l) m,t such that lim t→∞ C (l) m,t -Π (l) m,t = 0. Letting t → ∞ in (2.5), using X t e ′ = 0, t ≥ 1, ∞ n=1 |||R n ||| ∞ < ∞ and (2.6), we get lim t→∞ X (t+1)d+l+1 = X l+1 lim t→∞ C (l) 0,t+1 -Π (l) 0,t+1 = 0. (because X l+1 Π (l) m,t = 0, 0 ≤ m < t). Since l was chosen arbitrarily, it follows lim t→∞ X (t+1)d+l+1 = 0, 0 ≤ l ≤ d -1.
Therefore, the sequence (X n ) n≥1 is convergent and lim n→∞ X n = 0.

(ii) Letting t → ∞ in (2.5), using X t e ′ = 1, t ≥ 1, ∞ n=1 |||R n ||| ∞ < ∞ and (2.6), we get lim t→∞ X (t+1)d+l+1 = X l+1 lim t→∞ C (l) 0,t+1 = X l+1 Π = π, 0 ≤ l ≤ d -1. Therefore, the sequence (X n ) n≥1 is convergent and lim n→∞ X n = π. (iii) Letting t → ∞ in (2.5), using X t e ′ = 1, t ≥ 1, ∞ n=1 |||R n ||| ∞ < ∞ and (2.6), we get lim t→∞ X (t+1)d+l+1 = X l+1 lim t→∞ C (l) 0,t+1 = X l+1 Π (l+1) = π (l+1) , 0 ≤ l ≤ d -1. 2 ALINA NICOLAIE

WEAK, STRONG AND C-STRONG ERGODICITY RESULTS

In this section a previous study of the author from Nicolaie (2008a) and Nicolaie (2008b) is continued. We give sufficient conditions for weak, strong and C-strong ergodicity of a finite state nonhomogeneous Markov chain in terms of similar behavior of a certain nonhomogeneous Markov chain of smaller size. Our main result is given in Theorem 3.4.

In the sequel, we shall consider a nonhomogeneous Markov chain with state space S = {1, 2, ..., r} and transition matrices (P n ) n≥1 . We shall refer to it as the finite Markov chain (P n ) n≥1 . Assume that ∃d ≥ 1 such that lim n→∞ P n,n+d = P .

Suppose that P has p ≥ 1 ergodic classes S i , 1 ≤ i ≤ p, and, perhaps, transient states, i.e., P is of the form (1.1). Let µ (i) be the invariant probability vector with respect to S (i) , 1 ≤ i ≤ p, and a ji , p t=0 r t ≤ j ≤ r, 1 ≤ i ≤ p as in Theorem 1.2. The following Remark will illustrate several aspects that characterize this type of nonhomogeneous Markov chains.

Remark 3.1. (i) Obviously, the condition lim n→∞ P n,n+d = P , for some d > 1, where P is of the form (1.1), does not imply the existence of lim n→∞ P n . An example is the chain (P n ) n≥1 , where

P 2n-1 =     6 8 -1 8n 2 8 + 1 8n 0 1 8 + 2 8n 7 8 -2 8n 0 0 1 n 1 -1 n     , P 2n =     4 10 -1 10n 6 10 + 1 10n 0 3 10 + 3 10n 2 7 10 -3 10n 2 0 0 1 n 1 -1 n     ,
∀n ≥ 1. We see that lim n→∞ P n does not exist, but there exists lim n→∞ P n,n+2 = P , where (ii) A remarkable example for the case when lim n→∞ P n exists is lim n→∞ P n =: R, where R has p ≥ 1 irreducible closed periodic classes S i , 1 ≤ i ≤ p, and, possibly, transient states, 

P =    
S i having period d i ≥ 1, 1 ≤ i ≤ p.
P n =         0 1 -1 n 0 1 n 1 -1 n 0 0 1 n 0 0 1 -1 n 1 n 1 2 1 2 0 0         , n ≥ 1.
In this section we prove an ergodic theorem for nonhomogeneous Markov chains of this types.

Let m ≥ 0. By the Chapman-Kolmogorov equation we have P m,n+d = P m,n P n,n+d , n > m. Subtracting P m,n from both sides, we obtain (3.1) P m,n+d -P m,n = P m,n -I r + P n,n+d , n > m.

Setting (3.2) z (i) m,n = ((P m,n ) i,1 , ..., (P m,n ) ir ), n > m, i ∈ S,
then equations (3.1) read as z

(i) m,n+d -z (i) m,n = z (i)
m,n -I r + P n,n+d , n > m, i ∈ S. We remark that z 

(3.4) (x m,n ) i ∈ [0, 1], i ∈ S, r i=1 (x m,n ) i = 1, n > m, or (3.5) (x m,n ) i ∈ [-1, 1], i ∈ S, r i=1 (x m,n ) i = 0, n > m, where x m,n = [(x m,n ) 1 , ..., (x m,n ) r ], n > m.
We are interested in the asymptotic behavior of the proposed solutions of (3.3), under conditions (3.4) or (3.5). A first result is given in the next LEMMA 3.2.

(3.6) lim n→∞ (x m,n ) i = 0, p + 1 ≤ i ≤ r,
uniformly with respect to m ≤ 0.

Proof. A key step is the choice of (3.7) A = -I r + P. ALINA NICOLAIE

We can benefit of the result given in Theorem 1.4. Let Q and Q -1 as in Theorem 1.4. A second key step is the choice of V n = P n,n+d -P , n ≥ 1, and

(3.8) V n = Q -1 V n Q, n ≥ 1. Also, setting (3.9) y m,n = x m,n Q, n > m, equations (3.3) amount to (3.10) y m,n+d -y m,n = y m,n J + y m,n V n , n > m.
We shall study the asymptotic behavior of (y m,n

) i , p + 1 ≤ i ≤ r. First, note that |||y m,n ||| ∞ ≤ |||x m,n ||| ∞ |||Q||| ∞ ≤ 2|||Q||| ∞ =: β, 0 ≤ m < n.
Using the boundedness of y m,n , 0 ≤ m < n, and lim n→∞ V n = 0, it follows that

(W m,n ) i := r j=1 (y m,n ) j ( V n ) ji → 0 as n → ∞, m ≥ 0, p + 1 ≤ i ≤ r.
Moreover, the convergence is uniform with respect to m ≥ 0, for p + 1 ≤ i ≤ r.

In the system (3.10) we shall be concerned with the equations corresponding to i ∈ {p+1, ..., p+ l t=2 m t +1}. Equivalently, we can write (y m,n+d

) i = (λ 2 +1)(y m,n ) i +(W m,n ) i , n > m, p + 1 ≤ i ≤ p + m 2 , and (y m,n+d ) i = (λ t + 1)(y m,n ) i + (W m,n ) i , n > m, p + t-1 s=2 m s + 1 ≤ i ≤ p + t s=2 m s , 3 ≤ t ≤ l,
respectively. The conditions of Proposition 2.1 are verified, so

lim n→∞ (y m,n ) i = 0, p + 1 ≤ i ≤ p + l t=2 m t + 1.
Moreover, this convergence is uniform with respect to m ≥ 0, for p+

1 ≤ i ≤ p+ l t=2 m t + 1 since ∃β ≥ 0 such that |||y m,n ||| ∞ ≤ β, 0 ≤ m < n, and the convergence to zero of (W m,n ) i is uniform with respect to m ≥ 0, for p + 1 ≤ i ≤ r.
Next, we pay attention to the equations corresponding to i from p + l t=2 m t + 2 to p+ l+1 t=2 m t . The case ε (i) k = 0 for some 1 ≤ k ≤ m l+1 -1 is similar to the preceding one. We are interested now in cases for which ε In the following, we shall prepare the context for the examination of the remaining com-

(i) k = 1. Set k * = min{k ∈ {1, . . . , m l+1 -1}|ε (i) k = 1} (k * is well defined since the set {k ∈ {1, . . . , m l+1 -1}|ε (i) k = 1} is nonempty, see Remark 1.5 (ii)). If k * = 1, then (y m,n+d ) p+ P l t=2 mt+2 = (λ l +1)(y m,n ) p+ P l t=2 mt+2 +(y m,n ) p+ P l t=2 mt+1 + (W m,n ) p+ P l t=2 mt+2 , n > m. Using lim n→∞ (y m,n ) p+
ponents (x m,n ) i , 1 ≤ i ≤ p, of the vector x m,n . Set (R m,n ) i = r j=p+1 (y m,n ) j ( V n ) ji , n > m, 1 ≤ i ≤ p.
If the equality (3.9) is multiplied on the right side by V n , we get y m,n V n = x m,n V n Q. Set q i for the ith column of the matrix Q. From

p i=1 y m,n V n i = r j=1 p i=1 (y m,n ) j ( V n ) ji = = p j=1 (y m,n ) j p i=1 ( V n ) ji + r j=p+1 p i=1 (y m,n ) j ( V n ) ji = (using p i=1 ( V n ) ji = 0, 1 ≤ j ≤ p (see Nicolaie (2008b), Proposition 3.1)) = p i=1 (R m,n ) i , n > m,
and We need a preliminary result on C n .

p i=1 x m,n V n Q i = p i=1 x m,n V n q i = x m,n V n p i=1 q i = = x m,n V n e ′ = x m,n 0 p×1 = 0, n > m,
PROPOSITION 3.3. (C n ) n≥1 is a sequence of stochastic matrices.

Proof. Similar to the proof of Proposition 3.1 from Nicolaie (2008b). 2

We are now ready to give the main result of this paper. The next theorem is a generalization of Theorem 3.2 from Nicolaie (2008b).

THEOREM 3.4. Let (P n ) n≥1 be a Markov chain with state space S for which ∃d ≥ 1 such that lim n→∞ P n,n+d = P , where P is of the form (1.1) with p ≥ 1. Let V n = P n,n+d -P , n ≥ 1, and

V n = Q -1 V n Q, n ≥ 1, with Q and Q -1 as in Theorem 1.4. Then (3.15) lim n→∞ (P m,n ) ij = 0, i ∈ S, p t=0 r t ≤ j ≤ r,
uniformly with respect to m ≥ 0.

Moreover, let C n , n ≥ 1 as in (3.13) and set

C (l) n = C (n-1)d+l+1 , n ≥ 1, 0 ≤ l ≤ d -1. Suppose that (3.16) ∞ n=1 |||( V n ) (S\M)×M ||| ∞ < ∞.
Then the following statements hold:

(i) If ( C (l) n ) n≥1 is weakly ergodic, 0 ≤ l ≤ d -1, then (P n ) n≥1 is weakly ergodic, i.e., the chain (P n ) n≥1 is weakly ergodic ; (ii) If ( C (l) n ) n≥1 is strongly ergodic, 0 ≤ l ≤ d -1, such that lim n→∞ C (l) m,n = Π, m ≥ 0, 0 ≤ l ≤ d -1, then (P n ) n≥1 is strongly ergodic, i.e., the chain (P n ) n≥1 is strongly ergodic . (iii) If ( C (l) n ) n≥1 is strongly ergodic, 0 ≤ l ≤ d -1, such that lim n→∞ C (l) m,n = Π (l+1) = e ′ π (l+1) , m ≥ 0, 0 ≤ l ≤ d -1, then (P n ) n≥1 is C-strongly ergodic, i.e., the chain (P n ) n≥1 is C-strongly ergodic.
Proof. For the first conclusion of the theorem, we will use Lemma 3.1 taking x m,n = z 

i) We shall take x m,n = z (i) m,n -z (j) m,n in equation (3.3), n > m, i, j ∈ S, i = j, where z (i) m,n
is defined in (3.2). Starting from (3.9), using (1.3), we have (for y m,n : (ii) Obviously, in the hypothesis (3.16), the condition that any subsequence ( C (l) n ) n≥1 is strongly ergodic, 0 ≤ l ≤ d-1, does not imply that (P n ) n≥1 is strongly ergodic. An example is the chain (P n ) n≥1 , where , n ≥ 1.

= x m,n Q) p k=1 (y m,n ) k = p k=1 x m,n q k = x m,n p k=1 q k = x m,n e ′ = 0, n > m.

  i) are r i × r i transition matrices, 1 ≤ i ≤ p, associated with the p irreducible aperiodic closed classes, T concerns the transitions of the chain as long as it stays in the r -p t=1 r t transient states and the L (i) concern transitions from the transient states into the ergodic sets S i , 1 ≤ i ≤ p. THEOREM 1.2. Consider a finite homogeneous Markov chain with state space S and transition matrix P of the form (1

  defined in (3.2) are solutions of equations of the type (3.3) x m,n+dx m,n = x m,n -I r + P n,n+d , n > m, under the conditions

  P l t=2 mt+1 = 0 uniformly with respect to m ≥ 0, the conditions of Proposition 2.1 are verified, so we get lim n→∞ (y m,n ) p+P l t=2 mt+2 = 0 uniformly with respect to m ≥ 0. If k * > 1, then lim n→∞ (y m,n ) p+ P l t=2 mt+k * -1 = 0 uniformly with respect to m ≥ 0, since ε (i) k * -1 = 0. Also, (y m,n+d ) p+ P l t=2 mt+k * = (λ l + 1)(y m,n ) p+ P l t=2 mt+k * + +(y m,n ) p+ P l t=2 mt+k * -1 + (W m,n ) p+ P l t=2 mt+k * , n > m.The conditions of Proposition 2.1 are fulfilled, so lim n→∞ (y m,n ) p+m2+...+m l +k * = 0, uniformly with respect to m ≥ 0. Similarly, lim n→∞ (y m,n ) i = 0 uniformly with respect to m ≥ 0, for p + l t=2 m t + 3 ≤ i ≤ p + l+1 t=2 m t . Moreover, we can conclude that (3.11) lim n→∞ (y m,n ) i = 0, regardless of the initial data y 0 and uniformly with respect to m ≥ 0, for p + 1 ≤ i ≤ r. The conclusion follows. 2

  n e ′ = 0, n > m. Setting Y m,n = ((y m,n ) 1 , ..., (y m,n ) p ), R m,n = ((R m,n ) 1 , ..., (R m,n ) p ), n > m,and (3.13) C n = I p + ( V n ) M×M , n ≥ 1, where M = {1, ..., p}, we have (3.14) Y m,n+d = Y m,n C n + R m,n , n > m.

  is defined in (3.2), n > m, i ∈ S. From (3.9) we get x m,n = y m,n Q -1 , n > m. Next, letting n → ∞ in the last equality, on account of (3.11), we get (3.15).

(

  

d

  Let i, j ∈ S. By (3.16) and the fact that ∃β ≥ 0 such that |||y m,n ||| ∞ ≤ β, 0 ≤ m < n, it follows that ∞ n=m |||R m,n ||| ∞ < ∞, m ≥ 0; as concerns equation (3.14), by Proposition 2.2 (i), we get lim n→∞ Y m,n = 0, m ≥ 0. This, (3.11) and x m,n = y m,n Q -1 give us lim n→∞(P m,n ) ik -(P m,n ) jk = 0, m ≥ 0, k ∈ S.Therefore, (P n ) n≥1 is weakly ergodic.(ii) We shall take x m,n = z(i) m,n in equation (3.3), where z (i) m,n is defined in (3.2), n > m, i ∈ S. Starting from (3.9), using (1.3), we have (for y m,n := x m,n Q) p k=1 (y m,n ) k = p k=1 x m,n q k = x m,n p k=1 q k = x m,n e ′ = 1, n > m. Let i ∈ S. By (3.16) and the fact that ∃β ≥ 0 such that |||y m,n ||| ∞ ≤ β, 0 ≤ m < n, it follows that ∞ n=m |||R m,n ||| ∞ < ∞, m ≥ 0; as concerns the equation (3.14), by Proposition 2.2 (ii), it follows that lim n→∞ Y m,n = π, m ≥ 0.This and x m,n = y m,n Q -1 give us lim n→∞ (P m,n ) i,r0+...+rt-1 , ..., (P m,n ) i,r1+...+rt = (µ (t) 1 π t , ..., µ(t) rt π t ).m ≥ 0, 1 ≤ t ≤ p. Therefore, using (3.15), (P n ) n≥1 is strongly ergodic.(iii) Making the same choice in equation (3.3) as in the proof of (ii) above and applying Proposition 2.3 (iii), it follows lim n→∞ Y m,nd+l+1 = π (l+1) , m ≥ 0, 0 ≤ l ≤ d -1. This andx m,n = y m,n Q -1 give us lim n→∞ (P m,nd+l+1) i,r0+...+rt-1 , ..., (P m,nd+l+1 ) i,r1+...+rt = (µ 1 ≤ t ≤ p and 0 ≤ l ≤ d -1. Therefore, using (3.15), lim n→∞ P m,nd+l+1 exists and is a stable stochastic matrix for m ≥ 0, 0 ≤ l ≤ d -1. Set W l+1 = lim n→∞ P 0,nd+l+1 , 0 ≤ l ≤ d -1. The conditions of Theorem 1.13 are fulfilled; it follows that lim n→∞ W 1 + . . . + W d , i.e., the chain (P n ) n≥1 is C-strongly ergodic. 2 Remark 3.5. (i) We can prove that the chains (P n ) n≥1 from Remark 3.1 (i) and (ii), respectively, are strongly ergodic using Theorem 3.4 (ii) (for the second chain take d = 2).

  ... ... ... ... ... ... ... ... ... ... q p+1,r ...

			1) r1	0 ... 0	0	...	0	0 ...	0
	...							...
	0	...	0	0 ... 0 µ (p) 1	... µ (p) rp	0 ...	0
	q p+1,1						

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... q r,1 ... ... ... ... ... ... ... ... ... ... q rr
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The chain ( C

Also, the chain ( C

(1)

The chain (P n ) n≥1 is not strongly ergodic, but using Theorem 3.4 (iii) we can prove that the chain (P n ) n≥1 is C-strongly ergodic. Moreover, lim n→∞