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Abstract

In this paper a Kolmogorov probability inequality for weighted U-statistics based on Bernoulli kernels
is presented. This inequality which extends the results of Turner et al. (1995) is a Hoeffding type
exponential inequality without any assumptions or restrictions.
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1. Introduction

Let X1, X2, ..., Xn be independent random variables from a distribution F . Consider a parametric
function θ = θ(F ) for which there is an unbiased estimator. That is,

θ = θ(F ) = Eh(X1, ..., Xm), m ≤ n,

for a function h = h(X1, ..., Xm) which is assumed to be symmetric without any loss of generality. Let
wi1,...,im

be non-negative numbers such that

∑

1≤i1<...<im≤n

wi1,...,im =
(

n
m

)
.

We define the weighted U-statistic for estimation of the parameter θ = θ(F ) as

Un =
(

n
m

)−1 ∑

1≤i1<...<im≤n

wi1,...,imh(Xi1 , ..., Xim),

where
∑

1≤i1<...<im≤n denotes summation over the
(

n
m

)
combinations of (i1, ..., im) from {1, ..., n}.

Un is an unbiased estimator of θ. In the case where wi1,...,im = 1 for all
(

n
m

)
combinations of

(i1, ..., im) from {1, ..., n} we have the usual unweighted U-statistic whose theory and applications can
be found in many references, e.g. Serfling (1980).

For many U-statistics of interest the kernel h is a Bernoulli random variable (e.g., indicator function).
Improvements, extensions and results related to Kolmogorov inequalities can be found among others,
in Young et. al (1987), Turner et. al (1995) and Mavrikiou (2007). Exponential and Kolmogorov
inequalities have been constructed for U-statistics based on Bernoulli kernels in Christofides (1991,
1994).

In this paper a Kolmogorov probability inequality for weighted U-statistics based on Bernoulli kernels
is presented. This result generalize the inequality found in Turner et al. (1995).

2. Preliminaries

For proving the result, a representation of a weighted U-statistic as an average of averages of indepen-
dent random variables is used. The representation is a straightforward extension of the one introduced
and utilized by Hoeffding (1963).

Lemma 2.1. Let k = [n/m] be the greatest integer less than or equal to n/m, and let Un be the
weighted U-statistic introduced in Section 1.

Then,
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Un =
1
n!

∑
p

Hi1,...,in

where Hi1,...,in = 1
k [h(Xi1 , ..., Xim)wi1,...,im + h(Xim+1 , ..., Xi2m)wim+1,...,i2m + ...

... + h(Xikm−m+1 , ..., Xikm
)wikm−m+1,...,ikm

]

and
∑

p denotes summation over the n! permutations of (i1, ..., in) from {1, ..., n}.

Proof. We may write

k
∑

p

Hi1,...,in
= k.m!(n−m)!

∑
c

h(Xi1 , ..., Xim
)wi1,...,im

or

∑
p

Hi1,...,in =
n!(
n
m

)
∑

c

h(Xi1 , ..., Xim)wi1,...,im

thus,

Un =
1
n!

∑
p

Hi1,...,in .

In addition to the previous lemma we will use the following result which is due to Hoeffding (1963).

Lemma 2.2. Let X be a random variable such that c ≤ X ≤ b and EX = µ. Then,

Eet(X−µ) ≤ e
1
8 t2(b−c)2 for t > 0.

3. Main Result

Throughout this section will be assumed that X1, X2, ..., Xn is a sequence of independent random
variables and h(Xi1 , ..., Xim) is a Bernoulli kernel with

Eh(Xi1 , ..., Xim) = pi1,...,im .

In addition p̄ will denote the expected value of the weighted U-statistic based on the kernel h, i.e.,
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p̄ = EUn =
(

n
m

)−1 ∑

1≤i1<...<im≤n

wi1,...,im
pi1,...,im

.

The following result is a Hoeffding type exponential inequality for weighted U-statistics without any
assumptions on wi1,...,im

’s and the pi1,...,im
’s.

Theorem 3.1. Let Un be a weighted U-statistic based on a Bernoulli kernel. For ε > 0 and k = [n/m]

P (Un − p̄ ≥ ε) ≤ 1
n!

∑
p

1
k

k−1∑

j=0

exp(
−2kε2

w2
imj+1,...,imj+m

).

Proof. Let s be an arbitrary positive number. Then, using Markov’s inequality and the representation
of the weighted U-statistic as an average of averages of independent random variables we have

P (Un − p̄ ≥ ε) = P [sUn ≥ s (ε + p̄)]

≤ e−s(ε+p̄)EesUn

= e−s(ε+p̄)Eexp

(
s

1
n!

∑
p

Hi1,...,in

)
(1)

= e−s(ε+p̄)Eexp


s

1
n!

∑
p

1
k

k−1∑

j=0

h
(
Ximj+1 , ..., Ximj+m

)
wimj+1,...,imj+m


 .

Clearly,

(
n
m

)−1 ∑

1≤i1<...<im≤n

h(Xi1 , ..., Xim)wi1,...,im =
1
n!

∑
p

1
k

k−1∑

j=0

h(Ximj+1 , ..., Ximj+m)wimj+1,...,imj+m

and therefore using expected value

p̄ =
(

n
m

)−1 ∑

1≤i1<...<im≤n

pi1,...,imwi1,...,im =
1
n!

∑
p

1
k

k−1∑

j=0

pimj+1,...,imj+mwimj+1,...,imj+m .
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Thus,

P (Un − p̄ ≥ ε) ≤ e−sεEexp



s

1
n!

∑
p

1
k

k−1∑

j=0

[h(Ximj+1 , ..., Ximj+m
)− pimj+1,...,imj+m

]wimj+1,...,imj+m





≤ e−sε 1
n!

∑
p

Eexp





s

k

k−1∑

j=0

[
h(Ximj+1 , ..., Ximj+m

)− pimj+1,...,imj+m

]
wimj+1,...,imj+m



 (2)

= e−sε 1
n!

∑
p

k−1∏

j=0

Eexp
{ s

k
[h(Ximj+1 , ..., Ximj+m)− pimj+1,...,imj+m ]wimj+1,...,mj+m

}
(3)

=
1
n!

∑
p

k−1∏

j=0

e−
sε
k Eexp

{ s

k
[h(Ximj+1 , ..., Ximj+m)− pimj+1,...,imjm

]wimj+1,...,imjm

}

≤ 1
n!

∑
p

k−1∏

j=0

e−
sε
k .e

s2

8k2 w2
imj+1,...,imj+m (4)

=
1
n!

∑
p

k−1∏

j=0

exp

(
−sε

k
+

s2

8k2
w2

imj+1,...,imj+m

)

=
1
n!

∑
p

k−1∏

j=0

exp[−g(s)]. (5)

Inequality (2) is due to the convexity of the exponential function, equality (3) follows from independence
and finally, inequality (4) is due to Lemma 2.2.

For notational simplicity let wimj+1,...,imj+m = w. Therefore, the function g(s) in equation (5) equals
to g(s) = sε

k − 1
8

s2w2

k2 .

Maximizing g(s) we get smax = 4εk
w2 and g(smax) = 2ε2

w2 , implying that

P (Un − p̄ ≥ ε) ≤ 1
n!

∑
p

k−1∏

j=0

exp

(
−2ε2

w2
imj+1,...,imj+m

)

4



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

≤ 1
n!

∑
p


1

k

k−1∑

j=0

exp

(
−2ε2

w2
imj+1,...,imj+m

)


k

(6)

≤ 1
n!

∑
p

1
kk

kk−1
k−1∑

j=0

exp

(
−2kε2

w2
imj+1,...,imj+m

)

=
1
n!

∑
p

1
k

k−1∑

j=0

exp

(
−2kε2

w2
imj+1,...,imj+m

)
.

Notice that inequality (6) is due to the arithmetic-geometric mean while the following one is due to
the elementary inequality (

∑n
i=1 xi)

k ≤ nk−1
∑n

i=1 xk
i for k > 1. Thus, the proof of the theorem is

now complete.

Remarks

(i) Although in Section 1 the weighted U-statistic is defined based on independent and identically
distributed random variables, the result proved in this paper does not require that the observations
are identically distributed.

(ii) For the special case of the weighted U-statistic being the sample weighted average of independent
Bernoulli random variables Theorem 3.1, can be stated as:

Corollary 3.2. Let Y1, ..., Yn be independent Bernoulli random variables with E(Yi) = pi for i =
1, ..., n. Let Ȳ = 1

n

∑n
i=1 Yiwi, p̄ = 1

n

∑n
i=1 piwi, ε > 0 and wi, i = 1, ..., n nonnegative numbers with

1
n

∑n
i=1 wi = 1. Then,

P
(
Ȳ − p̄ ≥ ε

) ≤ e−2nε2 ε > 0 (7)

(iii) Inequality (7) extends the result of Turner et al. (1995) to the case of weighted Bernoulli random
variables.
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