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DISCRIMINATIVE CLASSIFIERS WITH

ADAPTIVE KERNELS FOR NOISE

ROBUST SPEECH RECOGNITION

M.J.F. Gales, F. Flego ∗

Cambridge University Engineering Department,

Trumpington Street, Cambridge,

CB2 1PZ United Kingdom

Abstract

Discriminative classifiers are a popular approach to solving classification problems.
However one of the problems with these approaches, in particular kernel based clas-
sifiers such as Support Vector Machines (SVMs), is that they are hard to adapt
to mismatches between the training and test data. This paper describes a scheme
for overcoming this problem for speech recognition in noise by adapting the kernel
rather than the SVM decision boundary. Generative kernels, defined using gener-
ative models, are one type of kernel that allows SVMs to handle sequence data.
By compensating the parameters of the generative models for each noise condition
noise-specific generative kernels can be obtained. These can be used to train a noise-
independent SVM on a range of noise conditions, which can then be used with a
test-set noise kernel for classification. The noise-specific kernels used in this paper
are based on Vector Taylor Series (VTS) model-based compensation. VTS allows all
the model parameters to be compensated and the background noise to be estimated
in a maximum likelihood fashion. A brief discussion of VTS, and the optimisation
of the mismatch function representing the impact of noise on the clean speech, is
also included. Experiments using these VTS-based test-set noise kernels were run on
the AURORA 2 continuous digit task. The proposed SVM rescoring scheme yields
large gains in performance over the VTS compensated models.

Key words: speech recognition, noise robustness, support vector machines,
generative kernels
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1 Introduction

Speech recognition is normally based on generative models, in the form of
Hidden Markov Models (HMMs), and class priors, the language model. These
are then combined using Bayes’ rule to yield the class posteriors. Alternative
approaches are to use discriminative models (Kuo and Gao, 2006; Gunawar-
dana et al., 2005; Gales, 2007), which directly model the class posteriors, or
discriminative functions such as Support Vector Machines (SVMs) (Vapnik,
1998), where the decision boundary is directly modelled. One of the problems
with using these discriminative models and functions is that it is normally
hard to adapt them to changing speakers or acoustic environments. This is
particularly true of kernel based approaches, such as SVMs, where individual
training examples are used to determine the decision boundaries. There has
been some previous work on adapting margin classifier parameters to address
this problem, see for example (Li and Bilmes, 2006; Huang et al., 2007) 1 .
These approaches either use the existing SVM parameters as a form of prior
for the samples from the new domain (Li and Bilmes, 2006), or define a resam-
pling weight for the training samples to “match” the particular target domain
(Huang et al., 2007). However for some speech recognition problems, for ex-
ample noise-robust speech recognition and rapid speaker adaptation, it is not
possible to ensure that the target speaker or environment is well covered by
the training data. Furthermore the amount of data in the target domain may
be very limited, for example a single utterance. For these forms of problem
these approaches are not feasible.

An obvious application area where there are large mismatches between the
training and test sets is speech recognition in noise. Handling changing acous-
tic conditions has been an active area of research for many years (Huang
et al., 2001). Model-based compensation schemes (Gales, 1995; Moreno, 1996;
Li et al., 2007) are a powerful approach to handling these mismatches. Well
implemented model-based compensation schemes tend to out-perform feature-
based compensation schemes as it is possible to more accurately model situa-
tions where speech is, for example, masked by the noise. This paper examines
an approach that allows discriminative classifiers to be combined with model-
based compensation schemes to improve the noise-robustness.

In this work, rather than attempting to modify the SVM itself, the form
of the kernel is altered to reflect the changing acoustic conditions. For the
class of kernels that make use of generative models (Jaakkola and Hausser,
1999; Smith and Gales, 2001), such as HMMs, the parameters associated with
the kernel are simply the parameters of the generative model. Thus adapting

1 In the machine learning literature this is sometimes referred to as sample selection
bias or covariant shift.
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generative kernels to a particular noise condition involves performing model-
based compensation. This noise-specific generative kernel can then used by a
noise-independent SVM for classification in the test noise condition. Provided
the form of adapted kernel compensates for the effects of the environment
changes, it should be possible to train (and classify with) a noise-independent
SVM on a range of noise conditions with the appropriate noise dependent
kernels.

Though this work is primarily interested in the feasibility of using noise-
independent SVMs, it is important that a good model-based compensation
scheme is used. In this work Vector Taylor Series (VTS) (Moreno, 1996) com-
pensation using noise model parameters estimated on the test data (Liao and
Gales, 2006) is implemented. In addition to a brief description of VTS model-
based compensation, a discussion of recent research for improved performance
by optimising the mismatch function is also included (Li et al., 2008).

This paper is organised as follows. The next section briefly reviews model-
based compensation schemes and VTS model-based compensation. In addition
recent approaches for improving VTS compensation by tuning the mismatch
function are described. This is followed by a discussion of SVMs with dynamic
kernels, based on generative models, for speech recognition. These dynamic, or
sequence kernels, allow SVMs to be applied to sequence data such as speech.
Section 4 then describes the complete scheme for using noise-independent
SVMs. Results on the AURORA 2 database are given in section 5.

2 Model-Based Noise Compensation

There are a number of possible approaches to reduce the impact of changing
background noise conditions and convolutional distortion on the performance
of speech recognition systems. For a review of a number of approaches see
(Huang et al., 2001). The approach examined in this work is often referred
to as model-based compensation. Here the parameters of “clean” acoustic
models, λx, are transformed to be representative of acoustic models trained
in the target test condition, λy.

The first stage in producing a noise compensation scheme is to define the im-
pact of the acoustic environment and channel on the clean speech data, the
mismatch function. In the mel-cepstral domain 2 used in this work the follow-
ing approximation between the static clean speech, noise and noise corrupted

2 For this work the cepstral parameters are assumed to be based on “magnitude”
filter-bin outputs. For some schemes, such as the default used in HTK (Young et al.,
2006) and the ETSI features, where the filter-bin analysis is by default based on
magnitude FFT values, the output may be directly used. For other work the square

3
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speech observations is often used (log(.) and exp(.) indicate element-wise log-
arithm or exponential functions) (Acero, 1993)

ys

t =xs

t + h +
1

2
C log

(

1 + exp(2C-1(ns

t − xs

t − h))
)

=xs

t + h + f(ns

t − xs

t − h) (1)

where C is the Discrete Cosine Transform (DCT) matrix and h is the convo-
lutional distortion or noise. For a given set of noise conditions, the observed
(static) noise-corrupted speech vector at time t, ys

t , is a highly non-linear
function of the underlying clean (static) speech signal xs

t , noise ns

t and convo-
lutional noise h. Noise compensation schemes are further complicated by the
addition of dynamic parameters. The observation vector yt is often formed of
the static parameters appended by the delta and delta-delta parameters. Thus

yT
t =

[

ysT
t ∆ysT

t ∆2ysT
t

]

. Mismatch functions for all the parameters can be

obtained (Gales, 1995; Gopinath et al., 1995).

The aim of model-based compensation schemes is to obtain the parameters
of the noise-corrupted speech model from the clean speech and noise models.
Most model-based compensation methods assume that if the speech and noise
models are Gaussian then the combined noise-corrupted speech model will
also be Gaussian. Thus to compute the expected value of the “observations”
for each corrupted speech component (assuming a single noise component) the
following must be computed

µ(m)
y = E {y|m} ; Σ(m)

y = diag
(

E
{

yyT|m
}

− µ(m)
y µ(m)T

y

)

(2)

There is no simple closed-form solution to these equations so various ap-
proximations have been proposed. These include Parallel Model Combination
(Gales, 1995) and Vector Taylor Series (VTS) (Moreno, 1996). As noise mod-
els are not normally available, these must also be estimated from the observed
data. Schemes that allow all the model parameters to be estimated have been
proposed (Moreno, 1996; Liao and Gales, 2007; Li et al., 2007).

In previous work on combining SVMs with model-based noise compensated
generative kernels, an idealised version of these model-based compensation
schemes was used (Gales and Longworth, 2008), Single-Pass Retraining (SPR)
(Gales, 1995). In this paper a more practical compensation scheme based on
VTS is used. This is briefly described in the next section and followed by a

root of the filter-bin outputs must be used. Of course this complicates the process as
the front-end processing must be clearly defined so that the appropriate mismatch
function can be applied.

4
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discussion of recent work on optimising the mismatch function for improved
recognition.

2.1 Vector Taylor Series Compensation

Vector Taylor series model-based compensation is a popular approach for
model-based compensation (Moreno, 1996; Acero et al., 2000; Liao and Gales,
2007; Li et al., 2007). A number of possible forms have been examined in the
literature. In this work the first-order VTS scheme described in (Liao and
Gales, 2006) is used. A brief summary of the scheme is given here. The first-
order VTS expansion of the corrupted speech in equation 1 may be expressed
as

ys

t ≈ xs + h + f(ns − xs − h)

+ (xs

t − xs)
∂f

∂xs
+ (ns

t − ns)
∂f

∂ns
+ (h − h)

∂f

∂h
(3)

where the partial derivatives are evaluated at the expansion point {xs, ns, h}.
This approximation can be used to obtain the noise corrupted model parame-
ters. To compute the mean for a particular corrupted speech component, the
expansion point is set to the means of the speech, additive and convolutional
noise distributions for that component. Thus the static mean of the corrupted
speech distribution (Acero et al., 2000), µs

y, is given by 3

µs

y = E

{

µs

x + µh + f(µs

n − µs

x − µh)

+ (xs − µs

x)
∂f

∂xs
+ (ns − µs

n)
∂f

∂ns
+ (h − µh)

∂f

∂h

}

(4)

where the expectation is over the clean speech and noise distributions which
have mean and variances of: µs

x,Σ
s
x for the clean speech model; µs

n,Σ
s

n for the
additive noise model; and µh,Σh for the convolutional distortion. The partial
derivatives above can be expressed in terms of partial derivatives of ys with
respect to xs , ns and h evaluated at µ = µs

n −µs

x −µh. These have the form

∂ys/∂xs = ∂ys/∂h = A (5)

∂ys/∂ns = I − A (6)

where A = CFC-1 and F is a diagonal matrix with elements given by 1/(1 +
exp(2C-1µ)). It follows that the means and variances of the noisy speech are
given by

3 The dependence of the noise corrupted speech mean and clean speech mean on
the component have been dropped for clarity.

5
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µs

y = µs

x + µh + f(µs

n − µs

x − µh) (7)

Σs

y = diag
(

AΣs

xA
T + (I −A)Σs

n(I − A)T
)

(8)

Note the convolutional distortion is assumed to have zero variance, Σh = 0 .

The VTS compensation based on equation 3 only allows the static parameters
of the acoustic models to be compensated. For best performance the dynamic,
delta and delta-delta, parameters must also be compensated (Gales, 1995). A
commonly used approximation for this is the continuous time approximation

(Gopinath et al., 1995). Here the dynamic parameters, which are a discrete
time estimate of the gradient, are approximated by the instantaneous deriva-
tive with respect to time

∆ys
t =

∑n
i=1 wi

(

ys

t+i − ys

t−i

)

∑n
i=1 w2

i

≈
∂ys

t

∂t
(9)

It is then possible to show that, for example, the mean of the delta parameters
µ∆

y can be expressed as

µ∆

y = Aµ∆

x. (10)

The variances and delta-delta parameters can also be compensated in this
fashion. It is possible to improve on the continuous-time dynamic compensa-
tion mismatch function in equation 9. A form based on simple-difference rather
than regression-based dynamic parameters can be used (Gales, 1995). Alter-
natively, regression-based parameters based on an explicit transformation of
a window of static features have been shown to outperform the continuous-
time approximation (van Dalen and Gales, 2008). These forms of improved
dynamic parameter approximation are not investigated in this work, but can
be combined with the approaches described.

The compensation schemes described above have assumed that the noise model
parameters, µn, Σn and µh, are known. In practice these are seldom known
in advance so must be estimated from the test data. In this work the noise
estimation is based on the Maximum Likelihood (ML) noise estimation scheme
described in (Liao and Gales, 2007). In addition, the second-order approach
for the noise variance in (Li et al., 2007) was implemented. This was found
to have no effect on recognition performance, but improved the speed of noise
model parameter estimation.

2.2 Mismatch Function Optimisation

There are a number of assumptions required to obtain the form of the mis-
match function given in equation 1, see for example (Gales, 1995). Recently
there has been interest in modifying the form of the mismatch function to re-

6



ACCEPTED MANUSCRIPT 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

duce the impact of these approximations, or more generally to yield improved
recognition performance.

One of the assumptions that has been investigated for VTS is the use of a
phase-sensitive mismatch function (Li et al., 2008). By relaxing the assumption
that there is sufficient smoothing to remove all cross-terms, a function of the
following form can be obtained

ys

t = xs

t + h +
1

2
C log

(

1 + exp(2C-1(ns

t − xs

t − h))

+2α exp(C-1(ns

t − xs

t − h))
)

(11)

where α is related to the level of smoothing. Note in theory α should be a
function of the mel-bin value (Deng et al., 2004). In (Li et al., 2008) the value
of α was tuned to minimise the error rate on the AURORA 2 task (Hirsch
and Pearce, 2000). Significant gains over the baseline α = 0 configuration
were obtained. However the best performance was obtained using α = 2.5,
contradicting the phase-sensitive theory where −1 ≤ α ≤ 1. Thus this form of
compensation may be considered as a generalisation of the mismatch function
where α is optimised, rather than compensating for limitations in the mel-bin
smoothing.

An alternative form of mismatch function generalisation was proposed in
(Gales, 1995). This has the form

ys

t = xs

t + h +
1

γ
C log

(

1 + exp(γC-1(ns

t − xs

t − h))
)

(12)

By tuning γ various forms of mismatch function can be obtained. Interestingly
equations 11 and 12 are the same when γ = 1 and α = 1 (magnitude combi-
nation) and when γ = 2 and α = 0 (power combination). For the magnitude
case the mismatch function is

ys

t = xs

t + h + C log
(

1 + exp(C-1(ns

t − xs

t − h))
)

(13)

This is the form used in (Liao and Gales, 2006; Liao, 2007) as it was found
to outperform γ = 2. It is also consistent with the results in (Li et al., 2007)
where α = 1 yielded the majority of the gains over the baseline α = 0, though
additional gains were obtained using α = 2.5. In this work γ = 1 (α = 1)
will be used as the baseline static compensation mismatch function. This was
found to give consistently better VTS performance than γ = 2. For the final
ETSI experiments in section 5.2, γ was optimised to minimise the Word Error
Rate (WER). This will be referred to as a γ-optimised (γ-opt) system.

Though the two forms of mismatch optimisation have been described in the

7
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Fig. 1. Fγ(x, n) and Fα(x, n) for power (α = 0, γ = 2), magnitude (α = 1, γ = 1),
γ = 0.75 and α = 2.5 against SNR in dB.

speech literature, there has been no systematic analysis of the relationship
between the two. Here the two forms of mismatch function generalisation in
equations 11 and 12 are compared. To simplify the comparison, normalised
forms of the two equations were used based on the ratio of the corrupted
speech magnitude to the clean speech magnitude in the linear spectral domain
(convolutional distortion is ignored). Thus the functions for γ-optimisation,
Fγ(x, n), and phase-sensitive, Fα(x, n), mismatch functions are given by

Fγ(x, n) =
(

1 +
(

n

x

)γ)1/γ

(14)

Fα(x, n) =

(

1 +
(

n

x

)2

+ 2α
(

n

x

)

)1/2

(15)

where n is the noise and x is the clean speech in the linear spectral domain.
Figure 1 shows the γ-optimisation function for γ = 0.75 (the optimal value
found in section 5.2) and phase-sensitive function for α = 2.5 (the optimal
value in (Li et al., 2008)) as well as the magnitude (α = 1, γ = 1) and power
(α = 0, γ = 2) functions against signal-to-noise ratio (SNR). It is interesting
that the best γ-optimised function and the best phase-sensitive α function
show very similar trends as the SNR varies for these values of α and γ.

Given the close relationship between the two forms of mismatch function, and
the more solid theoretical grounding, the γ-optimisation compensation scheme
will be used in this paper.

8
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3 SVMs and Generative Kernels

Support Vector Machines (SVMs) (Vapnik, 1998) are an approximate imple-
mentation of structural risk minimisation. SVMs are binary classifiers, where
the decision boundary is estimated to maximise the margin, the distance from
the decision boundary to the closest points from each of the classes. They have
been found to yield good performance on a wide range of tasks and are suitable
for use with data in high dimensional spaces. The theory behind SVMs has
been extensively described in many papers, for example see (Burges, 1998),
and is not discussed here. This section concentrates on how SVMs can be
applied to tasks where there is sequence data, for example speech recognition.

One of the issues with applying SVMs to sequence data, such as speech, is that
the SVM is inherently static in nature; “observations” (or sequences) are all
required to be of the same dimension. A range of dynamic kernels have been
proposed that handle this problem, for an overview see (Layton, 2006). Of
particular interest in this work are those kernels that are based on generative
models, such as Fisher kernels (Jaakkola and Hausser, 1999) and generative
kernels (Smith and Gales, 2001). In these approaches a generative model is
used to determine the feature-space for the kernel. For example a first-order
feature-space for a generative kernel with observation sequence Y may be
written as

φ(Y; λ) =
1

T















log
(

p(Y; λ(ω1))
)

− log
(

p(Y; λ(ω2))
)

∇λ(ω1) log p(Y; λ(ω1))

∇λ(ω2) log p(Y; λ(ω2))















(16)

where λ = {λ(ω1), λ(ω2)} are the set of acoustic model parameters, and p(Y; λ(ω1))
and p(Y; λ(ω2)) are the likelihood of the data sequence Y using generative
models associated with classes ω1 and ω2 respectively. The normalisation
term 1/T is used to help normalise the feature-space for sequences of different
lengths.

A range of generative models can be used to determine the kernel. HMMs
are the form selected in this paper as they are the standard model used in
speech recognition. Considering the derivative with respect to the means and
variances, elements of the feature-space will have the form (Smith and Gales,

9
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2001)

∂

∂µ(m)
log p(Y; λ) =

T
∑

t=1

γm(t)Σ(m)-1
(

yt − µ(m)
)

(17)

∂

∂Σ(m)
log p(Y; λ) =

1

2

T
∑

t=1

γm(t)
(

−Σ(m)-1 + Σ(m)-1(yt − µ(m))(yt − µ(m))TΣ(m)-1
)

(18)

where γm(t) is the posterior probability that component m generated the
observation at time t given the complete observation sequence Y = y1, . . . , yT .
Only the derivatives with respect to the means are used in this work, though
it is possible to use other, and higher-order, derivatives.

As SVM training is a distance based learning scheme it is necessary to define
an appropriate metric for the distance between two points. The simplest ap-
proach is to use a Euclidean metric. However, in the same fashion as using the
Mahalanobis, rather than Euclidean, distances for nearest-neighbour training,
an appropriately weighted distance measure may be better. One such metric
which is maximally non-committal is given by (Smith and Gales, 2001)

K(Yi,Yj; λ) = φ(Yi; λ)TG-1φ(Yj; λ) (19)

where Yi and Yj are two observation sequences and G is related to the Fisher
Information matrix (the log-likelihood ratio is also normalised in this work).
In common with other work in this area (Smith and Gales, 2001; Layton
and Gales, 2006), G is approximated by the diagonalised empirical covariance
matrix of the training data. Thus

G= diag

(

1

n

n
∑

i=1

(

φ(Yi; λ) − µφ

) (

φ(Yi; λ) − µφ

)T
)

(20)

µφ =
1

n

n
∑

i=1

φ(Yi; λ) (21)

where there are n training data sequences Y1, . . . ,Yn.

Classification of observation sequence Y with this form of generative kernel is
based on the SVM score Ssvm(Y; λ)

Ssvm(Y; λ) =
n
∑

i=1

αsvm

i ziK(Yi,Y; λ) + b (22)
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and the classification rule

ω̂ =











ω1, Ssvm(Y; λ) ≥ 0

ω2, Ssvm(Y; λ) < 0
(23)

where αsvm

i is the Lagrange multiplier for observation sequence Yi obtained
from the SVM maximum margin training, b is the bias and zi ∈ {1,−1}
indicates whether the sequence was a positive (ω1) or negative (ω2) example.

4 SVMs for Noise Robustness

The previous two sections have described model-based compensation and sup-
port vector machines with generative kernels. This section describes how these
schemes can be combined together to allow noise-specific generative kernels to
be used with a noise-independent SVM for speech recognition.

One of the problems with using SVMs for speech recognition is that standard
SVMs are binary classifiers whereas speech is a multi-class task; for large vo-
cabulary systems there are a vast number of classes. One approach to handling
this problem is acoustic code-breaking (Venkataramani et al., 2003). During
recognition an initial decoding of the test data is run and a set of pairs of highly
confusable words in the test utterance obtained. These confusable pairs can
then be rescored using the appropriate binary classifier. To train these clas-
sifiers, confusable pairs in the training data are obtained by finding the most
confusable word to each of the reference words. This provides a set of training
examples for each binary classifier.

As the vocabulary for the task considered in this work, continuous digit recog-
nition, is small, a modified version of acoustic code-breaking is used. It is pos-
sible to consider all possible pairs of words to train a set of SVMs that cover
all possibilities. As in acoustic code-breaking an initial decoding is run to ob-
tain word boundaries. During rescoring all possible word pairs, rather than
just a restricted pair, are scored between the word boundaries. Note acoustic
code-breaking as described in (Venkataramani et al., 2003) can be used to
allow this approach to be applied to larger vocabulary tasks.

The SVM training and sequence rescoring are described in detail in the next
two sections.

11
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4.1 SVM Training

The first stage in training the SVM is to segment the data into homoge-
neous blocks which have the same background noise and channel distortion.
The clean acoustic model is then adapted to each of the training data noise
conditions using VTS. This adapted corrupted speech model can be used to
segment the training data into words and also derive the feature-space to train
the SVM. During SVM training rather than just selecting the data from the
specific confusable pairs all the data from each of the words is used during
training. This yields a far larger number of training examples for the SVM.

In this work only the log-likelihood ratio and derivatives with respect to the
means are used. However in contrast to the standard use of the generative
kernel, there is an issue with using equation 17 when different noise-specific
generative kernels are used for different blocks of data, each characterised by
the same background noise conditions. Examining equation 17 shows that the
derivative, as expected, is not dimensionless 4 . Thus if the dynamic range of
the data is dramatically altered by the addition of noise, then the dynamic
range of features will vary from noise condition to noise condition. To keep the
dynamic ranges of each block of features consistent, it is necessary to ensure
that all the features are “dimensionless”. For the single dimension-case, this
can be simply achieved by using the standard-deviation rather than the vari-
ance when computing the derivative in equation 17. When a multi-dimensional
feature vector is used, then the “square-root”, the Choleski-factorisation, of
the inverse covariance matrix must be used. This will be written as Σ(m)−1/2

for simplicity of notation. For this work only diagonal covariance matrices are
used so it is only necessary to take the square-root of the elements on the
leading diagonal of the inverse covariance matrix.

Note in the general case, when the same covariance matrices are used for all
data sequences, dynamic range differences can arise only between different
elements of the vector in equation 16. But this is not generally a problem,
since these differences are handled by the metric G. Thus the feature-space
used for the SVMs between classes ωl and ωj is of the form

4 This is using the term dimensionless consistent with the use in dimensional anal-
ysis, rather than the size of the feature vector.

12
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φ(Y; λ) =
1

T











































log
(

p(Y; λ(ωl)
y )

)

− log
(

p(Y; λ(ωj)
y )

)

∑T
t=1 γm(t)Σ(ωl1)-1/2

y

(

yt − µ(ωl1)
y

)

...
∑T

t=1 γm(t)Σ(ωlM)-1/2
y

(

yt − µ(ωlM)
y

)

∑T
t=1 γm(t)Σ(ωj1)-1/2

y

(

yt − µ
(ωj1)
y

)

...
∑T

t=1 γm(t)Σ(ωjM)-1/2
y

(

yt − µ
(ωjM)
y

)











































(24)

where the clean models have been compensated for the test condition Y,
λ = {λ(ωl)

y , λ(ωj)
y }, and there are a total of M components in each of the two

word models λ(ωl)
y and λ(ωj)

y

The complete procedure for training the noise-independent SVMs is:

(1) For each training noise condition perform model-based compensation to
map the clean model parameters to noise corrupted model parameters:
λx → λy

(2) Align each training utterance Y using the reference, r = r1, . . . , rK , and
λy to give the word-segmented data sequence Ỹ1, . . . , ỸK

(3) For all word pairs (ωl, ωj) and for each segment Ỹi set λ = {λ(ωl)
y , λ(ωj)

y }

(a) obtain φ(Ỹi; λ) for all training examples of ωl using the appropriate
noise compensated acoustic models λ

(b) obtain φ(Ỹi; λ) for all training examples of ωj using the appropriate
noise compensated acoustic models λ

(c) train a noise-independent SVM for pair (ωl, ωj) using all positive (a)
and negative (b) examples.

This process yields a set of one-versus-one SVMs, one for each word pair
(ωl, ωj). Both linear and non-linear SVMs may be trained. In this work only
linear SVMs were used as the generative kernels typically yield a high dimen-
sional feature without using, for example, polynomial kernels.

4.2 SVM Rescoring

The same set of one-versus-one SVMs trained as above are used for all test
noise conditions. For each test noise conditions VTS is used to adapt the
clean models. These noise-compensated models are then used to recognise
and segment the data. A standard majority voting approach is used to label
each segment.
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Thus during SVM rescoring the following complete procedure is used:

(1) Compensate the acoustic models for the test noise condition: λx → λy

(2) Recognise the test utterance Y using λy to obtain 1-best hypothesis,
r = r1, . . . , rK and align to give the word-segmented data sequence
Ỹ1, . . . , ỸK

(3) For each segment, Ỹi:
(a) for each word pair (ωl, ωj) set λ = {λ(ωl)

y , λ(ωj)
y }

ω̂ =



























ωl; if S(lj)
svm

(Ỹi; λ) + ǫ 1√
g11

(

log
(

p(Ỹi; λ
(ωl)
y )

)

− log
(

p(Ỹi; λ
(ωj)
y )

))

≥ 0

ωj; otherwise

(25)

set : count[ω̂] = count[ω̂] + 1 (26)

(b) classification, r̂i, is given by:
(i) if no ties in voting: r̂i = argmaxω {count[ω]}
(ii) if only two words (wl, wj) tie then r̂i determined using equa-

tion 25
(iii) if more than two words tie r̂i = ri

Note that S(lj)
svm

(Ỹi; λ) in step (3) indicates that the SVM associated with word
pair (ωl, ωj) is used for scoring Ỹi.

In equation 25 a tunable parameter ǫ is used. This is an empirically set value
which is used to scale the contribution of the log-likelihood ratio to the SVM
score. The log-likelihood ratio is known to be the most discriminatory of the
dimensions of the score-space. It is the single feature used for standard HMM-
based speech recognition. However using a maximally non-committal metric,
G, all dimensions are treated equally. Thus ǫ is used to reflect the additional
usefulness of the log-likelihood ratio. As ǫ → ∞ the performance of the system
will tend to the HMM performance. In equation 25 ǫ is applied to a normalised
log-likelihood ratio where the square-root of the first term of the metric G,
g11, is used as the normalisation term. Though there was little difference in
performance between the normalised and un-normalised versions, it was felt to
generalise better between tasks and different noise conditions. For the initial
experiments in this work ǫ = 2 was used, this is the value used for the SPR
experiments described in (Gales and Longworth, 2008).

The routine above is known to be suboptimal in a number of ways. A sim-
ple scheme is used to combine classifier outputs. More complex versions of
binary classifier combination, or multi-class SVM may be used, for example
(Wu et al., 2004). The alignment associated with each word-segment is not up-
dated if the hypothesis sequence changes. It is possible to repeat the alignment
if the hypothesis changes. However in initial experiments this gave no change
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in performance. The computational load associated with this scheme increases
approximately linearly with the number of word pairs. However as the vocab-
ulary size V increases the computational cost will increase at O(V 2). Thus
the scheme is currently only suited for small vocabulary tasks, such as digit
string recognition. It is possible to use acoustic code-breaking to apply these
approaches to larger tasks, but this is not investigated in this work. Further-
more it is possible to use the features associated with the generative kernels
with other forms of classifier, for example multi-layer perceptrons. Again this
is a possible future direction.

5 Results

The performance of the proposed scheme was evaluated on the AURORA 2
task (Hirsch and Pearce, 2000). AURORA 2 is a small vocabulary digit string
recognition task. As the vocabulary size (excluding silence) is only eleven
(one to nine, plus zero and oh) the number of word pairs is small (66 includ-
ing silence) making it suitable for the proposed scheme. The utterances in
this task are one to seven digits long based on the TIDIGITS database with
noise artificially added. The clean training data was used to train the acoustic
models. This comprises 8440 utterances from 55 male and 55 female speakers.
Two forms of front-end were examined, one HTK-based, the other ETSI-based
(Hirsch and Pearce, 2000). For both front-ends a 39 dimensional feature vec-
tor consisting of 12 MFCCs appended with the zeroth cepstrum, delta and
delta-delta coefficients was used. These differ slightly from the standard pa-
rameterisations and perform slightly worse. However this form of front-end
allows VTS compensation to be applied to compensate the acoustic models.
The acoustic models are 16 emitting state whole word digit models, with 3
mixtures per state and silence and inter-word pause models. All three test sets,
A,B and C, were used for evaluating the schemes. For sets A and B, there were
a total of 8 noise conditions (4 in each) at 5 different SNRs, 0dB to 20dB. For
test set C there were two additional noise conditions at the same range of
SNRs. In addition to background additive noise convolutional distortion was
added to test set C. Test set A was used as the development set for tuning
parameters.

For all the VTS schemes the same procedure as in (Li et al., 2007) was used.
An initial estimate of the background additive noise for each utterance was
obtained using the first and last 20 frames of the utterance. This was then
used as the noise model for VTS compensation and each utterance recognised.
This hypothesis was used to estimate a per-utterance noise model in an ML-
fashion. The final recognition output used this ML-estimated noise model for
VTS compensation.
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Where SVM rescoring was used, the SVMs were trained on a subset of the
multi-style training data available for the noise conditions and SNRs in test set
A. For each of the noise/SNR conditions there are 422 sentences (a subset of all
the training data). For the SVMs training only three of the four available noise
conditions (N2-N4) and three of the five SNRs 10dB, 15dB and 20dB were
used. This allows the generalisation of the SVM to unseen noise conditions to
be evaluated on test set A as no data from noise condition N1 and SNRs 5dB
and 0dB were used. Note this makes the SVM experiments hard to compare
with other approaches where none of the multi-style training data was used.
However the baseline VTS experiments are comparable. For all experiments
the SVMs were built using the top 1500 dimensions of φ(Ỹi; λ) ranked using
the Fisher ratio.

5.1 HTK-based Front-End

SNR Noise Avg

(dB) N1 N2 N3 N4

20 1.78 1.87 1.55 1.54 1.69

15 2.67 2.63 2.00 2.13 2.36

10 5.13 4.20 3.37 4.91 4.39

05 12.25 12.03 8.20 12.40 11.20

00 32.18 37.70 21.92 26.47 29.55

Avg 10.80 11.69 7.41 9.49 9.84

Table 1
VTS WER (%) on AURORA 2 test set A using HTK features.

Initial investigations used the HTK-features (Hirsch and Pearce, 2000). As
discussed in section 2.2 these initial results used a mismatch function with
magnitude combination, γ = 1. Table 1 shows the performance of the VTS
compensated clean system on each of the test set A noise conditions. As ex-
pected, as the SNR decreases the word error rate (WER) increases. Note the
word error rate for the clean, uncompensated, model set on the 5dB SNR
system was 66.75%. There is thus an 83% relative reduction in error rate by
using VTS model-based compensation at 5dB.

Table 2 shows the performance of the SVM rescoring for test set A. For these
initial experiments the value of ǫ was set to 2, which was the value used
in (Gales and Longworth, 2008). The noise conditions where the multi-style
training data was used to train the SVMs are marked with a † as there may
be a slight bias for these numbers. For all noise conditions a reduction in the
WER was observed. The performance gains for the unseen N1 noise condition

16
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SNR Noise Avg

(dB) N1 N2 N3 N4

20 1.38 †1.45 †1.25 †1.30 1.35

15 2.12 †2.00 †1.64 †1.54 1.82

10 3.62 †2.93 †2.54 †3.86 3.23

05 8.78 8.43 6.20 9.53 8.22

00 24.04 27.93 18.52 21.54 23.00

Avg 7.99 8.55 6.03 7.55 7.52

Table 2
SVM rescoring WER (%) on AURORA 2 test set A (ǫ = 2), SVMs trained on
N2-N4 10-20dB SNR indicated with †.

were consistent with those of the seen N2-N4 conditions. In addition gains at
the lower, unseen, SNRs 0dB and 5dB were seen. For example the gain at 5dB
SNR was about 27% relative reduction. Overall a 23% relative reduction in
error over test set A was obtained compared to the baseline VTS scheme.
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Fig. 2. SVM rescoring performance WER (%) against ǫ using HTK features, SVMs
trained on test set A N2-N4 10-20dB SNR.

The performance of the system is expected to be sensitive to the value of ǫ
selected. Figure 2 shows how the average performance for each of the three
test sets varies as ǫ changes. The performance of the SVM by itself (ǫ = 0)
is better than the baseline VTS performance (see table 3). For example the
average WER on test set A for the “pure” SVM performance (ǫ = 0) was
7.95% compared to 9.84% for the VTS compensation. Additional gains were
obtained by increasing ǫ. The minima for the three test sets occur in the range
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1.5 to 3.0. Thus the previously used value of ǫ = 2 is a reasonable value for
all three test sets, so was left unaltered for the later experiments.

SNR Set A Set B Set C

(dB) VTS SVM VTS SVM VTS SVM

20 1.69 1.35 1.46 1.22 1.57 1.33

15 2.36 1.82 2.37 1.77 2.47 2.00

10 4.39 3.23 4.12 3.16 4.49 3.52

05 11.20 8.22 10.05 7.68 10.69 8.70

00 29.55 23.00 27.54 22.93 28.41 25.01

Avg 9.84 7.52 9.11 7.35 9.53 8.11

Table 3
VTS (γ = 1) and SVM rescoring performance WER (%) tests sets A, B, C (ǫ = 2)
using HTK features, SVMs trained on test set A N2-N4 10-20dB SNR.

Table 3 summarises the results for VTS compensation and SVM rescoring for
all three available test sets. Note that none of the noise conditions for test sets
B and C were used to train the SVMs. For all noise conditions large reductions
in WER were obtained using SVM rescoring compared to the baseline VTS
compensation. The relative reductions in average WER were 23%, 19% and
14% for test sets A, B and C respectively. Though the relative gains for test
sets B and C were slightly less than that for test set A, it still indicates that
a good level of noise-independent classification can be obtained using these
noise-specific generative kernels.

The results presented so far have applied both VTS compensation for kernel
adaptation and SVM rescoring. In order to identify the gains from each of
these stages an additional set of experiments were run. First a system was
built using the same SVM training data, but where no adaptation of the
kernel parameters in training or test was performed. To make the contrasts as
fair as possible, initial decoding was run with VTS-compensated HMMs and ǫ
used to scale the VTS-compensated log-likelihood ratios. Thus as ǫ → ∞ the
performance will tend to the HMM VTS compensated performance, rather
than the uncompensated performance. The results for this system on test set
A are shown in figure 3, labelled uncomp: N2-N4, 10-20dB. The performance
when ǫ = 0 was very poor, just under 14%. As the value was increased the
performance improved. However the performance was always worse than the
system using VTS kernel adaptation, labelled VTS: N2-N4, 10-20dB. Some
performance gain over the baseline VTS scheme, 9.84%, can be seen indicating
that the discriminative nature of this “multi-style” SVM is still useful.

The second experiment involved restricting the range of noise SNRs seen by
the SVMs to assess to what extent the VTS kernel adaptation compensates for
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Fig. 3. SVM rescoring performance WER (%) against ǫ using HTK features, SVMs
trained on test set A. Training using no compensation on N2-N4 10-20dB SNR
noise conditions; VTS compensation on N1-N4 20dB SNR noise conditions, and
VTS compensation on N2-N4 10-20dB SNR noise conditions.

the varying noise conditions. The SVMs were trained on the 20dB SNR data 5 .
Figure 3 shows the performance of this system, labelled VTS: N1-N4, 20dB,
as the value of ǫ varies. This system was trained on all the noise conditions
as the amount of data to train the SVM was less than when using a range of
SNRs. The results show a similar trend to the system trained on a range of
SNRs, but the performance is consistently worse. This indicates that the VTS
kernel adaptation allows a degree of insensitivity to the SNR conditions, but
data from a range of SNRs is better.

5.2 ETSI-based Front-End

The previous section has used the HTK-based features with the baseline γ = 1
noise compensation. The ETSI-based features are known to yield better per-
formance than the HTK-based features (Hirsch and Pearce, 2000). The inter-

5 An alternative experiment would be to train the SVMs on the clean data used
to train the HMMs. However, on this, and other tasks, it has been observed that
training the generative models and the SVM parameters on the same data produces
“biased” SVM parameters. The reason is that, given that the generative models’
parameters “match” the training data, the scores obtained from them tends to be
too closely linked to the training data and are not representative of unseen data. It
is interesting that the addition of noise to the data (even when VTS compensation
is performed) does not suffer from the same problem.
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action of this improved front-end with VTS and the SVM rescoring gains was
therefore investigated. It is also interesting to examine whether performance
gains are possible when the VTS mismatch function is optimised. For this
work the γ-optimisation in equation 12 was used.
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Fig. 4. Plot of VTS γ-optimised WER (%) performance on test set A against γ

Figure 4 shows the variations in WER for test set A as the value of γ is
varied in equation 12. From the graph it is clear that the magnitude-based
mismatch function (γ = 1) outperforms the more theoretically correct power-
based mismatch function (γ = 2). The best performance on test set A is with
γ = 0.75. As discussed in section 2.2 the impact of this γ-optimised system is
very similar to the α-optimised phase-sensitive system in (Li et al., 2008).

SNR Set A Set B Set C

(dB) VTS γ-opt SVM VTS γ-opt SVM VTS γ-opt SVM

20 1.60 1.47 1.27 1.38 1.30 1.09 1.63 1.49 1.25

15 2.26 2.12 1.75 2.23 2.11 1.69 2.38 2.18 1.87

10 4.27 3.91 3.10 3.91 3.51 2.78 4.40 4.07 3.40

05 10.52 8.94 7.10 9.13 8.53 6.81 9.64 8.56 7.66

00 28.00 25.48 21.73 25.95 24.46 21.64 26.05 24.51 22.56

Avg 9.33 8.39 6.99 8.52 7.98 6.80 8.82 8.16 7.35

Table 4
VTS (γ = 1), VTS γ-optimised (γ = 0.75) and SVM rescoring(ǫ = 2) performance
WER (%) tests Sets A, B, C using ETSI features, SVMs trained on set A N2-N4
10-20dB SNR.

Table 4 shows the performance for the baseline (γ = 1) and the γ-optimised
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VTS performance (γ = 0.75). The performance of the baseline system is consis-
tently better than the HTK-based features when VTS is used 6 . By optimising
γ further large gains in performance can be obtained over all test sets. Note
that though γ was optimised on test set A, there are consistent gains on test
sets B and C. For example on test set B a 7% relative reduction in average
WER was obtained, with gains for all SNRs. This is consistent with the gains
observed for phase-sensitive α optimised compensation (Li et al., 2008).

The γ-optimised VTS models were then used in the SVM rescoring process.
For these SVM rescoring experiments ǫ = 2 was again used. These results are
also shown in table 4. For all SNRs and test sets gains over the optimised
VTS scheme were obtained. Relative gains of 17% for test set A, 15% for
test set B and 10% for test set C were obtained. These gains are less than
those obtained with the non-optimised HTK scheme, but still show that large
gains using SVM rescoring are possible when the VTS compensation has been
optimised.

6 Conclusions

This paper has described a new approach to noise-robust speech recognition.
The scheme combines model-based noise compensation schemes with a dis-
criminative classifier, in this case an SVM. Rather than adapting the dis-
criminative classifier, changing noise conditions are handled by adapting the
generative kernel. This is possible as generative models, such as HMMs, are
used to determine the kernel feature-space. Thus model-based compensation
can be used to adapt the generative models and obtain kernel features that
are specific to the current noise environment. For this work VTS was used as
the model-compensation scheme. In addition to the baseline VTS scheme, an
approach using an optimised mismatch function was investigated. To handle
the multi-class issue (the SVM is inherently binary) a combination of a mod-
ified version of acoustic code-breaking with majority voting was used. Thus
the overall scheme allows a noise-independent SVM with noise-dependent gen-
erative kernels to be used to rescore the recognition output from a standard
HMM-based speech recognition system.

Initial experiments on the AURORA 2 task are presented using VTS as the
model-based compensation scheme. To train the SVMs a subset of the multi-
style training data for test set A was used. To ensure that the SVMs could
handle unseen noise conditions and SNRs, no data from the N1 noise condi-

6 The performance of this baseline γ = 1 system is similar to the results in (Li
et al., 2007). However it is unclear what domain was used for the compensation in
(Li et al., 2007) as the default ETSI features are magnitude based.
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tion and the 0dB and 5dB SNRs were used to train the SVMs. In addition to
test set A the performance was evaluated on test sets B and C with unseen
noise conditions. Compared to the VTS trained system large reductions in
WER were observed with SVM rescoring for all noise conditions, including
the ones on which the SVMs were not trained. Consistent gains over the VTS
baseline were obtained even when the VTS compensation scheme was opti-
mised for the space in which the speech and noise are assumed to be additive,
γ-optimisation.

The results presented in this paper are preliminary for a number of reasons.
Though consistent gains on more complex tasks have been obtained using mag-
nitude compensation (γ = 1) it is not clear whether further γ-optimisation
will generalise from task to task. Discriminatively trained, or more complex,
acoustic models can be used for this task. The proposed scheme can be ap-
plied using these improved generative models. The AURORA 2 task comprises
artificially corrupted data. The standard issue of whether the large gains ob-
served will map to “real” data remains to be evaluated. Finally SVMs were
used as the discriminative classifier. For larger vocabulary tasks other discrim-
inative classifiers, such as conditional augmented models (Layton and Gales,
2006), may be more appropriate. Despite these limitations, the results indi-
cate that good levels of performance can be obtained using noise-independent
discriminative classifiers with noise-specific kernels.
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