
HAL Id: hal-00508393
https://hal.science/hal-00508393

Preprint submitted on 3 Aug 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimality for Dynamic Patterns
Thibaut Balabonski

To cite this version:

Thibaut Balabonski. Optimality for Dynamic Patterns. 2010. �hal-00508393�

https://hal.science/hal-00508393
https://hal.archives-ouvertes.fr

Optimality for Dynamic Patterns

Full version

Thibaut Balabonski

Laboratoire PPS, CNRS and Université Paris Diderot

thibaut.balabonski@pps.jussieu.fr

March 26, 2010

Abstract

Evaluation of a weak calculus featuring expressive pattern matching mechanisms is in-
vestigated by means of the construction of an efficient model of sharing. The sharing theory
and its graph implementation are based on a labelling system derived from an analysis of
causality relation between evaluation steps. The labelled calculus enjoys properties of con-
fluence and finite developments, and is also used for proving correctness and optimality of
a whole set of reduction strategies.

Contents

1 Introduction 3

2 First-Class Patterns 7

3 The Labelled Weak Pure Pattern Calculus 11
3.1 From Causality to Labels . 11

3.1.1 Redex Creation Theorem . 12
3.2 Formalizing Labels . 15

3.2.1 Labelled Creation Theorem . 19
3.3 Properties of LWPPC . 20

3.3.1 Miscellaneous Lemmas . 20
3.3.2 Redex Stability Lemma . 21
3.3.3 Confluence Theorem . 23
3.3.4 Termination Theorem . 30
3.3.5 Finite Developments Theorem . 31

4 The Sharing Property 35
4.0.1 Direct Contribution Lemma . 35
4.0.2 Preservation of Sharing Theorem . 38

5 The Result of Optimality 39
5.0.1 Formal Account of Determinisic Family Structures 40
5.0.2 Correctness & Optimality Corollary . 41

6 Related Works 42

7 Conclusion and Prospects 43

8 Acknowledgments 44

1

Proof Map

5.2

5.3

5.4

Direct Contribution
Converse 5.5

3.6

4.2

4.3

4.4

4.5

4.6

Direct
Contribution 4.1

4.7

Labelled
Creation 3.3

3.4

3.8

3.9

Redex
Stability 3.10

3.11 Confluence 3.12

Simulation 3.20

3.13

3.14

3.15

3.16

3.17
3.18

Diamond 3.19

Parametric
Confluence 3.21

P
a
ra

ll
e
l

R
e
d
e
x

S
ta

b
il
it
y

3.22

3.23

Termination 3.24

3.5

3.28 3.27

3.29

3.30

3.31

Finite
Developments 3.32

3.25

3.5 3.6 3.7

4.8

Preservation
of Sharing 4.9

5.6

Correctness
& Optimality 5.7

This picture shows all results mentioned in the paper. An arrow is drawn from Refa to Refb
when Refa is used to prove Refb. Each framed area is organized around a central result, and the
framed references are those connected to external areas. Bold arrows emphasize dependencies
between main results.

2

1 Introduction

The motivation of this work is to go toward an efficient implementation model for functional
programming languages featuring expressive pattern matching facilities. As a first step, this
paper studies sharing and optimality in a calculus with patterns.

Pattern matching can be simply understood as a basic mechanism used to define functions
by cases on the structure of the argument; it is one of the main aspects revealing the interest of
the functional paradigm for the working programmer. Unfortunately usual mechanisms suffer
from some lack of genericity. Consider for instance a structure of binary tree: a tree is either a
single data or a node with two subtrees, which could be written in ML-style as follows.

type ’a tree =

| Data of ’a

| Node of ’a tree * ’a tree

A function upd updating all data in binary trees can be easily written by recursion on the
inductive structure of trees, using pattern matching.

let rec upd f t = match t with

| Data a -> Data (f a)

| Node l r -> Node (upd l) (upd f r)

When the function upd is applied to arguments f and t, the latter is compared to the shape
Data a, called a pattern (in the whole paper, bold font is used for definitions and technical
vocabulary). In case of success (the pattern and the argument match, i.e. t = Data u for
some u), the matching variable a captures the substructure u of the argument t and then
the updated data Data (f(u)) is returned. If the first comparison fails (pattern and argument
don’t match), then the alternative case Node l r is tested.

The code of upd names explicitly all the constructors which will be met during evaluation,
that is, Data and Node. Thus, any minor variation on the data structure (trees of other or
arbitrary arities, lists, heterogeneous data...) requires a new definition of the upd function.

A first solution for this problem is given by path polymorphism [Jay04, JK09], which
allows a function to go recursively through any data structure and act on some base cases
(like Data a here). Path polymorphism can be achieved by a universal –and very simple–
classification of structures: each one is either atomic, or compound. Atoms, as constructors,
are inert. Compounds, as (partially) applied constructors, lead to recursion. The code below
shows how a path polymorphic upd could look like.

let rec upd f t = match t with

| Data a -> Data (f a) //Base

| x y -> (upd f x) (upd f y) //Compound

| z -> z //Atom

The decomposition in compounds and atoms can be encoded in usual languages with the
use of an explicit constructor for compounds. Note that this solution gives up typing. A more
subtle approach is in Generic Haskell [HJ03] with reasoning by case on the type of the data
structure.

Example 1.
Example of evaluation of the path polymorphic upd (brackets are used as parentheses to separate
function calls, and ++ is the successor function):

3

upd ++ (Node (Data 1) (Data 2))

[upd ++ (Node (Data 1))] [upd ++ (Data 2)]

[upd ++ Node] [upd ++ (Data 1)] [upd ++ (Data 2)]

Node (Data 2) (Data 3)

While Node alone is an atom, terms like Node (Data 1) and Node (Data 1) (Data 2) are
compounds.

The second solution to the previous problem is given by pattern polymorphism [JK09,
Jay09], which allows to parametrize a pattern by an arbitrary term, thus allowing different
instantiations of the same pattern. The simpler case is when the pattern parameter is just
a constructor, the more general and interesting one is when the pattern parameter is a func-
tion constructing a pattern. Such a function needs to be evaluated before pattern matching
is performed, thus patterns become dynamic. This is completely out of the scope of usual
programming languages.

Dynamic patterns are really a key to expressive pattern matching paradigms, but they are
incompatible with usual implementations. Indeed pattern matching definitions are normally
compiled into series of low-level tests, organized in what is generically called a matching
automata. Since a naive matching automata is likely to introduce a lot of redundant tests
and other inefficiencies, sequences of patterns are analyzed in order to get optimized control
structures which minimize the average cost of pattern matching and share redundant tests.
See [FM01, Mar08] for examples of this. However, dynamic patterns are by nature undefined
at compile-time and make this kind of static analysis impossible: new mechanisms have to be
invented to recover some of the lost optimizations.

The aim of this work is to conciliate dynamic patterns and efficient evaluation by introducing
run-time sharing mechanisms that minimize redundancy of matching operations.

Whereas both aspects are often separated, the study of sharing provided by this paper in-
cludes pattern matching in the kernel of functional programming languages (as can be found in
higher-order rewriting). The framework used to model higher-order functions, data structures
and pattern matching with dynamic patterns is the Pure Pattern Calculus (PPC) of Jay and
Kesner [JK06, JK08, JK09, Jay09]. The formalism encompasses λ-calculus and usual pattern
matching, allowing to apply any relevant result obtained here to the standard cases. Further-
more, this framework is even richer since it realizes both path and pattern polymorphisms,
which is why it is preferred here to other pattern matching calculi such as the λ-calculus with
patterns [Jon87, KvOdV08] or the rewriting calculus [Cir00].

Taking advantage of the unified framework of PPC , the discussion on efficiency led here
concerns pattern matching as well as function calls. The paper thus proceeds by extending to
the more general PPC some concepts of λ-calculus that are presented below.

A reduction strategy is the choice of an evaluation order for programs. Suppose the term
t evaluates to the value v. The figure below illustrates how the choice of an evaluation order
can have an impact on the number of evaluation steps, and then on the evaluation cost. In both
pictures the left path is call-by-name while the right path is call-by-value.

(λx.y)t

(λx.y)v

y

(λx.xx)t

tt

vt

vv

(λx.xx)v

4

In the left picture, the difference comes from the presence of some useless fragment in the
program, whereas in the right picture there is a possibility of duplication of a non-evaluated
program. An efficient reduction strategy has to cope with these two pitfalls.

Whereas useless evaluation can be avoided (by so-called needed reduction), it is known that
an evaluation order alone is not enough to prevent duplication [Lé80]. Thus an efficient imple-
mentation comes from the combination of a reduction strategy with a mechanism of sharing
of duplicated terms. The idea is to make sure that some parts of a program which are logically
duplicated (in the term representation of the program) remain physically single pieces (in the
memory of the evaluator).

The use of sharing leads from classical term representations of programs (say, as higher-
order rewriting systems [Ter03]) to graph representations [Jon87], where duplication of a whole
subterm may be replaced by the copy of a single pointer, as showed below.

Pictures will take the form of syntactic trees or graphs, top-down oriented. Application is
denoted by the binary node @, and redexes are marked with bold lines (reducible expression, or
redex, designs a place where an evaluation step can take place). For instance in the following
picture, an abstraction λx.B is applied to an argument A. The function body B contains
two occurences of the formal parameter x, and the argument A is thus logically duplicated,
representing call-by-name:

@

B

λx

x x
A B

A A

So-called lazy evaluation (next figure) prevents this duplication: A stays physically unique,
with two pointers to its location.

@

B

λx

x x
A B

A

The reader should keep in mind that the term laziness is to be taken in literal sense: if there is
something to do (as a duplication), just wait for some better reason, which often appears quite
fast. In particular a shared function has to be copied prior to any instantiation, as shown in
the picture below.

@

B

C

λx

x x
A B

λx

x x

C
B

A

A further step in the hierarchy of lazinesses is called fully lazy evaluation, and performs only
a partial duplication of the body of the function, namely the parts that depends on the formal
parameter [Wad71]. In the next picture, the dotted zone represents the parts whose copy is (at
least momentarily) saved by full laziness.

@

B

C

λx

x x
A B

λx

x x

C

A

5

The graphs generated by this kind of reduction are directed acyclic graphs (DAGs) in which
there is at most one arrow out of each node. An important consequence is that in this model,
only complete subterms are shared, and the graphs are precise representations of what is present
in the memory of the evaluator. Each node is a memory location, each edge is a pointer, and
nothing more is needed for evaluation. It can also be noticed that any such graph can be easily
unfolded (or read-back) into the term it represents.

Further levels of laziness [HG91, Lé80] lose these interesting properties. Indeed they need
to share subcontexts (or open terms) instead of complete subterms [Sin08, AG98]: something
which is shared at some point can be unshared later.

C

Ao Bo

Ai Bi

The problem here is to match correctly the inputs with the outputs. For correct evaluation the
right associations have to be remembered, which needs to introduce some additional control
structures. The possibly huge bookkeeping work induced by these additional structures [AG98]
prevents optimal β-reduction from being the unquestionable optimal choice of implementation.

As a consequence, any really efficient model of sharing has to strike a balance between
the effective amount of sharing and the additional implementation cost. The choice here is
full laziness, as it is the higher known level of sharing that shares only complete subterms and
then avoids the explosion of hidden costs that characterizes optimality. Moreover, this presumed
efficiency of full laziness is effective: see for instance the implementation for λ-calculus proposed
in [SW04].

All the reasoning on graph representations appearing in this paper is done through enriched
terms representing graphs. To achieve this, terms are decorated with labels representing memory
locations and pointers (see Section 4). Since memory locations determine what is shared or
copied, the interesting point is the way in which the labels are designed (Section 3).

As in Lévy’s optimality theory [Lé78], labels are meant to caracterize equivalent subterms
(originally equivalent redexes) that should be shared (in other words that should not have been
separated). Informally, being equivalent means to have a common origin, followed by equivalent
evolutions (the whole being called history).

The kernel of this work is a representation of the history of terms by labels derived from an
analysis of causality relations between evaluation events.

In the simple functional case a redex appears wherever an abstraction is applied to an
argument, and the only relevant history in this case can be recorded locally as in [Lé78, BLM07].
However an argument that has to be matched against some pattern is required to be in a suitable
form. Consider for instance the following program.

let id x = x

and rec count = fun

| Data a -> 1

| Node l r -> (count l) + (count r)

in

count (id (Data 0))

Function count is called with argument id (Data 0), which has to be evaluated to Data

6

0 before the application can be resolved. Thereby a redex also depends on the history of its
subterms, at an arbitrary depth.

These non-local contributions associated with a generic matching algorithm represent a new
challenge and a major source of difficulty for this work, especially since pattern matching is
allowed to fail. Moreover, in PPC this challenge concerns not only the arguments but also the
(dynamic) patterns! Difficulty of this point is detailed in Subsection 3.1 (last paragraph) once
all needed material is available, whereas novelty is argumented in Section 6 (related work).

Main originality of the paper is the advanced treatment of history and contributions, which
is still unexplored for the kind of pattern matching presented here, as far as the author is aware.

As done in current implementations for functional languages, weak evaluation is considered
here. More precisely, PPC will be restricted by constraining evaluation inside the body of an
uninstantiated function (which means partial evaluation). The choice of this weak version follows
an approach by Blanc, Lévy and Maranget and is closely related to fully lazy sharing [BLM07].
Please note that this work considers optimality relative to the weak restriction, which differs
from the usual strong theory of β-optimality mentioned above.

Correctness and optimality of a whole class of strategies for the graph implementation of
PPC proposed in this paper are stated (Correctness & Optimality Corollary 5.7) by means of an
axiomatic approach given by Glauert and Khasidashvili [GK96]. They provide abstract notions
of equivalent redexes and contribution to a redex using a set of axioms which are sufficient to
prove that some strategies turn out to be optimal.

Main difficulty for the user of such a technology is to exhibit concrete notions which are
clever enough to satisfy all the axioms defining the abstract notions. The technique proposed
here to construct satisfying notions of equivalence and contribution is a direct reuse of the
labelling system that defines the graph implementation, which gives the axioms almost for
free. This shows how the systematic analysis of history can base various advanced results and
constructions on a system.

A second contribution of this work is to show on the example of PPC an alternative method
to derive optimality of needed strategies in concrete rewriting systems.

Organization in short: Section 2 formally introduces the Pure Pattern Calculus and its weak
restriction. Section 3 analyzes the ways different redexes can contribute to each other, and de-
duces a confluent labelled pattern calculus enjoying finite developments properties (Confluence
Theorem 3.12 and Finite Developments Theorem 3.32). The labelled calculus is linked to a
graph reduction system in Section 4 (through Preservation of Sharing Theorem 4.9). Section 5
finally states correctness and optimality of some reduction strategies (Correctness & Optimality
Lemma 5.7). Related work is reviewed in Section 6, before a conclusion is drawn.

2 First-Class Patterns

The Pure Pattern Calculus (PPC) of Jay and Kesner [JK09] is a functional framework featur-
ing data structures and pattern matching with path and pattern polymorphisms. One of its
attributes is to make patterns first-class citizens: they can be given as arguments or returned
as results. They can also be evaluated so that they are called dynamic patterns. Moreover,
any term is allowed to be used as a pattern a priori, the pattern matching operation being
responsible for dynamically rejecting improper uses. Here is a reminder of the calculus, followed
by the definition of its weak restriction.

Syntax. Grammar for terms is associated with its subcategory of matchable forms: stable
terms that are ready for matching.

7

a, b, p, r, s, t ::= x | x̂ | tt | [θ] t → t Terms
d ::= x̂ | dt Data structures

m ::= d | [θ] t → t Matchable forms

where x, y, z ∈ X the set of names, and θ, τ are lists of names.
The term t1t2 is called an application, and [θ] p → b a case. Letter p indicates a term used

as pattern, and b as a function body. Letters a, r and s are also used below for arguments,
redexes and subterms. As usual, let C[] denote a context (term with a hole) and C[t] the context
C[] where the hole is replaced by t. The natural notion of subterm of t at position p is written
t|p.

Note that a name x has two kinds of occurrences: proper occurrences x as variables which
can be substituted, and occurrences x̂ as matchables which can’t. The matchable x̂ is a
constant with a name x: it may be used either as a constructor or as a matching variable (which
captures what will be substituted for x), depending on its free or bound status. Boldface symbol
c denotes a constructor in the examples.

Variable and matchable bindings. As pictured below, in the term [θ] p → b the list θ
binds matchables in p and variables in b, which corresponds to the following formal definitions
for free variables fv(t) and free matchables fm(t) of a term t. Free names of a term t are
defined as fn(t) = fv(t) ∪ fm(t).

[x] x x̂ → x x̂

fv(x) := {x}
fv(x̂) := ∅

fv(t1t2) := fv(t1) ∪ fv(t2)
fv([θ] p → b) := fv(p) ∪ (fv(b) \ θ)

fm(x) := ∅
fm(x̂) := {x}

fm(t1t2) := fm(t1) ∪ fm(t2)
fm([θ] p → b) := (fm(p) \ θ) ∪ fm(b)

A natural notion of α-conversion is deduced from these binding rules. For any x ∈ θ and y
fresh:

[θ] p → b =α [θ{x := y}] p{x̂ := ŷ} → b{x := y}

For now on, bound names of any term will be considered all different (and also different from
the free names).

Example 2.
[y] x̂yŷ → xyŷ =α [z] x̂yẑ → xzŷ

In the pattern x̂yŷ the matchable ŷ is bound and is used as a matching variable, whereas x̂ is
free and seen as a constructor. y is a free variable: an external parameter.

Substitution. Substitution, as in λ-calculus, is a meta-operation defined by equations.
Notation θ#σ (θ avoids σ) stands for θ ∩ (dom(σ) ∪ fn(cod(σ))) = ∅, where dom(σ) (resp.
cod(σ)) denotes the domain (resp. codomain) of the substitution σ. For terms, θ#t is θ∩fn(t) =
∅.

xσ := σx x ∈ dom(σ)
xσ := x x 6∈ dom(σ)
x̂σ := x̂

(t1t2)
σ := tσ1 tσ2

([θ] p → b)σ := [θ] pσ → bσ θ#σ

8

Pattern matching. The result of the pattern matching operation is called a match
(meta-variable µ), and is either a substitution in case of successful matching, or the symbol ⊥
for matching failure. The match of an argument a against a pattern p with matching variables
θ is noted {a/[θ] p}. Its definition is based on the following compound matching operation,
where equations are to be taken in order:

{{a/[θ] x̂}} := {x 7→ a} x ∈ θ
{{x̂/[θ] x̂}} := {} x 6∈ θ

{{a1a2/[θ] p1p2}} := {{a1/[θ] p1}} ⊎ {{a2/[θ] p2}}
a1a2 and p1p2 are matchable forms

{{a/[θ] p}} := ⊥
a and p are matchable forms, otherwise

{{a/[θ] p}} := wait otherwise

where the ⊎ operator stands for disjoint union of substitutions. Union of matchs µ1⊎µ2 is ⊥ if µ1

or µ2 is ⊥ or if the domains of µ1 and µ2 overlap. The result wait is undefined and corresponds
to the case where the pattern or the argument has still to be evaluated or instantiated.

Example 3.
Let c be a constructor. {{c/[y]xŷ}} is undefined (wait) since the pattern xŷ starting with a
variable is not a matchable form. {{c/[y] ([z] ẑ → zc)ŷ}} is also undefined: the pattern is now a
preredex (definition below), which is not a matchable form either. The third attempt {{c/[y] ŷc}}
is defined as ⊥, since the atomic argument c do not match the compound pattern ŷc. An
example of successful compound matching is {{c([z] ẑ → zc)/[x1x2] x̂1x̂2}}: the argument and
the pattern are matchable forms, and each of the bound matchables x̂1 and x̂2 captures a part
of the argument to yield the substitution {x1 7→ c, x2 7→ ([z] ẑ → zc)}.

Now suppose {{a/[θ] p}} = σ. If θ = dom(σ) then define {a/[θ] p} = σ, else {a/[θ] p} = ⊥.
This check operation ensures that the pattern p contains all the matchables whose names are
bound by θ.

Reduction. As in λ-calculus, reduction is defined by one single rule (called βm) which is
still a meta-operation, performing pattern matching and substitution in one step. Any subterm
of the form r = ([θ] p → b)a is called a preredex. If {a/[θ] p} is defined (not wait) then the
preredex r is a redex and the rule βm applies. For any term b, define b⊥ as some fixed closed
normal form ⊥.

([θ] p → b)a
r

−−→βm
b{a/[θ] p}

The choice here, as in [JK09], is the identity: ⊥ = [x] x̂ → x. This allows in particular to
catch matching failures, and then to trigger alternative or default cases. The result b{a/[θ] p} is
called contractum of r. For now, the rule can be applied in any context. The reduction ρ of
a redex r in a term t is noted ρ : t

r
−→βm

t′. Annotations βm, r and ρ can be omitted when the
information is not needed.

Reduction inside any context is formalized as follows:

t1
r
−→βm

t′1

t1t2
r
−→βm

t′1t2

t2
r
−→βm

t′2

t1t2
r
−→βm

t1t
′
2

p
r
−→βm

p′
(ζ)

[θ] p → b
r
−→βm

[θ] p′ → b

b
r
−→βm

b′
(ξ)

[θ] p → b
r
−→βm

[θ] p → b′

9

Example 4.
Running Example. Fragments of Example 3 are gathered here. Contracted redexes are un-
derlined:

([x1x2] x̂1x̂2 → ([y] x2ŷ → b)c) (c([z] ẑ → zc)) (1)

→βm
([y] ([z] ẑ → zc)ŷ → b)c (2)

→βm
([y] ŷc → b) c (3)

→βm
⊥ (4)

Symbol ρ is for one-step reduction, and −→ρ for a sequence. A normal form is a term which
can not be further reduced. A term t is normalizable if there exists −→ρ : t → t′ with t′ a normal
form. A term t is terminating or strongly normalizing if there is no infinite reduction from t.

Remark on expressivity Note that λ-calculus enjoys a direct encoding into PPC : the
λ-term λx.t can be rewritten as the PPC -term [x] x̂ → t. To recover β-reduction (λx.t)u →β

t{x 7→u}, remark that application [x] x̂ → t generates the trivial matching {u/[x] x̂} which results
in the substitution {x 7→ u}.

Weak Pure Pattern Calculus. At run-time, evaluation of functional programs is mainly
a matter of passing arguments to functions, and not evaluating functions bodies before they get
instantiated. This leads to the study of weak reduction, where the reduction rule is never
applied under an abstraction. This reduction relation is formalized by removing the (ξ)-rule of
PPC . Remark that the (ζ)-rule concerning pattern reduction is kept, even if it’s in some way
under an abstraction. The reasons are that in the pattern, only matchables (which can’t be
substituted) are bound and not variables, and that reduction of the pattern may be necessary
when a case is applied to an argument!

As in λ-calculus, removing (ξ) breaks confluence. One solution preserving confluence [ÇH98]
adopts a restricted rule which limits reduction under an abstraction to subterms independent
of the abstracted variables. Replacing (ξ) by (ξ′) defines WPPC , the Weak Pure Pattern

Calculus.

b
r
−→βm

b′ θ#r
(ξ′)

[θ] p → b
r
−→βm

[θ] p → b′

Now, given a preredex r = ([θ] p → b)a in a term t, the definition of {a/[θ] p} is not enough for
r to be a redex. It also requires r to be closed in t: variables free in r should not be bound
outside. Remark that with the convention on names, condition θ#r in (ξ′) is equivalent to
θ ∩ fv(r) = ∅.

Remark on the reduction under an abstraction. This definition of WPPC allows some
reductions in the scope of an abstraction. This is required for full laziness. Indeed, consider
some redex r in the dotted zone in the following picture (taken from the introduction). This
redex is shared between B and the dotted zone, and hence can be reached by two paths: on the
right its reduction can be required in order to reach a usual weak head normal form, whereas
on the left it is seen as under an abstraction. And since these two versions of r are shared, they
are reduced at the same time.

B

λx

x x

C

A

Descendants and residuals. For a reduction ρ : t
r
−→βm

t′ and a subterm sa of t, de-
scendants of sa after ρ, noted sa/ρ, are the subterms sd of t′ that come from sa. If sd ∈ sa/ρ,

10

then call sa an ancestor of sd. Descendants after a one-step reduction are described in the
enumeration below. Write r = ([θ] p → b)a →βm

r′.

1. If sa is disjoint from r, then sa remains unchanged, sa/ρ = {sa}.

2. If r is a strict subterm of sa, that is sa = C[r] with C[] 6= [], then sa/ρ = {C[r′]}.

3. If {a/[θ] p} = σ and sa is a subterm of b but not a variable in θ, then sa/ρ = {sσ
a}.

4. If {a/[θ] p} = σ and sa is a subterm of a which is in the codomain of σ, then let x be the
variable and p the position such that σx|p = sa. For each position q such that b|q = x,
the subterm sa has a residual at position qp in the residual bσ of b.

5. In any other case, sa has no residual: sa/ρ = ∅.

An extension to general reductions is given by:

• For any set S of subterms, consider all descendants: S/ρ = {sd | ∃sa ∈ S, sd ∈ sa/ρ}.

• For any non-empty sequence of reduction −→ρ , and for ρ0 a one-step reduction, S/(−→ρ ρ0) =
(S/−→ρ)/ρ0.

The term residual denotes a redex which is the descendant of a redex. A redex rc is created
by ρ if it is not the descendant of a redex (which doesn’t mean that rc has no ancestor).

Example 5.
In Running Example 4, ([z] ẑ → zc)ŷ in term (2) is a descendant (in fact, the unique descen-
dant) of x2ŷ from term (1). It is also a redex created by this reduction step (and not a residual)
since the ancestor x2ŷ was not a redex. On the other hand, the application c([z] ẑ → zc) of
term (1) is destroyed by the matching and has no descendant.

Developments. Let t be a term, and R be a set of redexes of t. A development of R
is a sequence of reduction −→ρ = ρ1...ρn that contracts only (residuals of) redexes of R: for any
i ∈ 2...n, ρi contracts a redex in R/ρ1...ρi−1. A development −→ρ of R is complete when R has
no descendant after −→ρ : R/−→ρ = ∅.

WPPC is confluent, and enjoys traditional properties of finite developments. These facts are
corollaries of Confluence Theorem 3.12 and Finite Developments Theorem 3.32 on the labelled
calculus defined in Section 3.

3 The Labelled Weak Pure Pattern Calculus

3.1 From Causality to Labels

One slogan of optimality theory [Lé80] is redexes with same origin should never get separated,
and should therefore be reduced in one unique step. The notion of origin of a redex r is to be
understood here as the set of all past reduction events that were necessary for r to be a redex.
Formal words for this are: the reduction steps that contribute to the creation of the redex r.

This subsection analyzes this contribution relation, and prepares the derict recording of
contribution into terms via labels. The first step here is to characterize the cases of direct
contribution, which correspond to the cases where a redex can be created.

Creation of redexes in λ-calculus has been studied in [Lé78] and classified in three cases. For
the purpose of this paper a coarser point of view is enough, and Lévy’s classification is summed
up in two cases:

11

@
λx1

2

In λ-calculus this redex is created when the abstraction comes in touch with the application.
This can be due either to reduction of the left part of the application into an abstraction (1)
(which covers the two first cases of Lévy) or to an external substitution replacing some variable
occurrence with the abstraction (2) (which is exactly the third case of Lévy). In the weak
calculus studied here, a new case of creation arises: when the term has already the shape of
a redex, but is not one due to an occurrence of an externally bound variable. The preredex
becomes a redex when this occurrence is substituted. This is captured by a generalization of
case (2) where a substitution acts anywhere inside the left or right part of the application, which
is written (2+) below.

In the following pictures, an abstraction [θ] p → b is denoted by a binary node λθ whose left
son represents the pattern p and right son the body b, as below.

[θ] p → b ≡
λθ

p b

Pattern matching and dynamic patterns bring two symmetrical new cases of creation. In-
deed, when the abstraction of a pattern p is applied to an argument a then a has to be matched
against p. But, as seen in the previous section, {a/[θ] p} is not always defined. In particular
some parts of a or p may be required to be in matchable form while still having to be evaluated.
Then the two new cases are: reduction in the pattern (3) (due to the use of dynamic pat-
terns) and reduction in the argument (4) (which appears in any pattern matching frameworks).
The other case of non-matchable form is the presence of a variable occurrence that has to be
substituted and falls in the case (2+) of substitution.

@

λθ
1

2+

3

4

3.1.1 Redex Creation Theorem

The first case is the contraction of a redex which is left of an application and results in an
abstraction.

@

T1

@

λθ

Example 6.
This creation type covers the two first cases of Lévy and the handling of failures:

(([∅] ĉ → ([θ] p → b))ĉ)a → ([θ] p → b)a
(([x] x̂ → x)([θ] p → b))a → ([θ] p → b)a

Failure: (([∅] ĉ → ([θ] p → b))ĉĉ)a → ⊥a = ([x] x̂ → x)a

12

Second case is the instantiation of variables of the ancestor of the created redex:

@

λxixj ...

xi xj

T2

Example 7.
Weak case: a preredex isn’t a redex due to the only presence of some variables (ancestors of
created redexes are underlined here).

([x] x̂ → (([y] ŷ → xy)a))t → ([y] ŷ → ty)a

This also contains Lévy’s third case:
([x] x̂ → (xa))([y] ŷ → b) → ([y] ŷ → b)a

And last, instantiation of a pattern is also covered here.
([x] x̂ → (([y] xŷ → b)ĉa))ĉ → ([y] ĉŷ → b)ĉa

Third and fourth cases: reduction in the pattern or in the argument.

@

λθ

T3
@

λθ

@

λθ

T4
@

λθ

Example 8.
In Running Example 4, the redex of term (2) is created by the first step along T2, whereas the
redex of term (3) is created by the second step along T3.

Theorem 3.1 (Redex Creation). Let C[r]
r
−→ t′. Suppose rc is a redex created by this reduction

with t′ = Cc[rc]. Write r = ([θ] p → b)a →βm
bµ = r′ and rc = ([θc] pc → bc)ac. One of the

following holds:

T1. C[] = Cc[[]ac] and r′ = [θc] pc → bc.

T2. Cc[] = C[C−
c []], b = C−

c [r∗c], fv(r∗c) ∩ θ 6= ∅, and (r∗c)
µ = rc.

T3. C[] = Cc[([θc] C
−[] → bc)ac], {ac/[θc] C

−[r]} = wait (and C−[r] = p∗c
r
−→ pc).

T4. C[] = Cc[([θc] pc → bc)C
−[]], {C−[r]/[θc] pc} = wait (and C−[r] = a∗c

r
−→ ac).

The case of creation of a redex at the root of a term is isolated in the following lemma:

Lemma 3.2. Under the hypothesis of Theorem 3.1, if Cc[]= [] and C[] 6=[], then T1, T3 or T4
holds.

Proof. First note that Cc[] = [] implies rc = t′ = C[r′]. Now proof by case on C[] 6= []:

13

• If C[] = [θ0] C
−[] → b0 or C[] = [θ0] p0 → C−[], there exists a pair p′0, b

′
0 such that t′ =

[θ0] p
′
0 → b′0. t′ isn’t a preredex, hence Cc[] can’t be the empty context [].

• If C[] = t0C
−[], then t0C

−[r′] = t′ = rc = ([θc] pc → bc)ac. Thus t0 = [θc] pc → bc and
C−[r′] = ac. Since t = ([θc] pc → bc)C

−[r] is not a redex (rc is created), {C−[r]/[θc] pc} =
wait. T4 holds.

• If C[] = C−[]t0, then t′ = C−[r′]t0 and t0 = ac. Case on C−[] :

– If C−[] = [], then C[] = []ac and rc = C[r′] = r′ac. Then r′ = [θc] pc → bc and T1
holds.

– If C−[] = t1[] or C−[] = []t2, then there exists a pair t′1, t
′
2 such that C−[r′] = t′1t

′
2.

Hence C−[r′] 6= [θc] pc → bc and t′ can’t be equal to rc.

– If C−[] = [θ0] p0 → C−−[], then rc = t′ = ([θ0] p0 → C−−[r′])ac, p0 = pc and θ0 = θc.
Since t = ([θc] pc → C−−[r])ac isn’t a redex, {ac/[θc] pc} = wait. Hence rc isn’t a
redex.

– If C−[] = [θ0] C
−−[] → b0, then rc = t′ = ([θ0] C

−−[r′] → b0)ac, b0 = bc and θ0 =
θc. Since t = ([θc] C

−−[r] → bc)ac isn’t a redex, {ac/[θc] C
−−[r]} = wait, and T3

holds.

Proof of Redex Creation Theorem 3.1. Case on relative positions of r′ and rc in t′.

• If r′ and rc are disjoint, then rc already exists in t and isn’t created by r.

• If r′ is a subexpression of rc. Write t = Cc[r
∗
c] = Cc[C

−[r]]. Then r∗c = C−[r] is not a redex
and is turned into one by reduction of its subterm r. Lemma 3.2 applies.

• If rc is a subexpression of r′ = bµ. Remark in this case that µ is a substitution σ (else
r′ = ⊥, which is a normal term). Suppose rc is in the codomain of σ. Then rc was a
subterm of a, and was already a redex. Hence rc is rooted in b: Cc[] = C[C−

c []]. The
ancestor of rc is r∗c such that b = C−

c [r∗c] and (r∗c)
σ = rc.

– If θc ∩ fv(r∗c) = ∅, then rc = r∗c , and r∗c was already a redex.

– If θc ∩ fv(r∗c) 6= ∅, then T2 holds.

A labelling system can be constructed by inverting the above description of redex creation:
the question is not anymore where does this redex come from? but what can be the future conse-
quences of this reduction step? The approach turns from backward to forward. If each reduced
redex drops its fingerprint wherever it can possibly contribute to something (but nowhere else!),
then the origin of a redex can be known by collecting the information left at this place by past
reductions.

To achieve this, labels are added to the syntax of WPPC : every subterm bears a label
recording any locally relevant information about past reductions, and reduction acts on these
labels to keep contribution information up to date. For this, each redex gets a name deduced
from neighbouring labels (in a way precised in Section 3.2), name which is used to track the
future contributions of the redex. In such a framework the optimality commandment becomes
more concrete by switching to: reduce in one step all redexes with same name.

The reduction of a redex r of name Ω transforms the labels of its contractum. Firstly r
can contribute to something at its root through case (1): a label pΩq (denoting the epicentre
of Ω) is added at the root of the contractum to witness this. Secondly if r is a successful
match, then it generates a substitution. In this case r can contribute to something through

14

case (2+) anywhere along the propagation of the substitution. This defines a connected area
of the contractum which is referred to in this paper as substitution slice (it is a slice in the
sense of [Ter03, Chap. 8]). The substitution slice is the union of the paths from the root of the
contractum to each substituted variable occurrence. This other kind of contribution is witnessed
in the labelling by an other construct: each atomic label α in the substitution slice is turned
into another atomic label [Ω, α] which can be understood as a copy of α triggered by Ω. This is
summed up in the following picture.

@

λxixj ...

xi xj

aj ai

Ω

ai aj

[Ω, α]

pΩq

Contributions from pattern or argument reduction are not visible here: indeed these con-
tributions do not concern the contractum of the redex, but some other undetermined places in
the context. The design of a mechanism taking into account these non local contributions is the
main difficulty of the next section. To achieve this, the forward labelling aspects presented above
are mixed with a backward analysis of the pattern and the argument: any relevant information
found in the pattern or the argument of a redex is included in its name. The difficulty is then
to discriminate between relevant and irrelevant parts of the pattern and the argument: they
are not the same in case of success or failure of the pattern matching. Thus relevant prefixes of
the pattern and the argument are mutually dependant and have to be dynamically determined
by the pattern matching operation itself.

3.2 Formalizing Labels

This subsection defines the Labelled Weak Pure Pattern Calculus (LWPPC), which embeds a
characterization of the aforementioned contribution relation.

Syntax of PPC is extended with the labels introduced above. In the grammar, terms that
must (resp. that must not) have a label in root position are called labelled (resp. clipped).

A, B, P, R, S, T ::= α : X Labelled terms
X, Y, Z ::= T | N Terms

N ::= x | x̂ | TT | [θ] T → T Clipped terms
α ::= → | pΩq | [Ω, α] Atomic labels

Γ,∆,Ω ::= α1α2 ... αn Labels

where n is a strictly positive integer, x, y, z ∈ X the set of names and →,➣... ∈ ❆ the set of
initial labels (blackboard bold greek letters are used to distinguish initial labels when needed).
An initial term is a term whose labels are all initial and different.

For any possibly non-atomic label Γ = α1 ... αn, write Γ·X as a shorthand for α1 : ... : αn : X.
Letters P , B and A are still used for terms playing the role of pattern, function body and
argument, while the greek letter Ω indicates the name of a redex.

15

Formal definition of the set of positions P(X) of a term X, is defined as follows.

P(x) := {ǫ}
P(x̂) := {ǫ}

P(T1T2) := {ǫ} ∪ ✶P(T1) ∪ ✷P(T2)
P([θ] P → B) := {ǫ} ∪ ♣P(P) ∪ ❜P(B)

P(α : Z) := {ǫ} ∪ ③P(Z)

The subterm of X at position p is noted X|p. The term X with subterm at position p replaced
by Y is noted X[Y]p. Note that positions of atomic labels are taken into account.

Notions of free variables, free matchables, and substitution inherited from PPC are detailed
here:

fm(x) := ∅
fm(x̂) := {x}

fm(T1T2) := fm(T1) ∪ fm(T2)
fm([θ] P → B) := (fm(P) \ θ) ∪ fm(B)

fm(α : Z) := fm(Z)

fv(x) := {x}
fv(x̂) := ∅

fv(T1T2) := fv(T1) ∪ fv(T2)
fv([θ] P → B) := fv(P) ∪ (fv(B) \ θ)

fv(α : Z) := fv(Z)

fn(X) = fm(X) ∪ fv(X)

xσ := σx x ∈ dom(σ)
xσ := x x 6∈ dom(σ)
x̂σ := x̂

(T1T2)
σ := T σ

1 T σ
2

([θ] P → B)σ := [θ] P σ → Bσ θ#σ
(α : Z)σ := α : Zσ

For σ and σ′ two substitution with same domain θ, write σ
R
−→ σ′ when there is x ∈ θ such that

σx
R
−→ σ′

x, and σy = σ′
y for all y ∈ θ \ {x}.

Example 9.
Term (1) of Running Example 4 with an initial labelling (referred to as (L1) in future examples).

@
→

λx1x2

➣

@
↔

x̂1
↕

x̂2
➙ @

➛

λy
➜

@
➝

x2
➞

ŷ
➟ B

c➠

@
➡

c➢
λz
➤

ẑ
➦

@
➧

z➨ c➩

The direct contribution ≺ is a well-founded relation over labels which turns out to be
useful in following sections. The notion of direct contribution appears in [Mar92] for term
rewriting systems. It is adapted for LWPPC as follows: Ω ≺ Γ if and only if Γ = Γ1 pΩq Γ2 or
Γ = Γ1 [Ω, α] Γ2 (both Γ1 and Γ2 may be empty here).

The following grammar extends notions of data structres and matchables forms to labelled
terms.

Dl ::= α : D Labelled data structures
D ::= x̂ | DlT | Dl Data structures
M ::= D | [θ] P → B | α : M Matchable forms

16

To any matchable form M is associated a label |M | called matchability witness which is
meant to record past events that contributed to put M in matchable form.

|[θ] P → B| := ε
|x̂| := ε

|T1T2| := |T1|
|α : Z| := α|Z|

The labelled compound matching returns the pair of a label ∆ and a match µ. The label
∆ is meant to collect on-the-fly any contribution information relative to the evaluation of the
pattern and/or the argument.

For correct treatment of matchability witnesses, the labelled compound matching has two
policies: simple compound matching {{Y/[θ]X}}s records all the labels inside Y and X that are
visited during the matching operation, whereas witnessing compound matching {{Y/[θ]X}}w
also records the matchability witness of Y even if Y isn’t completely visited. In {{Y/[θ] X}}p the
subscript p is either s or w. Notation α : (∆, µ) stands for (α∆, µ).

{{Y/[θ]α : Z}}p := α : {{Y/[θ]Z}}p

{{Y/[θ] x̂}}s := (ε, {x 7→ Y }) x ∈ θ
{{Y/[θ] x̂}}w := (|Y |, {x 7→ Y }) x ∈ θ

{{Y/[θ] ([τ] P → B)}}s := (ε,⊥)
{{Y/[θ] ([τ] P → B)}}w := (|Y |,⊥)

{{α : Z/[θ]X}}p := α : {{Z/[θ]X}}p
X matchable form, otherwise

{{x̂/[θ] x̂}}p := (ε, {}) x 6∈ θ

{{A1A2/[θ] P1P2}}p := {{A1/[θ]P1}}w D {{A2/[θ] P2}}s
A1A2, P1P2 matchable forms

{{Y/[θ]X}}p := (|Y ||X|,⊥)
Y, X matchable forms, otherwise

{{Y/[θ]X}}p := wait otherwise

where D is defined by the following table (with ⊎ the usual disjoint union of substitutions).

D (∆2, σ2) (∆2,⊥) wait

(∆1, σ1) (∆1∆2, σ1 ⊎ σ2) (∆1∆2,⊥) wait

(∆1,⊥) (∆1,⊥) (∆1,⊥) (∆1,⊥)
wait wait wait wait

This operation is asymmetrical, due to the following difficulty: if an argument is incompatible
with the pattern for two distinct reasons, which one should be blamed for it? In PPC any
choice is fine, but with labelled terms distinct culprits yield distinct labels, and confluence is
broken. This fact can be understood from a higher point of view by noticing that labelling
of non-orthogonal calculi may lead to non-confluence [Ter03, Chap. 8]. And as pointed out
in [KvOdV08], allowing matching failures as it is done in PPC breaks orthogonality (although
the system still seems weakly orthogonal).
Remembering both failures is an easy but unsatisfying way to preserve confluence: it forces
the matching operation to explore completely the pattern even if a failure has been detected,
which doesn’t seem to be a great solution when looking for an efficient evaluation model. The
solution preferred here for solving this tricky problem is to set an order for pattern matching

17

operations (the left-to-right definition of D is just an example). Unfortunately, this causes a
restriction on allowed reduction strategies. Any deterministic order being acceptable for each
pattern matching, interesting degrees of freedom are preserved, but the way this could be used
for optimization is unclear.

Remark that {{Y/[θ] X}}w (with witnessing policy) is ill-defined if Y isn’t a matchable form
(in this case |Y | has no sense). But if starting with simple policy, this case never happens.

Example 10.
For the redex in labelled term (L1) (Example 9), the simple compound matching succeeds and
returns the substitution {x1 7→ ➢ : c, x2 7→ ➤ : ([z]➦ : ẑ → ➧ : (➨ : z)(➩ : c))} and the label
∆ = ↔➡ ↕➢ ➙.

Given a label Ω and a list θ of names, the relabelling ΩLθMX of X is defined as X if θ#X
or X is a variable. Otherwise:

ΩLθM(T1T2) := (ΩLθMT1)(ΩLθMT2)
ΩLθM([τ] P → B) := [τ] (ΩLθMP) → (ΩLθMB) θ ∩ τ = ∅

ΩLθM(α : Z) := [Ω, α] : (ΩLθMZ)

A labelled preredex is a labelled term of the form

R = α : ((Γ · [θ] P → B)A)

Define {A/[θ]P} to be the check of {{A/[θ] P}}s against θ (default policy is the simple one). R
is a labelled redex when it satisfies the restriction for weak reduction and {A/[θ] P} = (∆, µ).
Then the redex R get the name Ω = αΓ∆, and the rule is:

R
R
−→ pΩq : (ΩLθMB)µ

where as previously X⊥ = ⊥ for any term X, with ⊥-as-a-term a fixed closed normal form, for
instance the identity with some distinguished initial labels:

⊥ = [x] (➦⊥ : x̂) → (➣⊥ : x)

Example 11.
Reduction of (L1) of Example 9 results in the following term, where Ω = → ➣ ↔➡↕➢➙

@

[Ω,➛]
pΩq

λy
[Ω,➜]

@
[Ω,➝]

ŷ
➟

B

c
➠

λz
➤

[Ω, ➞]

ẑ
➦

@
➧

z➨ c
➩

For any set N of labels, let →N be the reduction relation restricted to redexes with names
in N .

Z
R
−→N Z ′

α : Z
R
−→N α : Z ′

T1
R
−→N T ′

1

T1T2
R
−→N T ′

1T2

T2
R
−→N T ′

2

T1T2
R
−→N T1T

′
2

P
R
−→N P ′

[θ] P → B
R
−→N [θ] P ′ → B

B
R
−→N B′ θ#R

[θ] P → B
R
−→N [θ] P → B′

18

Notion of residual: for a reduction ρ : X
R
−→N X ′ and a subterm Y of X, with R = α :

(Γ · ([θ] P → B))A → R′, Y/ρ is described as:

• If Y is disjoint from R, Y remains unchanged, and is the unique residual of Y in X ′.

• If R is a strict subterm of Y , that is Y = C[R] with C[] 6= [], then the only residual of Y
is C[R′].

• If {A/[θ]P} = (∆, σ) and Y is a subterm of B but not a variable of θ, then the only
residual of Y is (αΓ∆LθMY)σ.

• If {A/[θ]P} = (∆, σ) and Y is a subterm of A which is in the codomain of σ. Note x the
variable and p the position such that σx|p = Y . For each position q such that B|q = x, Y
has a residual at position qp in the residual (αΓ∆LθMB)σ of B.

• In any other case, Y has no residual.

Remark there are more subterms without ancestors in LWPPC : when R = α : (Γ · ([θ] P →
B))A → pΩq : (ΩLθMB)σ = R′, (ΩLθMB)σ is a residual of B, but R′ itself has no ancestor, due
to the created label pΩq.

The same notion of development is deduced: for X a term, and R a set of redexes of X.
A development of R is a sequence of reduction −→ρ = ρ1...ρn such that for any i, the redex
contracted by ρi is in R/ρ1...ρi−1. A development −→ρ of R is complete when there is no residual
of R left in the resulting term: R/−→ρ = ∅.

Remark that there are new subterms without ancestors in LWPPC : if R = α : (Γ · ([θ] P →
B))A → pΩq : (ΩLθMB)σ = R′, then (ΩLθMB)σ is a descendant of B, but R′ itself has no ancestor,
due to the created label pΩq.

3.2.1 Labelled Creation Theorem

Theorem 3.3. Let C[R] = X
R
−→N X ′ = Cc[Rc]. Suppose Rc is a redex created by this reduction.

Note R = α : ((Γ · [θ] P → B)A) →N R′ and Rc = αc : ((Γc · [θc] Pc → Bc)Ac). Then one of the
following cases holds.

T1. C[] = Cc[αc : ((Γ1
c · [])Ac)], R′ = Γ2

c · [θc] Pc → Bc and Γ1
cΓ

2
c = Γc (Γ1

c may be empty).

T2. Cc[] = C[C−
c []], B = C−

c [R∗
c], fv(R∗

c) ∩ θ 6= ∅, {A/[θ]P} = (∆, σ) and (αΓ∆LθMR∗
c)

σ = Rc.

T3. C[] = Cc[αc : (Γc · ([θc] C
−[] → Bc)Ac)], {Ac/[θc] C

−[R]} = wait (C−[R] = P ∗
c

R
−→ Pc).

T4. C[] = Cc[αc : (Γc · ([θc] Pc → Bc)C
−[])], {C−[R]/[θc]Pc} = wait (C−[R] = A∗

c
R
−→ Ac).

The case of creation of a redex at the root of a term is isolated in the following lemma:

Lemma 3.4. Under the hypothesis of Labelled Creation Theorem 3.3, if Cc[] = [] and C[] 6= [],
then T1, T3 or T4 holds.

Proof. If X is a clipped term, then X ′ is also a clipped term, and thus X ′ is not a labelled

redex. Hence X = α0 : Z, and since C[] 6= [], X ′ = α0 : Z ′ with Z
R
−→N Z ′. Case on C[] 6= [] :

• If C[] = α0 : [], then Z
Z
−→N Z ′ and Z ′ is labelled. Thus X ′ is not a labelled preredex.

• If C[] = α0 : β0 : C−[], then X ′ = α0 : β0 : C−[R′] and X ′ is not a labelled preredex.

19

• If C[] = α0 : [θ0] C
−[] → B0 or C[] = α0 : [θ0] P0 → C−[], there exists a pair P0, B0 such

that X ′ = α0 : [θ0] P0 → B0. X ′ isn’t a preredex, hence Cc[] can’t be the empty context [].

• If C[] = α0 : (T0C
−[]), then α0 : (T0C

−[R′]) = X ′ = Cc[Rc] = Rc = αc : ((Γc · [θc] Pc →
Bc)Ac). Thus α0 = αc, T0 = Γc · [θc] Pc → Bc and C−[R′] = Ac. Since X = αc :
((Γc · [θc] Pc → Bc)C

−[R]) is not a redex (Rc is created), {C−[R]/[θc]Pc} = wait. T4
holds.

• If C[] = α0 : (C−[]T0), then X ′ = α0 : (C−[R′]T0) and T0 = Ac. Case on C−[] :

– If C−[] = Γ0 · [], then C[] = α : ((Γ0 · [])Ac) = Cc[αc : ((Γ0 · [])Ac)] and Rc = X ′ =
C[R′] = α : ((Γ0 · R′)Ac). Then there is Γ1 such that R′ = Γ1 · [θc] Pc → Bc and
Γ0Γ1 = Γc, and T1 holds.

– If C−[] = Γ0 · (T1[]) or C−[] = Γ0 · ([]T2), then there exists a triple Γ0, T1, T2 such that
C−[R′] = Γ0 · (T1T2) 6= Γc · [θc] Pc → Bc and X ′ can’t be equal to Rc.

– If C−[] = Γ0 · [θ0] P0 → C−−[], then Rc = X ′ = α0 : ((Γ0 · [θ0] P0 → C−−[R′])Ac),
α0 = αc, Γ0 = Γc, P0 = Pc and θ0 = θc. Since X = αc : ((Γc · [θc] Pc → C−−[R])Ac)
isn’t a redex, {Ac/[θc]Pc} = wait. Hence Rc isn’t a redex.

– If C−[] = Γ0 · [θ0] C
−−[] → B0, then Rc = X ′ = α0 : ((Γ0 · [θ0] C

−−[R′] → B0)Ac),
α0 = αc, Γ0 = Γc, b0 = bc and θ0 = θc. Since X = αc : ((Γc · [θc] C

−−[R] → Bc)Ac)
isn’t a redex, {Ac/[θc] C

−−[R]} = wait, and T3 holds.

Proof of Labelled Creation Theorem 3.3. Case on relative positions of R′ and Rc in X ′.

• If R′ and Rc are disjoint, then Rc already exists in X and isn’t created by R.

• If R′ is a subexpression of Rc. Note X = Cc[R
∗
c] = Cc[C

−[R]]. Then R∗
c = C−[R] is not a

redex and is turned into one by reduction of its subterm R. The Lemma 3.4 applies.

• If Rc is a subexpression of R′. Suppose {A/[θ]P} = (∆,⊥). Then R′ = (αΓ∆LθMB)⊥ = ⊥
and R′ is a normal form, which is not the case. Then {A/[θ]P} = (∆, σ) and R′ =
(αΓ∆LθMB)σ. Suppose Rc is in σ. Then Rc was a subterm of A, and was already a redex.
Hence Rc is rooted in B: Cc[] = C[C−

c []]. The ancestor of Rc is R∗
c such that B = C−

c [R∗
c]

and (αΓ∆LθMR∗
c)

σ = Rc.

– If θc ∩ fv(R∗
c) = ∅, then Rc = R∗

c , and R∗
c was already a redex.

– If θc ∩ fv(R∗
c) 6= ∅, then T2 holds.

3.3 Properties of LWPPC

3.3.1 Miscellaneous Lemmas

Lemma 3.5. For any reduction ρ : X
R
−→N X ′ and subterm α : Z of X, residuals of α : Z after

ρ have one of the following forms:

• α : Z ′.

• [Ω, α] : Z ′, where Ω is the name of R.

Proof. Case inspection on the definition of residuals.

Lemma 3.6. For any reduction X
R
−→N X ′ and labelled subterm α : Z ′ of X ′, the following

holds:

20

• If α is an initial label, α : Z ′ is a residual of a subterm α : Z of X (or it may be created,
but the latter is possible only for special labels of ⊥).

• If α = pΩq, α : Z ′ is either created or a residual of a subterm α : Z of X.

• If α = [Ω, β], α : Z ′ is a residual of a subterm of X of shape α : Z or β : Z.

Proof. Case inspection on the definition of residuals.

Lemma 3.7. For any reduction X
R
−→N X ′ and labelled subterm α : N of X with N a clipped

term. Residuals of N are exactly the clipped subterms of X ′ whose positions p satisfy p = q③
with X ′|q a residual of α : N .

Proof. Note R′ the contractum of the redex R = β : (Γ · ([θ] P → B)A). By case on the
definition of residuals:

• α : N and R are disjoint if and only if N and R are disjoint. In this case the unique
residual of α : N is itself, and the unique residual of N is also itself.

• If R is a strict subterm of α : N then R is a subterm of N . Since N is clipped and R is
labelled, N 6= R and R is a strict subterm of N : N = C[R] with C 6= [] (conversely, any
strict subterm of N is a strict subterm of α : N). Thus the unique residual of α : N is
α : C[R′], and the unique residual of N is C[R′].

• If {A/[θ] P} = (∆, σ) and α : N is a subterm of B (α : N is not a variable), then the only
residual of α : N is (βΓ∆LθMα : N)σ = [βΓ∆, α] : (βΓ∆LθMN)σ. Case on N (which is also
a subterm of B):

– If N is not a variable of θ, then its only residual is (βΓ∆LθMN)σ.

– If N is a variable x of θ, then it has no residual. But remark that in this case, the
unique residual of α : N is [βΓ∆, α] : σx where σx is a labelled term (not clipped !).

Remark that if N is a subterm of B, since N is clipped and B is labelled N 6= B and N
is a strict subterm of B. Thus α : N is also a subterm of B in this case.

• If {A/[θ]P} = (∆, σ) and α : N is a subterm of A which is in the codomain of σ, there
is an x such that α : N is a subterm of σx. Remark that N is also a subterm of σx.
Conversely, if there is an x such that N is a subterm of σx, then α : N is a subterm of
σx. Indeed, N is clipped and σx is labelled, and thus N 6= σx and N is a strict subterm
of σx. In this case, residuals of α : N (resp. N) are at positions qp (resp. qp③) such that
p is the position of α : N in σx and B|q = x.

• In other cases, neither α : N nor N has residuals.

3.3.2 Redex Stability Lemma

The main result of this section is that any residual of a redex is still a redex, with same name
(Redex Stability Lemma 3.10). Intermediate steps study the stability matchable forms and
their matchability witnesses under reduction (Lemma 3.8), and stability of compound matching
under reduction (Lemma 3.9).

Lemma 3.8. For any matchable term X and reduction X →N X ′, X ′ is matchable and |X| =
|X ′|.

Proof. By induction on the definition of matchable terms.

21

• If X = [θ] P → B, there exists P ′, B′ such that X ′ = [θ] P ′ → B′, and |X| = ε = |X ′|.

• If X = x̂, X is irreducible, which isn’t the case here.

• If X is a data structure DT , with D a labelled data structure:

– If X ′ = DT ′ with T →N T ′, then |X| = |D| = |Y ′|.

– If X ′ = D′T with D →N D′, then by induction hypothesis |D| = |D′|. Hence
|X| = |DT | = |D| = |D′| = |D′T | = |X ′|.

• If X = α : Z. Since X is a matchable form, it is not a redex. Hence there exists
a reduction Z →N Z ′ such that Y ′ = α : Z ′. Z is a matchable form. By induction
hypothesis |Z| = |Z ′|. Thus |X| = |α : Z| = α|Z| = α|Z ′| = |α : Z ′| = |X ′|.

Lemma 3.9. Suppose {{A/[θ]P}}p is defined. Then

• If A →N A′, then {{A/[θ]P}}p →=
N {{A′/[θ]P}}p.

• If P →N P ′, then {{A/[θ]P}}p = {{A/[θ]P ′}}p.

Where {{A1/[θ]P1}}p →N {{A2/[θ]P2}}p means that {{Ai/[θ]Pi}}p = (Γi, µi) with Γ1 = Γ2, and
either µ1 = µ2 = ⊥ or µ1 = σ1 →N σ2 = µ2.

Proof. First case, by induction, with an hypothesis generalized to any terms Y and X: for any
p, if {{Y/[θ]X}}p is defined and Y →N Y ′ then {{Y/[θ] X}}p →=

N {{Y ′/[θ]X}}p. (if p = w, suppose
Y is a matchable form).

• If X = α : Z, then {{Y/[θ]X}}p = α : {{Y/[θ]Z}}p and {{Y ′/[θ]X}}p = α : {{Y ′/[θ] Z}}p, with
by hypothesis {{Y/[θ]Z}}p →= {{Y ′/[θ] Z}}p.

• If X = x̂ with x ∈ θ, then {{Y/[θ]X}}s = (ε, {x 7→ Y }) → (ε, {x 7→ Y ′}) = {{Y ′/[θ]X}}s.

• If X = x̂ with x ∈ θ, then {{Y/[θ]X}}w = (|Y |, {x 7→ Y }) →N (|Y |, {x 7→ Y ′}) =
(|Y ′|, {x 7→ Y ′}) = {{Y ′/[θ]X}}w with Lemma 3.8.

• If Y = X = x̂ with x 6∈ θ, Y is irreducible, which isn’t the case here.

• If X = [τ] P → B, then {{Y/[θ]X}}s = (ε,⊥) = {{Y ′/[θ]X}}s.

• If X = [τ] P → B, then {{Y/[θ] X}}w = (|Y |,⊥) = (|Y ′|,⊥) = {{Y ′/[θ]X}}w, with
Lemma 3.8.

• If X = P1P2 and Y = A1A2, with X and Y matchable. For instance Y ′ = A′
1A2 with

A1
R
−→N A′

1 (the other case is symmetrical). By induction hypothesis {{A1/[θ]P1}}p →=
N

{{A′
1/[θ]P1}}p. Note (Γi, µi) = {{Ai/[θ]Pi}}p and (Γ′

1, µ
′
1) = {{A′

1/[θ]P1}}p. Hypothesis adds
Γ1 = Γ′

1.

– If µ1 = ⊥, then {{Y/[θ]X}}p = {{A1/[θ]P1}}w = (Γ1,⊥) = {{A′
1/[θ]P1}}w = {{A′/[θ] P}}p,

then {{Y/[θ] X}}p →=
N {{Y ′/[θ]X}}p.

– If µ1 is a subtitution σ1, then µ′
1 = σ′

1.

∗ If µ2 = ⊥, then {{Y/[θ]X}}p = (Γ1Γ2,⊥) = (Γ′
1Γ2,⊥) = {{Y ′/[θ]X}}p.

22

∗ If µ2 is a substitution σ2. Equality of Γ1Γ2 and Γ′
1Γ2 still holds. Moreover, by

hypothesis, σ1 → σ′
1, which implies dom(σ1) = dom(σ′

1). Then σ1 ⊎ σ2 = ⊥
if and only if σ′

1 ⊎ σ2 = ⊥. Else σ1 ⊎ σ2 →N σ′
1 ⊎ σ2. Finally {{Y/[θ]X}}p =

(Γ1Γ2, σ1 ⊎ σ2) →
=
N (Γ′

1Γ2, σ
′
1 ⊎ σ2) = {{Y/[θ] X}}p.

• If X is matchable with Y = α : Z and Y ′ = α : Z ′, then {{Y/[θ]X}}p = α : {{Z/[θ] X}}p and
{{Y ′/[θ]X}}p = α : {{Z ′/[θ]X}}p with by induction hypothesis {{Z/[θ]X}}p →=

N {{Z ′/[θ]X}}p
(Y can’t be a redex, for otherwise {{Y/[θ] X}}p wouln’t be defined).

• If X and Y are other matchable terms, then {{Y/[θ]X}}p = (|Y ||X|,⊥) = (|Y ′||X|) =
{{Y ′/[θ]X}}p, with Lemma 3.8.

• Otherwise, {{Y/[θ]X}}p is wait, which isn’t the case here.

Finally, since {{Y/[θ]X}}p →=
N {{Y ′/[θ]X}}p, {Y/[θ]X} →=

N {Y ′/[θ]X} also holds, because if
{{Y/[θ]X}}p is a substitution, then {{Y ′/[θ]X}}p is one too, with same domain (and conversely).
The second point is symmetrical.

Lemma 3.10 (Redex Stability Lemma). For any term X with a redex Ra of name Ωa. If

X
R
−→ X ′ and Rr is a residual of Ra in X ′, then Rr is still a redex of name Ωa.

Proof. By case on the residual relation. Note Ra = αa : ((Γa · [θa] Pa → Ba)Aa), with
{Aa/[θa]Pa} = (∆a, µa). The name of Ra is Ωa = αaΓa∆a. Note R = α : ((Γ · [θ] P → B)A),
with {A/[θ]P} = (∆, µ). The name of R is Ω = αΓ∆.

• If Ra is disjoint from R, Rr = Ra, and position is still active.

• If R is a strict subterm of Ra, one of the following holds: Ba
R
−→ B′

a, Aa
R
−→ A′

a or

Pa
R
−→ P ′

a. In the former case, Rr = αa : ((Γa · [θa] Pa → B′
a)Aa) and the name is still

Ωa = αaΓa∆a. In the case Aa
R
−→ A′

a, Rr = αa : ((Γa ·[θa] Pa → Ba)A
′
a), and by Lemma 3.9

{Aa/[θa]Pa} →= {A′
a/[θ]Pa}. In particular {A′

a/[θa]Pa} = (∆a, µ
′
a) and thus the name

of Rr is still Ωa = αaΓa∆a. Third case is similar.

• If Ra is a subterm of B and µ is a substitution σ, then Rr = (ΩLθMRa)
σ. Suppose

fv(Ra)∩ dom(σ) 6= ∅. Since σ is a substitution, dom(σ) = θ. Thus fv(Ra)∩ θ 6= ∅ and Ra

was not a redex in [θ] P → B. Then suppose fv(Ra)#dom(σ): Rr = Ra and the name is
the same.

• If µ is a substitution and Ra is a subterm of A which appears in the codomain of µ. Then
Rr = Ra.

3.3.3 Confluence Theorem

Theorem 3.11. WPPC is confluent.

Proof. Particular case of Confluence Theorem 3.12 for LWPPC .

Theorem 3.12 (Confluence Theorem). LWPPC is confluent.

Proof. Particular case of Parametric Confluence Theorem 3.21.
The following constructions lead to the proof of confluence of →N for any set of names N

(Parametric Confluence Theorem 3.21), using Tait and Martin-Löfs technique. It is based on a
notion of parallel reduction ⇒N which satisfies the one-step diamond property or strong conflu-
ence (Diamond Lemma 3.19) and the inclusions →N ⊆ ⇒N ⊆ →∗

N (Simulation Lemma 3.20). A

23

key step is the establishment of results of stability similar to those presented in Section 3.3.2: sta-
bility of matchable forms and their matchability witnesses under parallel reduction (Lemma 3.13),
stability of compound matching under parallel reduction (Lemma 3.14) and stability of redexes
under parallel reduction (Corollary 3.15). Other significant results are commutations between
relabelling, substitution, and parallel reduction (Lemmas 3.17 and 3.18).

In this section, notation
−→
R is used for a list of redexes.

In order to clarify the proof, the two following cases of the reduction rule are separated.

µ = ⊥ : R
R
−→ pΩq : ⊥

µ = σ : R
R
−→ pΩq : (ΩLθMB)σ

Parallel reduction is defined by the following rule.

X
∅
=⇒N X

X
−→
R
=⇒N X ′

X ⇒N X ′

X
−→
R
=⇒N X ′

α : X
−→
R
=⇒N α : X ′

T1

−→
R1=⇒N T ′

1 T2

−→
R2=⇒N T ′

2

T1T2

−→
R1

−→
R2===⇒N T ′

1T
′
2

P
−→
RP==⇒N P ′ B

−→
RB==⇒N B′ θ#

−→
RB

[θ] P → B
−→
RP

−→
RB====⇒N [θ] P ′ → B′

θ#
−→
RB

B
−→
RB==⇒N B′

P
−→
RP==⇒N P ′

A
−→
RA==⇒N A′

{A/[θ]P} = (∆,⊥)

{A′/[θ]P ′} = (∆′,⊥)
fail αΓ∆′ ∈ N

R = α : ((Γ · [θ] P → B)A)
R
−→
RP

−→
RB

−→
RA=======⇒N pαΓ∆′

q : ⊥

θ#
−→
RB

B
−→
RB==⇒N B′

P
−→
RP==⇒N P ′

A
−→
RA==⇒N A′

{A/[θ]P} = (∆, σ)

{A′/[θ] P ′} = (∆′, σ′)
substitution αΓ∆′ ∈ N

R = α : ((Γ · [θ] P → B)A)
R
−→
RP

−→
RB

−→
RA=======⇒N pαΓ∆′

q : (αΓ∆′LθMB′)σ′

For σ and σ′ two substitutions with same domain θ = x1...xn, write σ
−→
R1...

−→
Rn====⇒N σ′ when

σxi

−→
Ri=⇒N σ′

xi
for all i ∈ {1...n}.

Lemma 3.13 (Lemma 3.8 parallel). If M is a matchable form (resp. data structure) and
M ⇒N M ′, then M ′ is a matchable form (resp. data structure) and |M ′| = |M |.

Proof. By induction on M ⇒N M ′.

• If M
∅
=⇒N M = M ′, the result is obvious.

• If M = α : X ⇒N α : X ′ = M ′ with X ⇒N X ′. By induction hypothesis, if X is a data
structure then X ′ is a data structure, else X and X ′ are matchable forms. In both case
the equality |X| = |X ′| holds. Thus |M | = |α : X| = α|X| = α|X ′| = |α : X ′| = |M ′|.

• If M = DT ⇒N D′T ′ = M ′ with D ⇒N D′, T ⇒N T ′ and D is a data structure. Then
by induction hypothesis D′ is a data structure with |D′| = |D|. Thus M ′ is also a data
structure, and |M | = |DT | = |D| = |D′| = |D′T ′| = |M ′|.

24

• If M = [θ] P → B ⇒N [θ] P ′ → B′ = M ′, then M ′ is a matchable form and |M ′| = ε =
|M |.

• The other cases of parallel reduction do not concern matchable forms.

Lemma 3.14 (Lemma 3.9 parallel). If {A/[θ]P} is defined, and P ⇒N P ′ and A ⇒N A′, then
{A/[θ]P} ⇒N {A′/[θ]P ′}.

Proof. For any Y,X such that {{Y/[θ]X}}p is defined, with X ⇒N X ′ and Y ⇒N Y ′, {{Y/[θ]X}}p ⇒N

{{Y ′/[θ]X ′}}p, by induction on the definition of {{Y/[θ]X}}p. (if p = w, suppose Y is a matchable
form)

• If X = α : Z, then {{Y/[θ]X}}p = α : {{Y/[θ]Z}}p and {{Y ′/[θ]X ′}}p = α : {{Y ′/[θ] Z ′}}p,
with by hypothesis {{Y/[θ]Z}}p ⇒N {{Y ′/[θ]Z ′}}p (X can’t be a redex, for otherwise
{{Y/[θ] X}}p wouln’t be defined).

• If X = x̂ with x ∈ θ. First remark that X is a normal form, and thus X ′ = X. Then
{{Y/[θ] X}}s = (ε, {x 7→ Y }) ⇒N (ε, {x 7→ Y ′}) = {{Y ′/[θ]X}}s = {{Y ′/[θ] X ′}}s.

• If X = x̂ with x ∈ θ, then X ′ = X and {{Y/[θ]X}}w = (|Y |, {x 7→ Y }) ⇒N (|Y |, {x 7→
Y ′}) = (|Y ′|, {x 7→ Y ′}) = {{Y ′/[θ]X}}w = {{Y ′/[θ]X ′}}w with Lemma 3.13.

• If Y = X = x̂ with x 6∈ θ, then Y ′ = Y , X ′ = X and {{Y/[θ] X}}p
∅
=⇒N {{Y ′/[θ]X ′}}p.

• If X = [τ] P → B, then there are P ′ and B′ such that X ′ = [τ] P ′ → B′ and {{Y/[θ] X}}s =
(ε,⊥) = {{Y ′/[θ]X ′}}s.

• If X = [τ] P → B, then there are P ′ and B′ such that X ′ = [τ] P ′ → B′ and {{Y/[θ]X}}w =
(|Y |,⊥) = (|Y ′|,⊥) = {{Y ′/[θ]X ′}}w, by Lemma 3.13.

• If X = P1P2 and Y = A1A2, with X and Y matchable. Y ′ = A′
1A

′
2 with A1 ⇒N A′

1,
A2 ⇒N A′

2 and X ′ = P ′
1P

′
2 with P1 ⇒N P ′

1, P2 ⇒N P ′
2. By induction hypothesis

(Γ1, µ1) = {{A1/[θ] P1}}w ⇒N {{A′
1/[θ]P ′

1}}w = (Γ1, µ
′
1) and (Γ2, µ2) = {{A2/[θ]P2}}s ⇒N

{{A′
2/[θ]P ′

2}}s = (Γ2, µ
′
2).

– If µ1 = ⊥, then µ′
1 = ⊥ and {{Y/[θ] X}}p = {{A1/[θ]P1}}w = (Γ1,⊥) = {{A′

1/[θ]P ′
1}}w =

{{Y ′/[θ]X ′}}p, then {{Y/[θ]X}}p
∅
=⇒N {{Y ′/[θ]X ′}}p.

– If µ1 is a subtitution σ1, then µ′
1 = σ′

1.

∗ If µ2 = ⊥, then µ′
2 = ⊥ and {{Y/[θ]X}}p = (Γ1Γ2,⊥) = {{Y ′/[θ] X ′}}p.

∗ If µ2 is a substitution σ2. Then µ′
2 = σ′

2. Moreover, by hypothesis, σ1 ⇒N σ′
1

and σ2 ⇒N σ′
2, which implies dom(σ1) = dom(σ′

1) and dom(σ2) = dom(σ′
2).

Then σ1 ⊎ σ2 = ⊥ if and only if σ′
1 ⊎ σ′

2 = ⊥. Else σ1 ⊎ σ2 ⇒N σ′
1 ⊎ σ′

2. Finally
{{Y/[θ]X}}p = (Γ1Γ2, σ1 ⊎ σ2) ⇒N (Γ1Γ2, σ

′
1 ⊎ σ′

2) = {{Y ′/[θ]X ′}}p.

• If X is matchable with Y = α : Z and Y ′ = α : Z ′, then {{Y/[θ]X}}p = α : {{Z ′/[θ]X ′}}p
and {{Y ′/[θ]X ′}}p = α : {{Z ′/[θ] X ′}}p with by induction hypothesis {{Z/[θ] X}}p ⇒N

{{Z ′/[θ]X ′}}p (Y can’t be a redex, for otherwise {{Y/[θ]X}}p wouln’t be defined).

• If X and Y are other matchable terms, then {{Y/[θ]X}}p = (|Y ||X|,⊥) = (|Y ′||X ′|) =
{{Y ′/[θ]X ′}}p, with Lemma 3.8.

• Otherwise, {{Y/[θ]X}}p is wait, which isn’t the case here.

25

Finally, since {{Y/[θ]X}}p ⇒N {{Y ′/[θ]X ′}}p, {Y/[θ]X} ⇒N {Y ′/[θ]X ′} also holds, because if
{{Y/[θ] X}}p is a substitution, then {{Y ′/[θ]X ′}}p is one too, with same domain (and conversely).

Corollary 3.15. Rules fail and substitution can be replaced respectively by the following:

θ#
−→
RB

B
−→
RB==⇒N B′

P
−→
RP==⇒N P ′

A
−→
RA==⇒N A′ {A/[θ]P} = (∆,⊥)

fail 3.15 αΓ∆ ∈ N

R = α : ((Γ · [θ] P → B)A)
R
−→
RP

−→
RB

−→
RA=======⇒N pαΓ∆q : ⊥

θ#
−→
RB

B
−→
RB==⇒N B′

P
−→
RP==⇒N P ′

A
−→
RA==⇒N A′

{A/[θ]P} = (∆, σ)

{A′/[θ]P ′} = (∆, σ′)
substitution 3.15 αΓ∆ ∈ N

R = α : ((Γ · [θ] P → B)A)
R
−→
RP

−→
RB

−→
RA=======⇒N pαΓ∆q : (αΓ∆LθMB′)σ′

Lemma 3.16. If X ⇒N X ′, then fv(X ′) ⊆ fv(X).

Proof. Prove first that if {{Y/[θ]Z}}p = (∆, σ) then fv(σ) ⊆ fv(Y), by induction on {{Y/[θ]Z}}p.
Then conclude by induction on X ⇒N X ′ (for the fail rule, remember that ⊥ is a closed
term).

Lemma 3.17. If X
−→
R
=⇒N X ′ and θ#

−→
R , then there is

−→
R∗ with fv(

−→
R) = fv(

−→
R∗) such that

ΩLθMX
−→
R∗

=⇒N ΩLθMX ′.

Proof. Induction on X
−→
R
=⇒N X ′.

First remark that if θ#X, by Lemma 3.16, θ#X ′, and ΩLθMX = X
−→
R
=⇒N X ′ = ΩLθMX ′. Now

suppose θ ∩ X 6= ∅.

• If X
∅
=⇒N X ′, then X ′ = X, ΩLθMX = ΩLθMX ′ and ΩLθMX

∅
=⇒N ΩLθMX ′.

• If X = α : Z
−→
R
=⇒N α : Z ′ = X ′. By induction hypothesis ΩLθMZ

−→
R∗

=⇒N ΩLθMZ ′ with

fv(
−→
R∗) = fv(

−→
R). Thus ΩLθMα : Z = [Ω, α] : (ΩLθMZ)

−→
R∗

=⇒N [Ω, α] : (ΩLθMZ ′ = ΩLθMα : Z ′.

• If X = T1T2

−→
R1

−→
R2===⇒N T ′

1T
′
2 = X ′ with T1

−→
R1=⇒N T ′

1 and T2

−→
R2=⇒N T ′

2. By induction hypothe-

sis there are
−→
R∗

1 and
−→
R∗

2 with fv(
−→
R1) = fv(

−→
R∗

1) and fv(
−→
R2) = fv(

−→
R∗

2) such that ΩLθMT1

−→
R∗

1=⇒N

ΩLθMT ′
1 and ΩLθMT2

−→
R∗

2=⇒N ΩLθMT ′
2. Thus ΩLθMT1T2 = (ΩLθMT1)(ΩLθMT2)

−→
R∗

1

−→
R∗

2===⇒N (ΩLθMT ′
1)(ΩLθMT ′

2) =

ΩLθMT ′
1T

′
2. With fv(

−→
R∗

1

−→
R∗

2) = fv(
−→
R1

−→
R2).

• If X = [τ] P → B, as in the previous case [τ] P → B
−→
RP

−→
RB====⇒N [τ] P ′ → B′, with

in addition τ#
−→
RB. By induction hypothesis, in particular ΩLθMB

−→
R∗

B==⇒N ΩLθMB′ with

fv(
−→
R∗

B) = fv(
−→
RB). Hence τ#

−→
R∗

B, which allows to derive the reduction [τ] P → B
−→
R∗

P

−→
R∗

B====⇒N

[τ] P ′ → B′ (with fv(
−→
R∗

P

−→
R∗

B) = fv(
−→
RP

−→
RB)).

26

• If reduction is by the fail or the substitution rule, then X is in
−→
R . But θ#R, and thus

θ#X, which is not the case.

Lemma 3.18. If T
−→
R
=⇒N T ′, σ ⇒N σ′ and dom(σ)#

−→
R , then T σ ⇒N T ′σ′

.

Proof. First remark that σ and σ′ have the same domain, by definition of σ ⇒N σ′. Write
τ = dom(σ) = dom(σ′).

The following strengthened hypothesis is proved: for any X
−→
R
=⇒N X ′, σ ⇒N σ′ with dom(σ)#

−→
R ,

there exists
−→
R∗ with fv(

−→
R∗) ⊆ fv(

−→
R)∪fv(σ) such that Xσ

−→
R∗

=⇒ X ′σ′

. By induction on X
−→
R
=⇒N X ′.

• If X
∅
=⇒N X = X ′, then conclude by induction on X:

– If X = x with x ∈ τ , then Xσ = σx ⇒N σ′
x = Xσ′

.

– If X = x with x 6∈ τ , then Xσ = x = Xσ′

.

– If X = x̂, then Xσ = x̂ = Xσ′

.

– If X = T1T2, then

Xσ = (T1T2)
σ

= T σ
1 T σ

2

By induction hypothesis (on X), T σ
1 ⇒N T σ′

1 et T σ
2 ⇒N T σ′

2 . Thus:

Xσ ⇒N T σ′

1 T σ′

2

= (T1T2)
σ′

= Xσ′

– If X = [θ] P → B, then Xσ = [θ] P σ → Bσ with θ#σ. By induction hypothesis (on

X), P σ ⇒N P σ′

and Bσ
−→
RB==⇒N Bσ′

. But fv(
−→
RB) ⊆ fv(σ), and θ#σ, thus θ#

−→
RB and

[θ] P σ → Bσ ⇒N [θ] P σ′

→ Bσ′

. Hence Xσ ⇒N Xσ′

.

– If X = α : Z, conclusion is straightforward with induction hypothesis (on X).

• If X = T1T2 ⇒N T ′
1T

′
2 = X ′, with T1 ⇒N T ′

1 and T2 ⇒N T ′
2. By induction hypothesis,

T σ
1 ⇒N (T ′

1)
σ′

and T σ
2 ⇒N (T ′

2)
σ′

. Then Xσ ⇒N X ′σ′

.

• If X = [θ] P → B ⇒N [θ] P ′ → B′, with P ⇒N P ′, B
−→
RB==⇒N B′ and θ#

−→
RB. Then

Xσ = [θ] P σ → Bσ with θ#σ. By induction hypothesis, P σ ⇒N (P ′)σ′

and Bσ
−→
R∗

B==⇒N B′σ′

,

where fv(
−→
R∗

B) ⊆ fv(
−→
RB) ∪ σ. Then θ#

−→
R∗

B and Xσ ⇒ X ′σ′

.

• If X = α : Z ⇒N α : Z ′ = X ′ with Z ⇒N Z ′, conclusion is straightforward with induction
hypothesis.

• If reduction is by the fail or the substitution rule, then in particular X itself is in
−→
R .

Since τ#
−→
R , then τ#X and Xσ = X. Moreover, fv(X ′) ⊆ fv(X) by Lemma 3.16, and

thus τ#X ′ and (X ′)σ′

= X ′. Finally Xσ = X
−→
R
=⇒N X ′ = (X ′)σ′

.

Lemma 3.19 (Diamond). Relation ⇒N has the diamond property : if Xl N ⇐ X ⇒N Xr,
then there exists Xc such that Xl ⇒N Xc N ⇐ Xr. (l, r and c stand for left path, right path
and confluence)

27

Proof. Strengthened hypothesis : if Xl N

−→
Rl⇐= X

−→
Rr=⇒N Xr, then there exists Xc, R

∗
l , R

∗
r such that

Xl

−→
R∗

l=⇒N Xc N

−→
R∗

r⇐= Xr, with fv(
−→
R∗

l) ⊆ fv(
−→
Rl) ∪ fv(

−→
Rr) and fv(

−→
R∗

r) ⊆ fv(
−→
Rl) ∪ fv(

−→
Rr).

By induction on X ⇒N Xl.

• If X
∅
=⇒N X = Xl, conclusion is straightforward.

• If X = α : Z
−→
Rl=⇒N α : Zl = Xl with Z

−→
Rl=⇒N Zl, then there are two cases on X ⇒N Xr:

– If X = α : Z
−→
Rr=⇒N α : Zr = Xr with Z

−→
Rr=⇒N Zr, then by induction hypothesis

Zl

−→
R∗

l=⇒N Zc N

−→
R∗

r⇐= Zr, and Xl

−→
R∗

l=⇒N α : Zc N

−→
R∗

r⇐= Xr, with asked conditions on
−→
R∗

l and
−→
R∗

r .

– If X
−→
Rr=⇒N Xr with the fail 3.15 rule or the substitution 3.15 rule, then X = α :

((Γ · [θ] P → B)A), with {A/[θ]P} = (∆, µ), P ⇒N Pr, A ⇒N Ar, B
−−→
RBr==⇒N Br,

θ#
−−→
RBr, {Ar/[θ]Pr} = (∆, µr), and αΓ∆ ∈ N .

With such a form for X, reduction X ⇒N Xl is derived from P ⇒N Pl, A ⇒N Al

and B
−−→
RBl==⇒N Bl with θ#

−−→
RBl.

If X ⇒N Xr by the fail 3.15 rule, then Xr = pαΓ∆q : ⊥. Since µ = ⊥ and

αΓ∆ ∈ N , by fail 3.15 Xl
Xl=⇒N pαΓ∆q : ⊥. Hence Xl

Xl=⇒N Xr. Since Xr
∅
=⇒N Xr

the diamond is completed. Suppose reduction X ⇒N Xr is by the substitution 3.15

rule, then µr is a substitution σr and Xr = pαΓ∆q : (αΓ∆LθMBr)
σr .

By induction hypothesis, Pl ⇒N Pc N ⇐ Pr, Al ⇒N Ac N ⇐ Ar, and Bl

−−→
R∗

Bl==⇒N

Bc N

−−→
R∗

Br⇐== Br with fv(
−−→
R∗

Bl) ⊆ fv(
−−→
RBl) ∪ fv(

−−→
RBr). Since θ#

−→
Rbl and θ#

−−→
RBr, in

particular θ#
−−→
R∗

Bl, and similarly θ#
−−→
R∗

Br.
Finally {Ac/[θ]Pc} = (∆, σc) and the substitution 3.15 applies: Xl ⇒N pαΓ∆q :
(αΓ∆LθMBc)

σc (with the condition on variables: by Lemma 3.16 fv(Xl) ⊆ fv(X);

moreover X appears in
−→
Rr, and thus fv(Xl) ⊆ fv(

−→
Rr)). Write Xc the resulting

term pαΓ∆q : (αΓ∆LθMBc)
σc . Induction hypothesis gave Br

−−→
R∗

Br==⇒N Bc with θ#
−−→
R∗

Br,

thus by Lemma 3.17 there is a sequence
−−→
R∗∗

Br with fv(
−−→
R∗∗

Br) = fv(
−−→
R∗

Br) such that

αΓ∆LθMBr

−−→
R∗∗

Br==⇒N αΓ∆LθMBc. Since Pr ⇒N Pc and Ar ⇒N Ac, by Lemma 3.14
σr ⇒N σc, with dom(σr) = dom(σc) = θ. Hence by Lemma 3.18 Xr = pαΓ∆q :
(αΓ∆LθMBr)

σr ⇒N pαΓ∆q : (αΓ∆LθMBc)
σc and reduction Xr ⇒N Xc also holds

(with asked variables inclusion too).

• If X = T1T2 ⇒N Tl1Tl2 = Xl with T1 ⇒N Tl1 and T2 ⇒N Tl2, then X ⇒N Tr1Tr2 = Xr

with T1 ⇒N Tr1 and T2 ⇒N Tr2. By induction hypothesis Tl1 ⇒N Tc1 N ⇐ Tr1 and
Tl2 ⇒N Tc2 N⇐ Tr2 with asked conditions on variables. Conclusion is straightforward.

• If X = [θ] P → B ⇒N [θ] Pl → Bl = Xl with P ⇒N Pl and B
−−→
RBl==⇒N Bl and θ#

−−→
RBl,

then X ⇒N [θ] Pr → Br with P ⇒N Pr with B
−−→
RBr==⇒N Br and θ#

−−→
RBr. By induction

hypothesis Pl ⇒N Pc N ⇐ Pr, Bl

−−→
R∗

Bl==⇒N Bc N

−−→
R∗

Br⇐== Br, θ#
−−→
R∗

Bl and θ#
−−→
R∗

Bl, which allows
to derive the conclusion.

28

• If X = α : ((Γ · [θ] P → B)A) ⇒ Xl with fail 3.15 rule, then there are three cases:

– If X = α : Z ⇒N α : Zr = Xr with Z ⇒N Zr, see the already solved symmetrical
case.

– If X ⇒N Xr also with fail 3.15 rule. Then Xl = pαΓ∆q : ⊥ = Xr. Then for

Xc = Xl = Xr, the reductions Xl
∅
=⇒N Xc N

∅
⇐= Xr complete the diamond.

– The case X ⇒N Xr with substitution 3.15 rule is impossible. It would imply
{A/[θ] P} = (∆, µ) with µ a substitution. But here µ = ⊥.

• If X = α : ((Γ · [θ] P → B)A) ⇒ Xl with substitution 3.15 rule, then there are still three
cases:

– If X = α : Z ⇒N α : Zr = Xr with Z ⇒N Zr, see the already solved symmetrical
case.

– As above, the case X ⇒N Xr with fail 3.15 rule is impossible.

– If X ⇒N Xr with substitution 3.15 rule. Summary of the case:

{A/[θ] P} = (∆, σ), Pl N ⇐ P ⇒N Pr, Al N ⇐ A ⇒N Ar, Bl N

−−→
RBl⇐== B

−−→
RBr==⇒N Br

with θ#
−−→
RBl and θ#

−−→
RBr, {Al/[θ]Pl} = (∆, σl) and {Ar/[θ]Ar} = (∆, σr). And fi-

nally Xl = pαΓ∆q : (αΓ∆LθMBl)
σl and Xr = pαΓ∆q : (αΓ∆LθMBr)

σr .
By induction hypothesis Pl ⇒N Pc N ⇐ Pr, Al ⇒N Ac N ⇐ Ar, and then by

Lemma 3.14 σl ⇒N σc N ⇐ σr. Induction hypothesis also gives and Bl

−−→
R∗

Bl==⇒N

Bc N

−−→
R∗

Br⇐== Br with θ#
−−→
R∗

Bl and θ#
−−→
R∗

Br. By Lemma 3.17, αΓ∆LθMBl

−−→
R∗

Bl==⇒N αΓ∆LθMBc N

−−→
R∗

Br⇐==
αΓ∆LθMBr. Moreover dom(σr) = dom(σl) = dom(σ) = θ. Then by Lemma 3.18,

(αΓ∆LθMBl)
σl

−−→
R∗∗

Bl==⇒N (αΓ∆LθMBc)
σc

N

−−→
R∗∗

Br⇐== (αΓ∆LθMBr)
σr , and finally Xl

−−→
R∗∗

Bl==⇒N pΓq :

(αΓ∆LθMBc)
σc

N

−−→
R∗∗

Br⇐== Xr.

Lemma 3.20 (Simulation). →N ⊆ ⇒N ⊆ →∗
N

Proof.

•
R
−→N ⊆

R
=⇒N , by induction on

R
−→N . For instance: if [θ] P → B

R
−→N [θ] P → B′ with

B
R
−→N B′ and θ#R. By induction hypothesis B

R
=⇒N B′. Moreover P

∅
=⇒N P ′. Then

[θ] P → B
∅;R
==⇒N [θ] P → B′, which is equal to [θ] P → B

R
=⇒N [θ] P → B. Other cases are

similar.

• For any reduction T
R1...Rn====⇒N T ′, there exists an integer m ≥ n, a sequence R∗

1...R
∗
m,

a function ϕ : {1...m} → {1...n} such that for all i, fv(R∗
ϕ(i)) ⊆ fv(Ri), and T

R∗

1−−→N

...
R∗

n−−→N T ′, by induction on
−→
R
=⇒N .

For instance, suppose T = α : ((Γ · [θ] P → B)A)
T
−→
RP

−→
RB

−→
RA=======⇒N pαΓ∆q : (αΓ∆LθMB′)σ′

= T ′

by substitution 3.15 rule, with B
−→
RB==⇒N B′ (and θ#

−→
RB), {A/[θ]P} = (∆, σ), P

−→
RP==⇒N

P ′, A
−→
RA==⇒N A′, {A′/[θ]P ′} = (∆, σ′) and αΓ∆ ∈ N . By induction hypothesis, there

are
−→
R∗

P ,
−→
R∗

B,
−→
R∗

A such that P
−→
R∗

P−−→N P ′, B
−→
R∗

B−−→N B′ and A
−→
R∗

A−−→N A′ (with functions

29

mapping elements of
−→
R∗

Z on elements of
−→
RZ for any Z in {A, B, P}). Since θ#

−→
RB and

fv(
−→
R∗

B) ⊆ fv(
−→
RB), θ#

−→
R∗

B. Then [θ] P → B
−→
R∗

P−−→N [θ] P ′ → B
−→
R∗

B−−→N [θ] P ′ → B′ and

α : ((Γ · [θ] P → B)A)
−→
R∗

P

−→
R∗

B−−−−→N α : ((Γ · [θ] P ′ → B′)A)
−→
R∗

A−−→N α : ((Γ · [θ] P ′ → B′)A′) = T ′′

Moreover, the name of the redex T ′′ is αΓ∆ ∈ N , and thus

T ′′ T ′′

−−→N pαΓ∆′
q : (αΓ∆′LθMB′)σ′

= T ′

Remark also that T ⇒N T ′′, and hence by Lemma 3.16 fv(T ′′) ⊆ fv(T).
Other cases are similar.

Theorem 3.21 (Parametric Confluence). For any set of names N , the reduction relation
→N is confluent.

Proof. Reduction relation ⇒N has the diamond property (Diamond Lemma 3.19), thus ⇒∗
N

has the diamond property. Moreover, Simulation Lemma 3.20 gives →N ⊆ ⇒N ⊆ →∗
N . Hence

→∗
N ⊆ ⇒∗

N ⊆ (→∗
N)∗. But (→∗

N)∗ = →∗
N , and thus →∗

N ⊆ ⇒∗
N ⊆ →∗

N . Finally ⇒∗
N = →∗

N .
Hence →∗

N , as ⇒∗
N , has the diamond property, and →N is confluent.

3.3.4 Termination Theorem

Lemma 3.22. Let N be a set of labels and consider restricted reduction →N . For any labelled
term T and any label α, termination of T implies termination of α : T .

Proof. By Lemma 3.5, residuals of T are labelled terms. Thus residuals of α : T have the form
α : βr : Xr and there is no reduction at the root: T and α : T have the same reductions.

Lemma 3.23. Let N be a finite set of labels, and consider restricted reduction →N . Let T be
a terminating labelled term, σ a terminating substitution of domain θ, and Ω a label.
Then (ΩLθMT)σ is terminating.

Proof. Denote by ❘ the lexicographic product of ≻ (reversed direct contribution) and subterm
order. Choose a pair (Ω, T) with Ω ∈ N and T terminating, minimal for ❘ such that there
exists a terminating subsitution σ making (ΩLθMT)σ non-terminating (θ denotes the domain of
σ). Such a pair exists by finiteness of N . Note T = α : X. Contradiction is shown by cases on
X. First remark that if θ#X then (ΩLθMX)σ = X, which is terminating by hypothesis. Then
suppose θ ∩ fv(X) 6= ∅. Hence (ΩLθMT)σ = [Ω, α] : (ΩLθMX)σ.

• If X is a labelled term, then by Lemma 3.22 (ΓLθMX)σ alone is non-terminating, which
contradicts minimality.

• If X = x with x 6∈ θ or X = x̂, then θ#X, which is not the case.

• If X = x with x ∈ θ, then (ΩLθMX)σ = σx. Conclusion is by termination of σ (in particular
of σx) and Lemma 3.22 (since σx is a labelled term).

• If X = [τ] P → B with θ#τ , then (ΩLθMX)σ = [τ] (ΩLθMP)σ → (ΩLθMB)σ. Since P and B
are labelled subterms of T , by minimality (ΩLθMP)σ and (ΩLθMB)σ are terminating, and
so does (ΩLθMT)σ.

30

• If X = T1T2, then (ΩLθMX)σ = (ΩLθMT1)
σ(ΩLθMT2)

σ, as in the precedent case, (ΩLθMT1)
σ

and (ΩLθMT2)
σ are terminating. Hence any infinite reduction will eventually reduce a redex

at the root :
[Ω, α] : ((ΩLθMT1)

σ(ΩLθMT2)
σ)

>ǫ
−→

∗
[Ω, α] : ((Γ1 : [θ1] P1 → B1)A2)

ǫ
−→ pΩ∗

q : (Ω∗Lθ1MB1)
µ2

where
ǫ
−→ is a reduction at the root, and

>ǫ
−→ a reduction anywhere else. If µ2 = ⊥, then the

result is a terminating term. Suppose µ2 is a substitution σ2. Ω∗ has the form [Ω, α] Γ1∆0,
hence Ω∗ ≻ Ω. Moreover B1 and A2 are terminating (they are reduced subterms of T1

and T2). Then σ2 is also terminating since all substitutes are subterms of A2. Hence by
minimality (Ω∗Lθ1MB1)

σ2 is terminating, and by Lemma 3.22 pΩ∗
q : (Ω∗Lθ1MB1)

σ2 is also
terminating.

Theorem 3.24 (Termination Theorem). For any finite set of labels N , →N is strongly nor-
malizing.

Proof. Let X be a term. By induction on X, there is no infinite reduction starting from X.

• Case X = x or X = x̂: X is a normal form.

• Case X = [θ] P → B. Any reduction of X is a reduction of P or B. But by induction
hypothesis any reduction from P or B is finite.

• Case X = T1T2. Any reduction of X is a reduction of T1 or T2. But by induction
hypothesis any reduction from T1 or T2 is finite.

• Case X = α : Z. By induction hypothesis any reduction from Z is terminating. Suppose
there is an infinite reduction from X, it eventually reduces X at the root:

α : Z
>ǫ
−→

∗
α : ((Γ : [θ] P → B)A)

ǫ
−→ pΩq : (ΩLθMB)µ

If µ = ⊥, then the result is pΩq : ⊥, which is a normal form. Suppose µ is a substitution
σ. A and B are subterms of a residual of Z: they are terminating. Since for any x ∈
dom(σ), σx is a subterm of B, σ is also terminating. Hence by Lemma 3.23, (ΩLθMB)σ is
terminating.

3.3.5 Finite Developments Theorem

In this section, when R denotes a set of redexes, the symbol is also used to denote the set of
positions of these redexes. The same shortcut is used with S for subterms.

Theorem 3.25. For any term t of WPPC, any set of redexes R, and any set of subterms S:

• Any development of R is finite.

• All complete developments of R yield the same result.

• The set of residuals of S after any complete development of R is the same.

31

Proof. Particular case of Finite Developments Theorem 3.32 for LWPPC .
The proof of Finite Development Theorem 3.32 for LWPPC is deduced from Termination

Theorem 3.24 and Confluence Theorem 3.12 through the following trick: to mark redexes to
be developped and subterms whose residuals are interesting, the internal labelling system of
LWPPC is used by introducing some fresh initial labels (notions of marking and marking
functions below). Intermediate steps are a characterization of residuals in the marked terms
(Lemma 3.29) and equivalences between developments in the original term and already known
reductions such as →N (Lemma 3.31). A morphism ϕ is a function from initial labels to labels.
By extension, it applies to terms and labels in the following way:

ϕ(x) := x
ϕ(x̂) := x̂

ϕ(T1T2) := ϕ(T1)ϕ(T2)
ϕ([θ] P → B) := [θ] ϕ(P) → ϕ(B)

ϕ(α : Z) := ϕ(α) : ϕ(Z)

ϕ(→) := ϕ→
ϕ(pΩq) := pϕ(Ω)q

ϕ([Ω, α]) := [ϕ(Ω), ϕ(α)]
ϕ(α1...αn) := ϕ(α1)...ϕ(αn)

Lemma 3.26. For any morphism ϕ and reduction X
R
−→N X ′, ϕ(X)

ϕ(R)
−−−→ϕ(N) ϕ(X ′).

Proof. By induction on X
R
−→N X ′. As a consequence, morphisms can

also be applied to reductions: for any reduction −→ρ = X0
R1−−→N1

X1
R2−−→N2

...
Rn−−→Nn Xn, ϕ(−→ρ)

is the reduction ϕ(X0)
ϕ(R1)
−−−−→ϕ(N1) ϕ(X1)

ϕ(R2)
−−−−→ϕ(N2) ...

ϕ(Rn)
−−−−→ϕ(Nn) ϕ(Xn), whose existence is

given by Lemma 3.26.

Lemma 3.27. Let X be a term, and ϕ a morphism. Let p, q be positions of X. Then X|p is
a redex R if and only if ϕ(X)|p is a redex. In this case, note ρ the reduction of X|p. Then
q/ρ = q/ϕ(ρ) (q/ρ denotes the set of positions of residuals of the subterm at position q).

Proof. First note that forall Y , Y is matchable if and only if ϕ(Y) is matchable, and in this case
|ϕ(Y)| = ϕ(|Y |). Deduce that for any Y,Z, {{Y/[θ]Z}}p is defined if and only if {{ϕ(Y)/[θ] ϕ(Z)}}p
is defined, and in this case {{ϕ(Y)/[θ]ϕ(Z)}}p = ϕ({{Y/[θ]Z}}p). Moreover for any Y the set of
positions of Y and the set of positions of ϕ(Y) are equal.

Lemma 3.28. For any morphism and any reduction −→ρ : ϕ(X) → X ′, there is a reduction
−→
ρ∗

such that ϕ(
−→
ρ∗) = −→ρ .

Proof. By induction on the length of −→ρ .

• If −→ρ , then take
−→
ρ∗ the empty reduction on X.

• If −→ρ = −→ρ0ρn, with −→ρ0 : ϕ(X) → X1 and ρn : X1
R
−→ X ′. Let p be the position of R in X1.

By induction hypothesis there is
−→
ρ∗0 : X

R
−→ X∗

1 with ϕ(
−→
ρ∗0) = −→ρ0. Then ϕ(X∗

1) = X1, and

by Lemma 3.27 X∗
1 |p is a redex R∗ such that ρ∗n : X∗

1
R∗

−−→ (X ′)∗ satisfies ϕ(ρ∗n) = ρn.

Let X be a term, P a set of positions such that X|p is a labelled term for any p ∈ P, and f a
function from P to the set of initial labels. The marking of X via f is the pair (X•, ϕ) such
that:

• X• is the term X where for all p ∈ P, label at position p is replaced by f(p).

• ϕ is the morphism defined by mapping of f(p) to αp for all p ∈ P.

32

Remark that in this case, ϕ(X•) = X. Let X be a term, and P a set of positions of X. If X is
a clipped term, suppose ǫ 6∈ P. Decompose P as the disjoint union of Pl and Pc such that X|p
is a labelled subterm for all p ∈ Pl, and X|p is a clipped strict subterm of X for all p ∈ Pc. For
all p ∈ Pc, p = q③ (since ǫ 6∈ Pc, and by inspection of the grammar of terms), which means X|q
is a labelled term. Note P−

c = {q|q③ ∈ Pc}. A marking function of P is an injective function
f from Pl ∪ P−

c to the set of initial labels, such that for any p ∈ Pl ∪ P−
c , f(p) is a fresh initial

label.
For any atomic label α, denote by ι[α] the set of labels generated by the following conditions

(i.e. the smallest set satisfying the conditions):

• α ∈ ι[α]

• For any β ∈ ι[α] and any label Ω, [Ω, β] ∈ ι[α].

Lemma 3.29. Let X be a term, P a set of positions of X (with ǫ 6∈ P if X is a clipped term),
and f a marking function of P. Write (X•, ϕ) the marking of X via f , and suppose there is a

reduction ρ : X• R1−−→N ...
Rn−−→N X ′. Then:

• For any p ∈ Pl, residuals of X•|p are exactly subterms α′ : Z ′ of X ′ such that α′ ∈ ι[f(p)].

• For any p ∈ Pc, residuals of X•|p are exactly the clipped subterms N ′ of X ′ occurring as
α′ : N ′ with α′ ∈ ι[f(q)] (for p = q③).

Proof.

• Let p ∈ Pl. By Lemma 3.5, residuals of X•|p have the asked form.
Conversely, let α′ : Z ′ be a subterm of X ′ with α′ ∈ ι[f(p)]. Since f(p) is an initial
label, by Lemma 3.6 α′ : Z ′ has an ancestor α• : Z• in X•, and this ancestor satisfies
α• ∈ ι[f(p)]. But label f(p) had been taken fresh in X, with f injective. Thus label f(p)
has a unique occurrence in X•, which is X•|p.

• Proof of the second point is by combination of the first point and Lemma 3.7.

Corollary 3.30. With the hypothesis of Lemma 3.29, if X|p is a redex (for p ∈ P), then its
residuals are exactly the subterms of X ′ with label f(p).

Proof. Apply Lemma 3.10 which ensures that the residual of a redex is a redex with same name,
and thus with same label at the root.

Lemma 3.31. Let X be a term, R a set of redexes of X, S a set of subterms of X (strict
subterms if X is a clipped terms), f a marking function of R ∪ S. Write (X•, ϕ) the marking
of X via f , and N • the set of names of redexes of R in X•. Then there is a development
−→ρ : X

R1−−→ X1
R2−−→ ...

Rn−−→ Xn of R if and only if there is a reduction
−→
ρ• : X• R•

1−−→N • X•
1

R•

2−−→N •

...
R•

n−−→N • X•
n with ϕ(X•

i) = Xi and ϕ(R•
i) = Ri for any i ∈ {1...n}.

Proof. Proof is in two steps:

• There is a development −→ρ of R in X if and only if there is a development
−→
ρ• of R in X•

such that ϕ(
−→
ρ•) = −→ρ .

Direct implication, by induction on the length of −→ρ :

– If −→ρ is the empty reduction, take
−→
ρ• as the empty reduction from X•.

33

– If −→ρ = −→ρ0ρn, by induction there is a development
−→
ρ•0 : X• → X•

n−1 of R in X•

with ϕ(
−→
ρ•0) = −→ρ0. In particular ϕ(X•

n−1) = Xn−1. Thus by Lemma 3.28 there is a
reduction ρ•n such that ϕ(ρ•n) = ρn.

Reverse implication: for any development
−→
ρ• of R in X•, ϕ(

−→
ρ•) is a development of R in

X, by induction on the length of
−→
ρ•.

– If
−→
ρ• is the empty reduction, conclusion is immediate.

– If
−→
ρ• =

−→
ρ•0ρ

•
n, by induction ϕ(

−→
ρ•0) is a development of R in X. Since

−→
ρ• is a develop-

ment of R, the redex R•
n reduced by ρ•n is a residual of some redex R• of R (in X•).

Then by Lemma 3.27, the redex ϕ(R•
n) reduced by ϕ(ρ•n) is a residual of some redex

R of R (in X). Hence ϕ(
−→
ρ•) is a development of R in X.

• Developments of R in X• are exactly the reductions from X• restrained by N •.

Let
−→
ρ• = ρ•1...ρ

•
n be a development of R in X•. By definition of a development, for all

i ∈ {1...n} ρ•i ∈ R/(ρ•1...ρ
•
i−1). By Lemma 3.10, the name Ω•

i of the redex R•
i reduced by

ρ•i is the name of its ancestor in X•. Thus Ω•
i ∈ N •.

Conversely, let −→ρ• = ρ1
•...ρ

m
• be a sequence of reduction from X• for →N • . Let Ri

• be
the redex reduced by ρi

•, and Ωi
• its name. For any i, Ωi

• ∈ N •. In particular, there is
a position pi of a redex of X• such that pi ∈ R and Ωi

• = f(pi)Ω
i
0, and Ri

• has the form
f(pi) : Zi

•. By Corollary 3.30, Ri
• is a residual of X•|pi after ρ1

•...ρ
i−1
• . Hence −→ρ• is a

development of R in X•.

Theorem 3.32 (Finite Developments Theorem). For any term X, any set R of redexes of X,
and any set S of subterms of X:

• Any development of R is finite.

• All complete developments of R yield the same result.

• The set of residuals of S after any complete development of R is the same.

Proof. Suppose X is a labelled term or ǫ ∈ S. Let f be a marking function of R ∪ S. Write
(X•, ϕ) the marking of X via f and N • the set of names of redexes of R in X•.

• Remark that N • is finite since X is finite. Thus by Termination Theorem 3.24 →N • is
strongly normalizing. Let −→ρ be a development of R in X. By Lemma 3.31, there is a

reduction
−→
ρ• of →N • in X• (necessarily finite) with ϕ(

−→
ρ•) = −→ρ . Then −→ρ is finite.

• By Parametric Confluence Theorem 3.21 →N • is confluent. Let −→ρ1 and −→ρ2 be two complete

developments of R in X. By Lemma 3.31 there are reductions
−→
ρ•1 and

−→
ρ•2 of →N • in X•

with ϕ(
−→
ρ•1) = −→ρ1 and ϕ(

−→
ρ•2) = −→ρ2. By confluence of →N • there are reductions

−→
ρ•1+ and

−→
ρ•2+

of →N • such that
−→
ρ•1
−→
ρ•1+ and

−→
ρ•2
−→
ρ•2+ end at the same term. But by Lemma 3.31, ϕ(

−→
ρ•1
−→
ρ•1+)

and ϕ(
−→
ρ•2
−→
ρ•2+) are developments of R in X. Since −→ρ1 and −→ρ2 are complete developments,

−→
ρ•1+ and

−→
ρ•2+ are empty reductions. Hence

−→
ρ•1 and

−→
ρ•2 end at the same term, and so do −→ρ1

and −→ρ2.

• Let −→ρ1 and −→ρ2 be two complete developments of R in X. As in previous point, with Para-
metric Confluence Theorem 3.21 of confluence and Lemma 3.31 of simulation, there are

two developments
−→
ρ•1 and

−→
ρ•2 of R in X• such that ϕ(

−→
ρ•1) = −→ρ1 and ϕ(

−→
ρ•2) = −→ρ2. Moreover

−→
ρ•1 and

−→
ρ•2 end at the same term X ′. By Lemma 3.29, residuals of S are characterized

34

by their labels, which means characterized by X ′. Thus S/
−→
ρ•1 = S/

−→
ρ•2. By Lemma 3.27,

S/ϕ(
−→
ρ•1) = S/

−→
ρ•1 and S/ϕ(

−→
ρ•2) = S/

−→
ρ•2. Hence S/−→ρ1 = S/ϕ(

−→
ρ•1) = S/

−→
ρ•1 = S/

−→
ρ•2 =

S/ϕ(
−→
ρ•2) = S/−→ρ2.

For the last case, if X is a clipped term and ǫ ∈ S, apply the same reasoning with S \ {ǫ};
remark that X is not a redex and thus that the subterm at position ǫ is always the unique
residual of itself.

LWPPC gives instructions for optimal sharing in WPPC by a description of what should be
reduced in one single step. But as stated for now these instructions are not constructive. Next
section shows how labels can be used to derive an effective graph implementation of sharing.

4 The Sharing Property

Previous section introduces LWPPC , a variant of WPPC where each term and subterm bears a
label (an atomic label or a sequence). The labelling describes a graph implementation with the
following idea: each atomic label represents a memory location. Subterms with same label are
thus meant to be physically equal. This idea is specified for first order terms in [Mar92, DLLL05],
and for weak λ-calculus in [BLM07].

@

λx

@
x

T

@α

λxβ

@γ

xι

T

T

δ

δ

Of course not all labelled terms can be translated to graphs in a consistent way. The sharing
property ❙ is a formal condition allowing it: a term T is said to enjoy the sharing property
(noted ❙(T)) if for any of its subterms α1 : Z1 and α2 : Z2,

α1 = α2 implies Z1 = Z2

Main issue is now to check that correspondence with graphs is not only static but also
dynamic, by defining a notion of reduction over labelled terms which preserves the sharing
property and corresponds to the natural graph reduction.

The development of a name ⇛ is defined as follows: given terms T, T ′, write T ⇛ T ′ if
there exists a label l such that T ′ is the result of the complete development of the redexes of T
with name l (all developments are equivalent by Finite Developments Theorem 3.32).

4.0.1 Direct Contribution Lemma

For labels Γ = γ1...γn and ∆ = δ1...δm, note Γ ⊂ ∆ when the set inclusion {γ1, ..., γn} ⊆
{δ1, ..., δm} holds.

This section proves that a redex creating a second redex contributes directly to its name
(Direct Contribution Lemma 4.1). First step is to check that compound matching returns the
matchability witnesses of the pattern and the argument if needed (Lemmas 4.2 and 4.3). The
other intermediate step is to check that a redex creating a matchable form directly contributes to
its name, as well as a redex turning an undefined compound matching into a defined compound
matching (Lemma 4.4 and 4.6).

Lemma 4.1 (Direct Contribution Lemma). For any reduction T
R
−→ T ′, with redex R of name

Ω, if Rc is a redex of T ′ with name Ωc created by the reduction, then Ω ≺ Ωc.

35

Proof. Case on redex creation, with Labelled Creation Theorem 3.3:

T1. R′ = pΩq : Z ′. Thus Γ2
c = pΩq Γ3

c and Γc = Γ1
c pΩq Γ3

c . Hence Ω ≺ Ωc = αcΓc∆c.

T2. ′Rc ∩ θ 6= ∅. Thus Rc = (ΩLθM′Rc)
σ =

[

Ω, α0
c

]

: Zc. Name of Rc is Ωc =
[

Ω, α0
c

]

Γc∆c and
Ω ≺ Ωc.

T3. By Lemma 4.6, Ω ≺ ∆c. Thus Ω ≺ Ωc = αcΓc∆c.

T4. Same basic use of Lemma 4.6.

Lemma 4.2. If {{Y/[θ]X}}w = (∆, µ) then |Y | ⊂ ∆.

Proof. By induction on {{Y/[θ]X}}w:

• Case {{Y/[θ]α : Z}}w = α : {{Y/[θ]Z}}w. {{Y/[θ] Z}}w = (∆0, µ) with ∆ = α∆0. By
induction |Y | ⊂ ∆0. Then |Y | ⊂ α∆0 = ∆.

• Cases X = x̂ with x ∈ θ and X = [τ] P → B: result is (∆, µ) with ∆ = |Y |. Hence
|Y | ⊂ ∆.

• Case {{α : Z/[θ]X}}w = α : {{Z/[θ]X}}w. {{Z/[θ]X}}w = (∆0, µ) with ∆ = α∆0. By
induction |Z| ⊂ ∆0. Then |Y | = α|Z| ⊂ α∆0 = ∆.

• Case X = Y = x̂ with x 6∈ θ: |Y | = ε and thus |Y | ⊂ ∆.

• Case {{A1A2/[θ] P1P2}}w = {{A1/[θ]P1}}w D {{A2/[θ]P2}}s. {{A1/[θ]P1}}w = (∆1, µ1) with
∆1 ⊂ ∆. By induction |A1| ⊂ ∆1. Then |Y | = |A1A2| = |A1| ⊂ ∆.

• Case {{Y/[θ] X}}w = (|Y ||X|,⊥) is immediate.

Lemma 4.3. If {{Y/[θ]X}}s = (∆, µ) or {{Y/[θ] X}}w = (∆, µ) then |X| ⊂ ∆.

Proof. Similar to Lemma 4.2

Lemma 4.4. If X is not a data structure, X
R
−→ X ′ with R of name Ω and X ′ a data structure,

then Ω ≺ |X ′|.

Proof. By induction on X
R
−→ X ′, where X is not a data structure.

• Case X = [θ] P → B is impossible: X ′ would not be a data structure.

• Case X = T1T2
R
−→ T ′

1T2 = X ′ with T1
R
−→ T ′

1, where T1 is not a data structure. Since X ′

is a data structure, T ′
1 is a data structure. By induction hypothesis Ω ≺ |T ′

1|. Moreover
|X ′| = |T ′

1T2| = |T ′
1|. Thus Ω ≺ |X ′|.

• Case X = T1T2
R
−→ T1T

′
2 = X ′ with T1 not a data structure can not make X ′ a data

structure.

• Case X = α : Z
R
−→ α : Z ′ = X ′ with Z

R
−→ Z ′. Z is not a data structure, but Z ′ is. By

induction hypothesis Ω ≺ |Z ′|. But |X ′| = |α : Z ′| = α|Z ′|. Hence Ω ≺ |X ′|.

• Case X = R = α : ((Γ · [θ] P → B)A)
R
−→ X ′. The result has the form X ′ = pΩq : Z ′.

Thus |X ′| = pΩq |Z ′| and Ω ≺ |X ′|.

36

Corollary 4.5. If X is not a matchable form, X
R
−→ X ′ with R of name Ω and X ′ a matchable

form, then Ω ≺ |X ′|.

Proof. If X ′ is data structure, then apply Lemma 4.4. Suppose X ′ = Γ′ · [θ′] P ′ → B′, which is
the only other case. Then |X ′| = Γ′. X is not a matchable form, and can not have the form
Γ : x which can not be reduced. Thus X = Γ · (T1T2). Then X = Γ0α : (Γ1 · ([θ] P → B)T2)
where R = α : (Γ1 · ([θ] P → B)T2). Hence Γ′ = Γ′

0 pΩq Γ′
1 and Ω ≺ |X ′|.

Lemma 4.6. For any terms X, Y with {{Y/[θ] X}}p = wait, and R a redex of name Ω,

• If Y
R
−→ Y ′ and {{Y ′/[θ]X}}p = (∆, µ) then Ω ≺ ∆.

• If X
R
−→ X ′ and {{Y/[θ]X ′}}p = (∆, µ) then Ω ≺ ∆.

Proof. First notice that the base cases for {{Y/[θ]X}}p = wait are:

• X is a clipped term but not a matchable form.

• X is a clipped data structure and Y is a clipped term but not a matchable form.

Now by induction on {{Y/[θ]X}}p.

• Case {{Y/[θ]α : Z}}p = α : {{Y/[θ]Z}}p with {{Y/[θ] Z}}p = wait.

– If Y
R
−→ Y ′ with R of name Ω and {{Y ′/[θ]Z}}p = (∆, µ), by induction Ω ≺ ∆. In

this case {{Y ′/[θ]α : Z}}p = α : {{Y ′/[θ]Z}}p = (α∆, µ), and Γ ≺ α∆ still holds.

– The case where Z
R
−→ Z ′ is similar.

– Third case is the reduction of X = α : Z at the root: X
X
−→ X ′. In this case

X ′ = pΩq : Z ′, and {{Y/[θ]X ′}}p = pΩq : {{Y/[θ]Z ′}}p. Thus ∆ = pΩq ∆′ and Ω ≺ ∆.

• Cases X = x̂ with x ∈ θ and X = [τ] P → B do not result in wait.

• Case {{α : Z/[θ] X}}p = α : {{Z/[θ]X}}p is symmetrical of the first case.

• Case X = Y = x̂ with w 6∈ θ do not result in wait.

• Case {{A1A2/[θ] P1P2}}p = {{A1/[θ]P1}}w D {{A2/[θ]P2}}s. There are two subcases here:

– If {{A1/[θ]P1}}w = wait. Suppose A1
R
−→ A′

1 and {{A′
1/[θ]P1}}w = (∆1, µ1). By

induction Ω ≺ ∆1. Since ∆1 ⊂ ∆, conclusion Ω ≺ ∆ is immediate. Case P1
R
−→ P ′

1 is
similar.

– If {{A1/[θ]P1}}w = (∆1, σ1) and {{A2/[θ]P2}}s = wait, proof is similar.

• Other cases where X and Y are matchable forms do not result in wait.

• Base cases, as mentioned above.

– Case where X is a clipped term but not a matchable form. Reductions of Y do not

change anything. Suppose X
R
−→ X ′ with X ′ a matchable form. By Lemma 4.5,

Ω ≺ |X ′|. By Lemma 4.3 |X ′| ⊂ ∆, and thus Ω ≺ ∆.

37

– Case where X is a clipped data structure and Y is a clipped term but not a matchable
form. Reductions of X do not change anything. If Y is a variable, it can not be
reduced. Suppose Y = A1A2. Reductions in A2 can not change Y into a matchable

form. Then suppose A1
R
−→ A′

1, with A′
1 a data structure and Y ′ = A′

1A2. By
Lemma 4.4, Ω ≺ |A′

1|. By Lemma 4.2, |Y ′| ⊂ ∆. Moreover |A′
1| = |A′

1|A2 = |Y ′|,
and thus Ω ≺ ∆.

Lemma 4.7. For any X
R
−→ X ′ with redex R of name Ω, if α is a non initial label created in

X ′ (created occurrence, or residual of a different label), then Ω ≺ α.

Proof. Created occurrences of labels fall in two cases:

• Label pΩq at the root of the reduced redex. Then Ω ≺ pΩq.

• Distinguished labels of the term ⊥. They are initial and thus not concerned here.

A transformed label can only be of the form [Ω, β], with Ω ≺ [Ω, β].

4.0.2 Preservation of Sharing Theorem

A term T is said to enjoy the maximality property ▼ (noted ▼(T)) if for any subredex R
of name Ω and subterm α : Z in T , Ω 6 ≺+α.

Lemma 4.8. If ❙(T), ▼(T) and T ⇛ T ′, then ❙(T ′) and ▼(T ′).

Proof. T ⇛ T ′ is by development of all redexes of name Ω0.
Verification of ▼(T ′) : suppose there is a redex R′ with name Ω′ and a subterm α′ : Z ′ in T ′,
such that Ω′ ≺+ α′.

• If R′ is a residual of a redex R of T with name Ω, by Lemma 3.10 Ω = Ω′. Since ▼(T)
holds, α can not appear in T , and is created by reduction. For instance α = pΩ0q. Then
Ω ≺+

pΩ0q, with two possible cases:

– Ω = Ω0. But in this case R should have been contracted by the development of
redexes of name Ω0.

– Ω ≺+ Ω0 = ω1
0...ω

n
0 . There is a i in {1...n} such that Ω ≺+ ωi

0. Let R0 be a redex of
T with name Ω0. There exists a subterm of R0 of the form ωi

0 : Xi
0. Then Ω ≺+ ωi

0

breaks ▼(T).

The only other case for α is α = [Ω0, α0] and is similar.

• If R′ is created by the reduction, then by Lemma 3.3 Ω0 ≺ Ω ≺+ α, and in particular
Ω0 ≺+ α. Since ▼(T) holds, α can not appear in T but is created by the reduction. For
instance α = pΩ0q, then Ω0 ≺ Ω ≺+

pΩ0q. In particular Ω ≺+ Ω0 or Ω = Ω0. In any
case, Ω0 ≺+ Ω0, which is impossible. The only other case α = [Ω0, α0] is similar.

Verification of ❙(T ′): let α : X ′ and α : Y ′ be subterms of T ′. By case on the origin of both
labels α.

• If one is created but the other is a residual of itself:

– α is created in the development of Ω0, then by Lemma 4.7 Ω0 ≺ α.

– α coexists in T with redexes of name Ω0, thus Ω0 6≺+ α by ▼(T), and in particular
Ω0 6≺ α.

38

The two conclusions are in contradiction !

• If both are created, case on the creations:

– The label pΩ0q is created only at the root of the contractum R′
0 of a redex R0 of

name Ω0: if α = pΩ0q then α : X ′ = α : Y ′ = R′
0 and in particular X ′ = Y ′.

– The label [Ω0, α0] is created in a function body during substitution, and replaces a
label α0. α : X ′ and α : Y ′ are residuals of subterms α0 : X and α : Y of T . By ❙(T)
they are affected by the same substitution, and still by ❙(T) X = Y . Thus X ′ = Y ′.

• If both are residuals of themselves: there are subterms α : X and α : Y in T which are
ancestors of α : X ′ and α : Y ′, with X = Y by ❙(T). Cases on the residuals:

– If α : X and α : Y are disjoint from developped redexes, they are equals to their
residuals α : X ′ and α : Y ′. In this case Y ′ = Y = X = X ′.

– If α : X is affected by an external substitution: R0 = α0 : ((Γ0 · [θ0] P0 → B0)A0)
with α : X subterm of B0. If θ0#X, α : X ′ = α : X, which is the same as the
previous case. If θ0 ∩ fv(X) 6= ∅, the residual of α is [Ω0, α], which is not the case.
Case for α : Y symmetrical.

– If α : X is a subterm of A0 which is in the codomain of σ0, its residuals are all equal
to α : X and as previously X ′ = X. Same holds for α :.

– If α : X contains one or more redex with name Ω0. If α : X is itself such a redex,
it is reduced by the development and has no residual. Suppose these redexes are
strict subterms: they are in particular subterms of X. Thus X ⇛ X ′. Similarly
Y ⇛ Y ′ and by ❙(T) X = Y . Hence by uniqueness of the complete development,
X ′ = Y ′.

Theorem 4.9 (Preservation of Sharing Theorem). Let T ⇛∗ T ′ with T an initial term. Then
T ′ enjoys the sharing property.

Proof. The initial term T enjoys the sharing property and the maximality property. A straight-
forward induction on the length of T ⇛∗ T ′ using Lemma 4.8 shows that T ′ also enjoys these
two properties.

Outcome of this part is a graph implementation of weak pure pattern calculus featuring
optimal sharing, which corresponds to fully lazy sharing for PPC : when a function body is
instantiated, the only modified labels (which means the only copied nodes!) correspond to the
substitution slice.

5 The Result of Optimality

Now that an implementation model is defined, this section characterizes a family of strategies
over graphs (resp. labelled terms) which always normalize in a minimal number of reduction
steps (resp. developments of names). A straightforward corollary will be that these strategies
are correct: whenever a normal form exists (unique, by Confluence Theorem 3.12), they reach it
(with a minimal number of steps). The first part is informal and puts the focus on the following
message: all the tough work toward an optimality result has already been done in previous
sections. A formal statement comes next.

A redex R in a term T is said to be needed when any reduction −→ρ : T → T ′ to a normal
form T ′ contracts R or at least one of its residuals. A needed strategy reduces only needed
redexes.

39

An axiomatic framework making needed strategies optimal is given in [GK96]. Ingredients
are: a notion of residual, a family relation, a contribution relation over families (families are
the equivalence classes of the family relation), and a set of terms considered as results, each
satisfying its own group of axioms. This kind of result is mostly inapplicable if one doesn’t know
how to find such abstract notions in the concrete system, but the labels of LWPPC provide a
solution:

• The extant notion of residual is used (Section 2).

• Two redexes are defined to be in the same family if and only if they have the same name
(hence each family is assimilated to a name).

• Define the abstract contribution relation as the extant direct contribution relation on
labels (Section 3.2).

To form a Deterministic Family Structure (that is the name of the abstract concept), these
definitions have to satisfy finite development properties (Finite Development Theorem 3.32),
finite family developments (deduced from Termination Theorem 3.24), and properties relating
contribution relation to creation of redexes (deduced from Redex Stability Lemma 3.10 and a
converse property detailed below).

5.0.1 Formal Account of Determinisic Family Structures

A Deterministic Residual Structure [GK96] is a rewriting system equiped with a residual relation
satisfying the following properties:

• [FD] All developments are terminating; all co-initial complete developments of the same
set of redexes end at the same term; and residuals of a redex under all complete co-initial
developments of a set of redexes are the same.

• [Acyclicity] Let r and re be two distinct redexes of a term t such that r erases re. Then
re does not erase r. (r erases re means that re has no residual after the reduction of r)

Lemma 5.1. LWPPC equiped with its residual relation is a Deterministic Residual Structure

Proof. Axiom FD is the Finite Development Theorem 3.32. Acyclicity is satisfied with the
following remark: in LWPPC if a redex r erases a redex re, then re is a strict subterm of r.
The subterm relation being acyclic, there is no possible cross-erasure.

Families are linked to history. They are defined on redexes with a full recording of all
past reduction in the whole term (that means the whole sequence of reduction). The redex
with history −→ρ ;R is the redex R at the end of the sequence of reduction −→ρ . The notion of
family is formalized by an equivalence relation ≃ on redexes with history, which relates only
coinitial histories (with same source term). Its equivalence classes are called families and
noted Fam(−→ρ ;R).

An abstract notion ≃z of zig-zag which represents minimal requirements for the family
relation ≃ is defined as follows: let −→ρ1; R1 and −→ρ2; R2 be two coinitial redexes with history.
Suppose −→ρ1 has no residual after −→ρ2 (which means that any task of −→ρ1 is fulfilled or erased by
−→ρ2). Let −→ρ2/

−→ρ1 be a complete development of the residuals of −→ρ2 after −→ρ1. If R2 is a residual
of R1 after −→ρ2/

−→ρ1, then −→ρ1;R1 ⊲
−→ρ2;R2 (R2 is a copy of R1). The relation ≃z is the least

equivalence relation containing ⊲.
A Deterministic Family Structure [GK96] is a Deterministic Residual Structure equiped
with a family relation ≃ over redexes with history (whose equivalence classes are called families)
and a contribution relation →֒ over families such that the following axioms are satisfied:

40

• [Initial] For any R1, R2 distinct redexes, Fam(∅;R1) 6= Fam(∅;R2).

• [Zig-zag] ≃z ⊆ ≃

• [FFD] Any reduction sequence that contracts redexes of a finite number of families is
finite.

• [Creation] If F →֒ Fam(−→ρ ;R) then −→ρ contracts at least one redex in F .

• [Contribution] If after a sequence −→ρp the reduction ρ of a redex R creates a redex Rc,
then Fam(−→ρp;R) →֒ Fam(−→ρpρ;Rc).

5.0.2 Correctness & Optimality Corollary

Lemma 5.2. Suppose M is a matchable form, with |M | = α1...αn. Then for any i ∈ {1...n},
M has a subterm of the form αi : Z.

Proof. Straightforward induction on the definition of |M |.

Lemma 5.3. Suppose {{A/[θ]P}}p = (δ1...δn, µ). Then for any i ∈ {1...n}, A or P has a
subterm of the form δi : Z.

Proof. Straightforward induction on the definition of {{A/[θ]P}}p, with Lemma 5.2.

Lemma 5.4. Let R be a redex of name Ω = ω1...ωn. For any i ∈ {1...n}, R has a subterm of
the form ωi : Z.

Proof. Note R = α : (Γ · ([θ] P → B)A) with {A/[θ]P} = (∆, µ). Then Ω = αΓ∆. If ωi is α or
is in Γ, the result is immediate. If ωi is in ∆ then by Lemma 5.3 A or P has a subterm of the
form ωi : Z.

Lemma 5.5 (Direct Contribution Converse). Let T be an initial term. Suppose −→ρ : T →
T ′, with R′ a redex of T ′ with name Ω′. Suppose there exists a redex of name Ω satisfying
Ω ≺ Ω′. Then −→ρ contracts at least one redex R with name Ω.

Proof. Since Ω ≺ Ω′, Ω′ = ω′
1...ω

′
n and there is a i such that ω′

i = pΩq or ω′
i = [Ω, α]. Hence by

Lemma 3.6 a label ω′
i can be created only by reduction of a redex of name Ω. By Lemma 5.4,

the redex R′ has a subterm of the form ω′
i : Z and since T is an initial term this label ω′

i has
effectively been created by −→ρ . Thus −→ρ contracts a redex of name Ω.

Define ≃ as: −→ρ1;R1 ≃ −→ρ2; R2 if and only if the redexes R1 and R2 have the same name. This
is obviously an equivalence relation, whose equivalence classes (the families) are in bijection
with redex names. Then the direct contribution relation on labels ≺ extends to families.

Theorem 5.6. LWPPC equipped with ≃ and ≺ is a Deterministic Family Structure.

Proof.

• In an initial source term all redexes have different names, and hence are in different
families.

• Suppose −→ρ1;R1 ⊲
−→ρ2; R2. In particular R2 is a residual of R1 after some reduction. Hence

by Redex Stability Lemma 3.10 they have the same name, and thus −→ρ1;R1 ≃ −→ρ2;R2. Since
≃ is an equivalence relation containing ⊲, by definition of ≃z axiom FFD is satisfied.

• Let F be a finite set of families. Define N as the (finite) set of names of families of F .
By Termination Theorem 3.24 →N is terminating. Hence axiom FFD holds.

41

• Suppose T
−→ρ
−→ T ′ ρ0:R0

−−−→ T ′′ with ρ0 creating Rc in T ′′, let −→ρ1;R1 be a redex with history
in Fam(−→ρ ρ0;Rc). Note Ω0 and Ω1 the names of redexes R0 and R1. By definition of
families, Rc has also the name Ω1, and thus by Direct Contribution Lemma 4.1, Ω0 ≺ Ω1.

Hence by Lemma 5.5 −→ρ1 has the form
−→
ρ1
1ρ
−→
ρ2
1 where ρ contracts a redex R of name Ω0, with

by definition
−→
ρ1
1;R ∈ Fam(−→ρ ρ0;R0). Hence the Contribution axiom is satisfied.

• Creation axiom follows immediately Direct Contribution Lemma 4.1.

Finally, the set of normal forms is an easy example of stable set of results, and hence results
of [GK96] apply.

Corollary 5.7. Correctness & Optimality. Let T be an initial normalizable term. Then
any needed reduction of ⇛ reaches the (unique) normal form with a minimal number of steps.

6 Related Works

The approach used in this paper to derive a graph implementation owes a lot to Blanc, Lévy and
Maranget, who described a labelled weak λ-calculus enjoying the sharing property [BLM07].
Their work is generalized here in several ways. First the method used to derive a labelling
system is guided by the notion of contribution. This approach enables a slight simplification of
their labels (only two syntactic constructs versus three, and also less indirections). Secondly the
approach is extended to get results on strategies and not only on the representation of programs.
Last but not least, the study is done on a pattern calculus which is a strict generalization of
λ-calculus.

Labelled terms representing graphs and results of correctness and optimality are studied by
Maranget in [Mar92] for orthogonal first-order term rewriting systems, and even applied to pat-
tern matching à la ML through compilation into supercombinators. However, this compilation
scheme makes use of the static nature of patterns in Maranget’s framework, and hence can not
be applied to dynamic patterns. Moreover, such compilation treats pattern matching a priori
and prevents the direct study of its history in a higher-order setting. Last, please notice that the
labelling systems in [Mar92] implement only the sharing of lazy evaluation, and that something
new is needed for fully lazy evaluation, as suggested by [BLM07]. Indeed full laziness is closely
related to the particular weak reduction used here, which asks for a particular treatment of
the substitution slice of each contractum. This can be done either by using as many rules as
there are possible substitution slices (that means infinitely many), or by redefining a labelled
substitution (which is the solution used here).

A lot of results on confluence, developments, descendants and origin tracking also exist
in general (higher-order) rewriting frameworks [Mar92, Ter03], and an encoding of PPC into
Combinatory Reduction Systems (CRS) in particular is suggested by Klop, van Oostrom and
de Vrijer in [KvOdV08]. Unfortunately this encoding has one major drawback from the im-
plementational point of view. Indeed it is based on a rule scheme that generates one rule for
each term acceptable as a pattern (that is for successful matchings) and has to be extended
with more complex schemes for matching failures. This enumeration of all possible matchings
leads to a CRS with infinetely many rules which can be useful for understanding key notions of
origins [Ter03] and providing immediate proofs of some results (such as confluence [vOvR94] or
finite family developments [Bru08]), but can not be used as such for implementation. Moreover,
remark that infinitely many rules yield an infinite alphabet of rule names for labelling, whereas
in LWPPC all is built with one rule and the finite set of labels that decorates the original term.

More generally, a term (or a higher-order) rewriting system asks for an infinite enumeration
of rules to model matching against all possible patterns. Each rule has a fixed shape which

42

determines the relevant parts of the argument and the way labels are handled. On the other
hand, pattern matching calculi such as PPC use for all patterns a unique matching algorithm
which identifies dynamically the parts of the pattern and of the argument that are relevant for
matching. This leads to a new view on labelling which is addressed in this paper.

The optimality result could also have been proved in a more standard way [Mar91, Yos94],
namely by stating a one-step diamond property for the development of names in LWPPC (which
can be proved using the same central result: Finite Developments Theorem 3.32). The abstract
approach by Glauert and Khasidashvili [GK96] is preferred here for its modularity. It has
already been successfully applied on wide classes of higher-order rewriting systems, and could
work on an encoding of PPC by using general results of [Ter03, Bru08]. An alternative method
is proposed here, which is a direct reuse of the general results on LWPPC (and hence is more
self-contained).

Also notice that PPC has already an implementation, known as the programming language
Bondi developed by Jay [Bon] [Jay09, Part 3]. The graph implementation presented here could
help improving the efficiency of the Bondi evaluator by introducing more sharing.

7 Conclusion and Prospects

Enriched pattern matching paradigms allowing dynamic patterns, such as PPC , improve ex-
pressive power and usability of functional programming languages by offering path and pattern
polymorphisms to the programmer. Unfortunately they also invalidate usual optimizations per-
formed by compilers on functions defined by cases, which is a severe drawback when it comes
to implementation.

This paper lays the foundations of a sharing theory for these frameworks, with the goal
of overcoming this difficulty. Originality of this work is in the way a careful analysis of the
contribution relation between redexes can be used to derive a graph implementation as well
as optimal reduction strategies. This work is also the first application of such an analysis to a
pattern matching framework based on a concise definition of matching instead of an enumeration
of all possible matchings. Difficulties specific to this feature such as non-local contributions and
the handling of failures are tackled.

The first result is a graph implementation featuring fully lazy sharing (Preservation of
Sharing Theorem 4.9), which combines a fairly good level of sharing with the possibility of
an efficient implementation. This result is associated with a description of reduction strategies
that are correct and efficient (Correctness & Optimality Corollary 5.7).

However, this paper is just a first step toward a more ambitious program: as mentioned
in the introduction the aim of this work is to provide sharing mechanisms that share pattern
matching steps. This kind of sharing is limited in the current graph implementation, due to
the implicit treatment of pattern matching: in PPC each matching is performed globally as an
atomic operation, and can be shared only as a whole. This hides the fact that any matching is
composed of several elementary matching steps which could be shared individually.

In order to get this finer control, the technology presented in this paper has to be extended
to the Explicit Pure Pattern Calculus [Bal08]: a variant of PPC with explicit pattern match-
ing, where all matching steps are visible. In this extended framework every single piece of
a pattern could be shared independently of the other parts, and if two patterns in the same
function share some structure, then corresponding pattern matching steps could also be shared!
Furthermore, to ensure that sharing is not lost along sequences of pattern matching cases, an
explicit alternative case operator has to be added to the calculus (as it is done in the Extension
Calculus [Jay09]). A third point that has to be addressed is the analysis of the consequences
of the requirement of a deterministic strategy for pattern matching operations. Few strategies

43

are available for now, but explicit matching will enrich them.
This allows to hope for a functional programming language which would feature dynamic

patterns and still have an efficient implementation: the sharing model could be used directly to
manage pointers and copies in an efficient graph implementation such as [SW04], or to guide
the design of an advanced implementation by interaction nets in the style of [Mac04, FMSW09].

The explicit matching framework will enrich also the optimality result. Firstly, an optimal
strategy taking into account every single pattern matching operation is a way to manage all
the low-level tests induced by functions defined by multiple cases. Secondly, whereas PPC only
allows an abstract definition of needed strategies, some of them can be effectively described as
variants of leftmost-outermost in the explicit framework.

8 Acknowledgments

Special thanks to my advisor Delia Kesner. Many thanks also to Luc Maranget, Zurab Khasi-
dashvili, Maribel Fernández and Barry Jay for comments and suggestions on this work, and
feedback on my project.

References

[AG98] A. Asperti and S. Guerrini. The optimal implementation of functional programming lan-
guages. Cambridge University Press, 1998.

[Bal08] T. Balabonski. Calculs avec motifs dynamiques, Master’s thesis, Université Paris Diderot,
2008. Available as http://www.pps.jussieu.fr/~balabons/Recherche/Balabonski_

Rapport_M2.pdf.

[BLM07] T. Blanc, J.-J. Lévy, and L. Maranget. Sharing in the Weak Lambda-Calculus Revisited.
In Reflections on Type Theory, Lambda Calculus and the Mind Essays Dedicated to Henk
Barendregt on the Occasion of his 60th Birthday, December 2007.

[Bon] Bondi programming language. http://bondi.it.uts.edu.au/.

[Bru08] S. Bruggink. Equivalence of Reductions in Higher-Order Rewriting. Ph.D. thesis, 2008.

[ÇH98] N. Çaǧman and J. R. Hindley. Combinatory weak reduction in lambda calculus. Theor.
Comput. Sci., 198(1-2):239–247, 1998.

[Cir00] H. Cirstea. Rewriting Calculus: Foundations and Applications. Ph.D. thesis, 2000.

[DLLL05] D. Dougherty, P. Lescanne, L. Liquori, and F. Lang. Addressed Term Rewriting Systems:
Syntax, Semantics, and Pragmatics: Extended Abstract. ENTCS, 127(5):57–82, 2005.

[FM01] F. Le Fessant and L. Maranget. Optimizing pattern matching. In ICFP, pages 26–37, 2001.

[FMSW09] M. Fernández, I. Mackie, S. Sato, and M. Walker. Recursive functions with pattern matching
in interaction nets. ENTCS, 253(4):55–71, 2009.

[GK96] J. Glauert and Z. Khasidashvili. Relative Normalization in Deterministic Residual Struc-
tures. In CAAP, pages 180–195, 1996.

[HG91] C.K. Holst and D.K. Gomard. Partial evaluation is fuller laziness. SIGPLAN Not.,
26(9):223–233, 1991.

[HJ03] R. Hinze and J. Jeuring. Generic haskell: Practice and theory. In Generic Programming,
volume 2793 of LNCS, pages 1–56, 2003.

[Jay04] B. Jay. The pattern calculus. In TOPLAS, volume 26(6), pages 911–937, 2004.

[Jay09] B. Jay. Pattern Calculus: Computing with Functions and Data Structures. Springer, 2009.

44

[JK06] B. Jay and D. Kesner. Pure pattern calculus. In ESOP, LNCS 3942, pages 100–114, 2006.

[JK08] B. Jay and D. Kesner. Patterns as first-class citizens. Technical report, 2008. Available as
http://hal.archives-ouvertes.fr/hal-00229331/fr/.

[JK09] B. Jay and D. Kesner. First-class patterns. J. Funct. Programming, 19(2):191–225, 2009.

[Jon87] S. Peyton Jones. The Implementation of Functional Programming Languages. Prentice-Hall,
Inc., 1987.

[KvOdV08] J. W. Klop, V. van Oostrom, and R. de Vrijer. Lambda calculus with patterns. TCS,
398:16–31, 2008.

[Lé78] J.-J. Lévy. Réductions correctes et optimales dans le lambda-calcul. Ph.D. thesis, 1978.

[Lé80] J.-J. Lévy. Optimal reductions in the lambda-calculus. In To H.B. Curry: Essays on
Combinatory Logic, Lambda Calculus and Formalisms, pages 159–191, 1980.

[Mac04] I. Mackie. Efficient lambda-evaluation with interaction nets. In RTA, pages 155–169, 2004.

[Mar91] L. Maranget. Optimal Derivations in Weak Lambda-calculi and in Orthogonal Terms
Rewriting Systems. In POPL, pages 255–269, 1991.

[Mar92] L. Maranget. La stratégie paresseuse. Ph.D. thesis, 1992.

[Mar08] L. Maranget. Compiling pattern matching to good decision trees. In ML, pages 35–46, 2008.

[Sin08] F.-R. Sinot. Complete laziness: a natural semantics. ENTCS, 204:129–145, 2008.

[SW04] O. Shivers and M. Wand. Bottom-up β-reduction: Uplinks and λ-DAGs. Technical Report
RS-04-38, BRICS, December 2004.

[Ter03] Terese. Term Rewriting Systems. Cambridge University Press, 2003.

[vOvR94] V. van Oostrom and F. van Raamsdonk. Weak orthogonality implies confluence: the higher-
order case. In LFCS’94, pages 379–392, 1994.

[Wad71] C. P. Wadsworth. Semantics and Pragmatics of the Lambda Calculus. Ph.D. thesis, 1971.

[Yos94] N. Yoshida. Optimal reduction in weak-λ-calculus with shared environments. Journal of
Computer Software, 11(5):2–20, September 1994.

45

