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In this technical report, we give a detailed formulation of the force curve segmentation problem based on
the fitting of the curve by a piecewise polynomial. The segmentation algorithm is a discrete search in which
the unknowns are the positions Dj, j = 1, . . . , k of the discontinuity points. We first formulate the problem as
the minimization of a least-square cost function with respect to D = [D1, . . . , Dk] ∈ Rk. Then, we describe the
structure of the proposed optimization algorithm including the update of the list of discontinuity positions D

when their number k increases.

Let us first introduce the main notations. The force curve to be segmented is a discrete signal (zi, Fi), i =
1, . . . , n where n stands for the number of data samples. We denote by Dj, j = 1, . . . , k the discontinuity points,
sorted in the ascending order (D1 < D2 < . . . < Dk). A discontinuity position is actually a transition between
two consecutive samples zi−1 and zi (e.g., a jump in the curve). We choose to define a discontinuity position
Dj as the z-value of the sample on the right: Dj = zi (see Fig. 1).

Setting k discontinuity positions leads to a series of contiguous intervals [D0, D1), [D1, D2), . . . , [Dk, Dk+1]
(where D0 , z1 and Dk+1 , zn are set to the minimal and maximal zi values) whose union yields the whole
interval [z1, zn]. Each interval [Dj−1, Dj) is right open, the last sample which belongs to this interval being
the value zi−1 which is preceding Dj . Dj = zi is the lower bound of the next interval [Dj , Dj+1). Finally, we
denote by Ij the set of indices i for which zi belongs to the j-th interval [Dj , Dj+1): i ∈ Ij is equivalent to
Dj 6 zi < Dj+1.

1 Piecewise polynomial approximation

We first assume that the set of discontinuity positions D ∈ Rk is given, and we define the quality of approx-
imation E(D) as the least squared error obtained with a piecewise polynomial of degree r (r is given). Then,
this definition will allow us to formulate the force curve segmentation problem as a minimization problem.

1.1 Known discontinuity positions

Assume that the discontinuity points D are given. On the j-th interval [Dj , Dj+1), the data {(zi, Fi), i ∈ Ij}
are being smoothed by a polynomial of degree r.

We denote by Fj(z; aj) =
∑r

l=0
al

jz
l the polynomial yielding the best approximation in the least-square

sense:

aj = argmin
a∈Rr+1

∑

i∈Ij

[

Fi − Fj(zi; a)
]2

,
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Figure 1: Definition of the discontinuity points Dj. Each “discontinuity point” is actually related to a transition
between two consecutive samples zi−1 and zi of the signal, and Dj is set to zi. The plain vertical bars refer
to the Dj positions (beginning of the j-th interval) while the dashed vertical bars refer to the samples zi−1

preceding the Dj positions (end of the (j − 1)-th interval). When the Dj positions are given, the signal is
smoothed on each interval [Dj , Dj+1) independently.

and by

Ej =
∑

i∈Ij

[

Fi − Fj(zi; aj)
]2

the associated squared error. Finally, the piecewise polynomial approximation of degree r is defined by the
series of polynomials Fj(z; aj) on the k + 1 intervals I0, . . . , Ik and the global approximation error reads

E(D) =

k
∑

j=0

Ej . (1)

Notice that the polynomial coefficients aj can be easily computed by linear regression:

aj = (At
jAj)

−1
A

t
jFj (2)

where Aj is the Vandermonde matrix of size Card [Ij ]× (r + 1) whose rows are formed of vectors [1, zi, . . . , z
r
i ]

for all i ∈ Ij and Fj is the vector of size Card [Ij ] × 1 gathering the values Fi, i ∈ Ij .

1.2 Research of the discontinuity positions

We formulate the estimation of the discontinuity positions Dk as the following optimization problem:

D
⋆ = argmin

D

E(D), (3)

where D
⋆ stands for the optimal solution, i.e., the set of k discontinuity points yielding the least squared error.

It is important to notice that (3) is actually a discrete optimization problem: all discontinuity positions Dk are
equal to one of the n positions zj: ∀j, Dj ∈ {z1, . . . , zn}.

Finding the optimal solution D
⋆ requires to perform an exhaustive search by testing all possible configu-

rations of k discontinuity positions and computing the cost E(D) for each configuration. This strategy cannot
be carried out in a reasonable computation time (less than 1 minute) for large signals (thousands of samples).
Instead, we develop a sub-optimal optimization algorithm which allows for a fast implementation.
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Inputs: data signal {zi, Fi}, polynomial degree r, number of iterations K.
Set k = 0, D = ∅.
For k = 1 to K,

Search for the k-th discontinuity position Dk.

Do D = D ∪ {Dk}.

Sort D in the ascending order.

Update the list of intervals I0, . . . , Ik.

Update the list of coefficients aj and the global approximation error E(D) according to (1).

End For.
Outputs: K discontinuity points D = {Dj, j = 1, . . . , K}, K + 1 polynomials Fj(z; aj), j = 0, . . . , K.

Table 1: Segmentation algorithm (structure). The critical task is the research of the next discontinuity position.
It is also the most time consuming.

For all i such that zi /∈ D,

Test Dk = zi: compute E(D ∪ {zi}).

End For.

Set Dk according to (4).

Table 2: Research of the next discontinuity position.

2 Proposed segmentation algorithm

2.1 Principle

The principle of the algorithm is to iteratively increase by one element the list of discontinuity positions. At the
beginning, this list is empty. Then, the algorithm sequentially includes a new discontinuity into the list, and
then refines the piecewise-smooth approximation whenever the list is modified by one element. The structure
of the algorithm is presented in Table 1. For simplicity reasons, the stopping condition consists of a maximal
number of K iterations (the use of another stopping condition is discussed in paragraph 2.3 below). As output,
the algorithm yields a sequence of K discontinuity positions D1, . . . , DK and the polynomial coefficients aj on
each interval (polynomial approximation of the force curve for zi ∈ [Dj , Dj+1)).

In this algorithm, the key issue is to select the next discontinuity point when the list of discontinuity points
has to be increased by one element. We detail this research in the following paragraph.

2.2 Search for the next discontinuity position

At a given iteration k, k − 1 discontinuities have already been included (D ∈ Rk−1). The next position to be
included into the list is defined by:

Dk = zik
where ik ∈ argmin

{i, zi /∈D}

E(D ∪ {zi}). (4)

In practice, Dk is computed in two steps:

1. first, all possible inclusions D∪{zi} are tested (for all1 positions zi which have not already been included
in D). For each trial, the approximation error E(D ∪ {zi}) is computed;

2. then, the sample zik
yielding the least error is selected (Dk = zik

).

1Actually, the positions zi which are too close to an existing discontinuity position Dj must not be considered: if an interval
Ij contains less than r + 1 samples, fitting a polynomial of degree r is not possible in this interval since the linear system (2) is
singular.
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If k = K or if E(D)/n 6 Emin,

Exit from the segmentation loop.

End If.

Table 3: Alternative stopping condition relying on a threshold Emin on the mean approximation error. K is an
upper bound on the possible number of desired discontinuities.

Table 2 summarizes this research. Once an inclusion is performed, the list of discontinuity points is updated
(D is sorted in the ascending order) and the list of intervals Ij is updated as well. Actually, all intervals are
unchanged except the interval containing Dk which is being bisected.

When computing the new position Dk, all errors E(D∪{zi}) have to be computed for all possible inclusions
(inclusion tests). Numerically, this task is the most expensive in an iteration of the segmentation algorithm.
However, one can easily implement a fast algorithm by taking into account the fact that for each insertion
trial D ∪ {zi}, the piecewise polynomial which fits the data is unchanged in all intervals Ij except for both
sub-intervals containing zi. Thus, the cost of a discontinuity insertion trial amounts to two polynomial fitting
operations. Similarly, the approximation errors Ej are unchanged except for the two (new) sub-intervals.

2.3 Practical settings

Let us discuss the practical settings, namely the setting of the desired number of discontinuity points. A first
possibility is to set a maximal number (K discontinuity points are being inserted: see Table 1). Setting K is
done manually by the user, e.g., after viewing the signal and counting the number of discontinuity points. An
alternative and more automated stopping condition consists in setting a threshold on the mean approximation
error E(D)/n (i.e., the average of the squared error [Fi−Fj(zi; aj)]

2 for all samples i). If the mean approximation
error is lower than Emin, then the algorithm terminates.

This stopping condition is stated in Table 3. When processing experimental force curves, we set the threshold
Emin to a ratio of the empirical variance of the noise (vn), e.g., Emin = vn or 1.5 vn. In both approach and
retraction cases, vn can be easily estimated since there are flat regions at the end of the curve, with only noise
samples.
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