

Humus profiles under main vegetation types in a rock savanna (Nouragues inselberg, French Guiana)

Charlotte Kounda-Kiki, Anne Vaçulik, Jean-François Ponge, Corinne Sarthou

▶ To cite this version:

Charlotte Kounda-Kiki, Anne Vaçulik, Jean-François Ponge, Corinne Sarthou. Humus profiles under main vegetation types in a rock savanna (Nouragues inselberg, French Guiana). Geoderma, 2006, 136 (3-4), pp.819-829. 10.1016/j.geoderma.2006.06.007 . hal-00508381

HAL Id: hal-00508381 https://hal.science/hal-00508381

Submitted on 3 Aug 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Humus profiles under main vegetation types in a rock savanna (Nouragues inselberg,
2	French Guiana)
3	
4	Charlotte Kounda-Kiki, Anne Vaçulik, Jean-François Ponge [*] and Corinne Sarthou
5	
6	Muséum National d'Histoire Naturelle, CNRS UMR 5176, 4 Avenue du Petit Château, 91800
7	Brunoy, France
8	
9	Abstract
10	
11	The aim of our study was to describe succession related changes in humus profiles on
12	moderate slopes of a tropical inselberg (Nouragues, French Guiana). Nine humus profiles
13	were collected in a stratified manner under two main communities on well-drained sites:
14	carpets of Pitcairnia geyskesii (Bromeliaceae) and shrub thickets of Clusia minor
15	(Clusiaceae), the latter including two stages of its dynamic development. The 53 sampled
16	layers were analysed by an optical method, the volume ratio of 109 classes of litter/humus
17	components being quantified by a count point method. Correspondence analysis (CA)
18	revealed marked differences among humus forms. Pitcairnia carpets were characterized by
19	the dominance of cyanobacteria which formed crusts with low faunal activity, except when
20	they were colonized by enchytraeid worms. With advancing succession, we observed that leaf
21	litter did not accumulate but rather was incorporated into organo-mineral excrements of
22	macro-invertebrates under C. minor. The late developmental stage of Clusia thickets,

24 undecayed litter and near absence of organo-mineral aggregates. The humus form varied from

characterised by the establishment of Myrcia saxatilis (Myrtaceae), showed a thick layer of

^{*} Fax: +33-1-60479213. *E-mail address:* jean-francois.ponge@wanadoo.fr

1	mor in cyano-bacterial crusts to tropical moder (with a few mull features) in Clusia thickets,
2	but comparisons among humus profiles revealed more complex successional processes than
3	expected on the basis of the composition of plant and soil animal communities.
4	
5	Keywords: Humus form; Micromorphology; Tropical soils; Rock savanna
6	
7	1. Introduction
8	
9	Despite the widely reported lack of organic matter and nutrients in tropical soils, due
10	to rapid mineralization of leaf and root litter and intense leaching (Lavelle, 1984; Lavelle et
11	al., 1993), huge accumulations of organic matter can be observed on rocky substrates and
12	nutrient-depleted sandy soils (Lips and Duivenvoorden, 1996; Loranger et al., 2003).
13	
14	In French Guiana, inselbergs in the form of granite outcrops rise abruptly from the
15	surrounding rain forest (Bremer and Sander, 2000). They constitute isolated islands of a
16	special type of vegetation restricted to this peculiar substrate. Unique plant communities
17	occur on these inselbergs, including predominantly evergreen and sclerophyllous shrubs,
18	belonging to Clusiaceae, Myrtaceae and Bombacaceae (Sarthou and Villiers, 1998).
19	
20	On the basis of earlier studies on vegetation types and soil communities (Sarthou and
21	Grimaldi, 1992; Sarthou and Villiers, 1998; Vaçulik et al., 2004; Kounda-Kiki et al., 2004),
22	we studied the variation in the composition of humus horizons along a succession sequence
23	on the Nouragues inselberg. Our aim was to describe in detail the composition of these
24	superficial organic soils (Hambler, 1964; Sarthou and Grimaldi, 1992; Bremer and Sander,
25	2000) and to understand what happens during the development of cryptogamic then

phanerogamic vegetation. *Pitcairnia geyskesii* L.B. Smith (Bromeliaceae, herb) and *Clusia minor* L. (Clusiaceae, shrub) communities represent two seral stages of a low vegetation called rock savanna, which is established on moderate slopes (Sarthou, 1992). Within the *Clusia* community, two sub-stages can be distinguished, the one represented by *C. minor* only, the other by the late addition of *Myrcia saxatilis* (Amshoff) McVaugh (Myrtaceae) and several other woody species.

7

8 The successional development of humus profiles was analysed by studying different 9 members of a successional sere. Results were statistically analysed by Correspondence 10 Analysis (Greenacre, 1984).

- 11
- 12 **2. Materials and methods**
- 13

15

16 The field work was carried out at the Nouragues inselberg in French Guiana (411 m 17 above sea level), which protrudes from a plateau in the Nouragues natural reservation (4°5'N 18 and 52°42'W). The inselberg is a tabular outcrop of Caribbean granite, of pinkish monzonitic-19 type, containing on average 27% potassium-feldspar (orthoclase) and 37% plagioclase, along 20 with 33% quartz as coarse-grained crystals and 2% accessory minerals (pyroxene, corundum, 21 apatite) (Grimaldi and Riéra, 2001). Whole-rock chemical analysis (Sarthou, 1992) shows that 22 the granite is highly siliceous (76.4% SiO₂) and rich in alkalis (4.6% K₂O, 4.2% Na₂O). The 23 climate is tropical humid, with a dry season from July to November and a wet season from 24 December to June that is interrupted by a very short dry period in March. Mean annual 25 precipitation is 3000 mm. The daily temperature varies from 18 to 55°C and the daily air

^{14 2.1.} Study site

humidity from 20 to 100% (Sarthou, 1992). The temperature of the bare rock surface may 1 reach 75°C in the dry season. Most of the surface of the granitic outcrop is covered by 2 3 cyanobacteria (Sarthou et al., 1995). The bromeliad P. geyskesii is the most typical plant of 4 the inselberg. This epilithic species (30-50cm tall) always forms dense carpets, covering low 5 to medium slopes as well as gullies and shallow depressions (Sarthou and Villiers, 1998). The 6 C. minor (Clusiaceae) community is also widespread (Sarthou, 2001; Sarthou et al., 2003). It 7 represents the shrub vegetation unit of the rock savanna, forming dense thickets of 2-8 m tall 8 shrubs. This woody vegetation occurs in depressions and slopes that have sandy and organic 9 soils, respectively. On moderate slopes a succession takes place, from an early stage 10 characterized by cyanobacterial crusts and herbaceous vegetation (Pitcairnia), to mid and late 11 stages which can be identified in shrub (Clusia) thickets (Sarthou, 2001). C. minor establishes 12 from seeds within carpets of *P. geyskesii* and subsequently spreads vegetatively, in the end 13 developing into pure C. minor thickets with an outer circle of herbaceous vegetation. Various 14 woody species, among which M. saxatilis (Myrtaceae) is the most important one, 15 progressively enrich C. minor thickets, without replacing it, forming the late stage of 16 development of shrub vegetation. Intense runoff and violent storms, combined with internal 17 destruction of shrub vegetation by xylophagous fungi and termites, cause a periodical return 18 to pioneer stages of the sequence (personal observations), but we are unable to indicate the 19 time required for reaching each stage of the vegetation succession.

20

The present study was undergone on moderate slopes (30-35%), where soils are poorly differentiated. They are made of humified organic matter, which accumulate in cyanobacterial crusts and in the dense root mats of vegetation patches (Sarthou and Grimaldi, 1992). These organic soils are acidic ($pH_{KCl} \le 4$) and poor in nitrogen (C/N = 20-30). They are poorly

- anchored to the granite and are subject to intense erosion. During showers, water can be seen
 to flow freely between the granite and the lower side of the organic mass.
- 3

4 2.2. Sampling of humus profiles

5

6 In each vegetation type three sites were sampled. Sampling took place in April 2002. 7 The low level of replication of our sampling procedure was due to remoteness of the sites and 8 lack of commodities for carrying samples to the French (metropolitan) laboratory. Three 9 humus profiles were sampled in the Pitcairnia community (cyanobacterial crusts) and three in 10 each of two dynamic stages of the Clusia community (Clusia and Clusia-Myrcia). The nine 11 vegetation patches were selected in the lower part of the inselberg, in an area with moderate 12 slope (30-35%) and South-facing aspect, locally called 'Les Terrasses'. Selection of sampling 13 points was done after a thorough examination of all vegetation patches which were present at 14 the study site (ca. 50), all of them being associated to a step of the plant succession according 15 to Sarthou (2001), on the base of their architecture and floristic composition. We arbitrarily 16 selected three patches in each of the three successional stages. At the centre of a vegetation clump, a block of surface soil 25 cm^2 in area and 10 cm depth (except when the soil was 17 18 shallower) was arbitrarily selected, then cut with a sharp knife, with as little disturbance as 19 possible, and litter and soil underneath were carefully sampled. When a stone or a large root 20 was encountered in the top 10 cm, we discarded the sample then we arbitrarily selected 21 another location. It was decided to sample only the top 10 cm because most pronounced 22 stratification of the topsoil was seen to occur within this depth. In Clusia-Myrcia 23 communities, sampling was under the canopy of *M. saxatilis*. However, we could not exclude 24 the possible admixture of C. minor dead leaves and root systems from shrubs growing in the immediate vicinity. In the field each humus block was separated into individual layers that 25

1 macroscopically could be identified on their structure, composition or other relevant 2 properties (Peltier et al., 2001). The various layers were transferred into polypropylene jars 3 filled with 95% ethanol before transport to the laboratory. Care was taken that the jars were 4 completely filled with the sampled material in order to avoid changes in structure resulting 5 from shaking during transport to the laboratory. Thicknesses of individual layers ranged from 6 0.5 to 3 cm. The layers were classified into OL (entire leaves), OF (fragmented leaves) and 7 OH (humified material) horizons, according to the classification of Brêthes et al., (1995), 8 other soil horizons being absent. When several layers were sampled in the same horizon (on 9 the basis of visible differences) sub-samples were numbered successively according to their 10 order from the top to the bottom of a given horizon, for example OL1, OL2, OF1, OF2, OH1, 11 OH2...

12

13 All 53 layers were microscopically studied using the 'small volume' 14 micromorphological method developed by Bernier and Ponge (1994), to which reference is 15 made for details. Results from grid point counting (429 points) were expressed as the 16 percentage of a given class of litter/humus component. 109 classes of litter/humus 17 components were identified (see Appendix).

18

The various kinds of plant debris were identified visually by comparison with a collection of main plant species growing in the vicinity of the sampled humus profiles. Litter leaves were classified according to plant species and decomposition stages on the basis of morphological features. Dead and living roots were separated by colour and turgescence state, helped when possible by the observation of root sections. Animal faeces were classified by the size, the shape, the degree of mixing of mineral matter with organic matter and colour according to animal groups when possible (Bal, 1982; Ponge, 1991; Topoliantz et al., 2000). 1 When necessary, the identification of litter/humus components was checked at higher 2 magnification. For that purpose, a small piece of a given litter/humus component was 3 mounted in a drop of chloral-lactophenol for examination in a phase contrast microscope at 4 400 X magnification.

5

6 After the quantification of litter/humus components was completed, each sample was 7 thoroughly inspected under the dissecting microscope, in order to establish all enchytraeids 8 that were present in the corresponding layer. This allowed us to add these terrestrial annelids, 9 which were poorly extracted by Berlese funnels (Kounda-Kiki et al., 2004) as an additional 10 item to the list of litter/humus components.

11

For bulk comparisons between the three main vegetation types the 109 classes of humus components were pooled into 10 gross categories, taking into account the decomposition stage of plant litter, its transformation into animal faeces and the degree of incorporation of organic matter to mineral matter, without resorting to animal and plant species (Table 1 and Appendix).

17

18 The material studied has been partly described in a previous paper dealing only with 19 cyanobacterial crusts (Vaçulik et al., 2004). For the present study the corresponding micro-20 layers have again been analysed by the same person (C. Kounda-Kiki).

21

22 2.3. Data analysis

23

Percentages of occurrence of classes of litter/humus components in the 53 microlayers investigated were subjected to a correspondence analysis or CA (Greenacre, 1984). The

different classes of litter/humus components were the active (main) variables, coded by their
percentage of occurrence by volume. Passive variables (OL, OF, OH horizons, vegetation
types, depth levels) were added in order to facilitate the interpretation of factorial axes
(Sadaka and Ponge, 2003).

5

All variables were transformed into X=(x-m)/s+20, where x is the original value, m is the mean of a given variable, and s is its standard deviation (Sadaka and Ponge, 2003). The addition to each standardized variable of a constant factor of 20 allows all values to be positive, CA dealing only with positive numbers. Factorial coordinates of weighted variables (constant mean and variance) can be interpreted directly in terms of their contribution to the factorial axes (Greenacre, 1984).

12

The volume percent of a given class (or gross category) of litter/humus component can be averaged over the whole profile, taking into account the different micro-layers, each individual value being weighted by the thickness of the corresponding micro-layer. This allowed to calculate the mean percent volume of the different classes of litter/humus components and of the gross categories in each humus profile (Table 1 and Appendix).

18

19 **3. Results**

20

The results given below should be taken only as indicative of the variety of humus profiles found under rock savanna vegetation, due to the low degree of replication used in our study.

Most material present in the studied profiles was leaf and root material in varying stages of decomposition (see Appendix). Table 1 shows the distribution of the 10 gross categories of litter/humus components under the three vegetation types studied. Notice that these gross categories were not mutually exclusive, thus their total was above 100%. For instance, all components comprising fungal mycelia were included in the gross categories. Fungal mycelium', while some of them were also included in other gross categories.

9

10 Cyanobacteria were only found in *Pitcairnia* humus profiles (cyanobacterial crusts 11 bordering bromeliad carpets). There were but few organo-mineral faeces in *Clusia-Myrcia* 12 and none in *Pitcairnia* profiles (Table 1). Fungal mycelia were almost absent throughout 13 *Pitcairnia* profiles. The number of enchytraeids per cm of profile was at its highest in one 14 sample of the *Pitcairnia* stage (see Appendix). Charcoal was totally absent from our material. 15

16 The 10 gross categories were used to build simplified profile diagrams, on the base of 17 data averaged for each vegetation type. Cyanobacteria were present only in the early stage of 18 vegetation succession, under Pitcairnia (Fig. 1a). Figure 1b shows that leaf material 19 decreased with depth, with a corresponding increase of roots (Fig. 1c). Decayed plant material 20 increased in volume under *Pitcairnia* down to 3 cm, indicating that it was overgown by the 21 cyanobacterial crust, then decreased slowly (Fig. 1d). Under the other two vegetation types 22 decayed plant material decreased with depth. This was associated with a higher activity of 23 fungi under Clusia and Clusia-Myrcia (Fig. 1e). Fungi were visible under Pitcairnia in the 24 topmost cm, but disappeared beneath. An increase then a decrease in humified organic matter 25 was observed below 5 cm under Clusia and Clusia-Myrcia (Fig. 1f). Examination of the

1 faecal material showed that it began to accumulate in the first cm (Figs. 1g, 1h). Holorganic 2 faeces from millipedes, mites, enchytraeids, woodlice, earthworms, snails, insect larvae 3 (recognizable from their size and shape) and undetermined fauna increased with depth (Fig. 4 1g). Organo-mineral dominant animal faeces (millipedes and earthworms) were present in the 5 surface layer under Clusia vegetation, then disappeared from 2 to 4 cm, then increased 6 abruptly below 4 cm. There were but few organo-mineral faeces present under *Clusia-Myrcia* 7 and none under Pitcairnia (Fig. 1h). Despite their large content of organic matter, shown by 8 their black colour, organo-mineral faeces contain numerous mineral particles, visible under 9 the microscope. The percent volume of mineral particles increased from the top to the bottom 10 of humus profiles under Clusia and Clusia-Myrcia, under Pitcairnia mineral particles were 11 much more abundant: they increased down to 2 cm then decreased to 5 cm and increased 12 abruptly below 6 cm, at the contact with the granite (Fig. 1i).

13

14 3.2. Synthesis by correspondence analysis (CA)

15

16 The projection of active (main) and passive (additional) variables in the plane of the 17 first two factorial axes (8.9 and 7.7% of the total variance, respectively) showed a marked 18 heterogeneity among horizons (OL, OF, OH) and among humus profiles (Figs. 2, 3). Given 19 the number of rows (53) and columns (109) of our data matrix, the part of the total variance 20 extracted by each of the first two factorial axes was significantly different from random 21 (Lebart et al., 1979), and the distribution of active and passive variables in the plane of the 22 first two axes showed a meaningful structure. Mineral particles and cyanobacteria were 23 projected on the positive side of Axis 1, which separated *Pitcairnia* from other vegetation. 24 Axis 2 was correlated with depth (surface with positive values, depth with negative values). 25 Leaf material and decayed plant material were projected on the positive side of Axis 2, root material being projected on the negative side of Axis 2. Excrements (holorganic and organomineral faeces) were projected on the negative side of Axis 2.

3

4 Figure 3 expressed the changes occurring vertically along humus profiles (mean trajectories for each vegetation type) and the distribution of horizons and vegetation types. 5 6 Pitcairnia was characterized by positive values of Axis 1 and was well separated from the 7 other two vegetation types. This means that humus profiles under *Pitcairnia* (cyanobacterial 8 crust) had a distinct composition. Along Axis 1, the sample Pit 3 was clearly separated from 9 Pit 1 and Pit 2, being farther from the origin: this profile exhibited a better differentiated 10 composition than the tow other profiles sampled under Pitcairnia. Clusia and Clusia-Myrcia 11 were characterized by negative values of Axis 1. Axis 2 displayed the vertical distribution of 12 OL, OF and OH horizons in the woody vegetation types. The OL horizon was restricted to the 13 surface of the profiles (positive values of Axis 2), the OF horizon was placed in an 14 intermediate position between OL and OH horizons (not far from the origin) and the OH 15 horizon underneath (negative values of Axis 2). Despite strong differences between the 16 humus profiles sampled under a given vegetation type, on average OL and OF horizons 17 characterized Clusia-Myrcia more than Clusia.

18

The projection of depth level indicators in the plane of the first two axes of CA clarified vertical changes in the composition of humus profiles and revealed differences in the rate of horizon differentiation between *Clusia* and *Clusia-Myrcia*. Linking successive depth levels by straight lines displayed depth trajectories and revealed mean trends, helping us to show changes in humus composition along topsoil profiles under the different vegetation types (Fig. 3). The composition of the surface horizon was quite similar under *Clusia* and *Clusia-Myrcia*, being typical of an OL horizon. However, at the bottom of humus profiles (10 cm), the composition of horizons was typical of an OH horizon under *Clusia*, being mainly
 made of excrement and root material (Fig. 2), while it was still that of an OF horizon under
 Clusia-Myrcia.

4

- 5 **4. Discussion**
- 6

7	4.1.	Pitcairnia	stage
			~

8

9 The poor decay of the plant material observed under the bromeliad Pitcairnia, i.e., 10 litter from neighbouring vegetation included into cyanobacterial crusts, could be explained by 11 a very low amount of fungal and macro-invertebrate activity, compared to further stages of 12 succession. The composition of the faecal material in *Pitcairnia* humus profiles revealed the 13 absence of soil macro-fauna under the cyanobacterial crust, which was confirmed by faunal 14 data (Kounda-Kiki et al., 2004; Vaçulik et al., 2004). Meso-fauna was also hardly active, 15 except in Pit 3 which contained a large volume of enchytraeid faeces (Appendix). Within our 16 limited sampling, Pit 3 depicted more soil development than the other two samples which 17 were done in cyanobacterial crusts. In the absence of earthworms enchytraeids play a leading 18 role in soil development (Didden, 1990). These animals were substituted by earthworms and 19 other macro-invertebrates under the two other vegetation types, as shown by faecal deposition 20 (the present study) and faunal extraction (Kounda-Kiki et al., 2004).

21

22 4.2. Clusia and Clusia-Myrcia stages

23

24 Decayed plant material decreased over a short distance in the humus profiles under 25 *Clusia* and *Clusia-Myrcia* stages with a greater activity of fungi and macro-invertebrates

1 (Kounda-Kiki et al., 2004), and litter was transformed into humus over a short distance under 2 *Clusia*. The presence of fungi and the intense earthworm activity observed under *Clusia* and 3 *Clusia-Myrcia* should be noted. They possibly indicate an increase in organic matter 4 decomposition accompanying the development of woody vegetation, despite an increase in 5 primary production when prostrated bromeliad carpets are locally replaced by dense shrub 6 thickets.

7

8 Results on soil arthropod communities showed that species diversity and abundance 9 were highest at the Clusia-Myrcia stage (Kounda-Kiki et al., 2004). We cannot rule out a 10 possible higher foliage and root litter input at the Clusia-Myrcia stage, which could be in 11 excess of soil community requirements (Garay and Hafidi, 1990). The accumulation of 12 surface organic matter (undecayed litter) could also be due to terpene production by 13 Myrtaceae (Boland and Brophy, 1993). To the light of our results (Kounda-Kiki et al., 2004; 14 the present study) the recalcitrant nature of Clusia-Myrcia litter seems to offer better 15 conditions for macro-fauna than Clusia-only litter. The situation can be described as a balance 16 between positive (shelter) and negative (recalcitrance) effects, that results in an overall 17 positive effect for the animal community. A similar trade-off has been hypothesized in semi-18 arid ecosystems (Peltier et al., 2001).

19

20 4.3. The sequence of soil development on the Nouragues inselberg

21

On the basis of their horizons the humus forms we described under rock savanna belong to a group of tropical humus forms on nutrient-depleted or rocky substrates, which are characterized by the accumulation of faunal excrements within a dense root mat, without or with a poor incorporation of organic matter to the mineral soil (Lips and Duivenvoorden,

1 1996; Loranger et al., 2003). They share common features with moder which has been 2 described in temperate regions (Green et al., 1993). However, two samples taken under 3 Pitcairnia (Pit 1 and Pit 2) did not display such accumulation of faeces. They exhibited a 4 single horizon, made of accumulated cyanobacteria, quite similar to surface vegetation. These 5 features are typical of mor, if we consider cyanobacterial remains as plant remains. On the 6 other hand, the presence of earthworm and millipede organo-mineral faeces under Clusia 7 indicate the (limited) formation of hemorganic assemblages typical of temperate mull 8 (Brêthes et al., 1995).

9

10 Recent observations on the Nouragues inselberg point on the importance of erosive 11 processes in the establishment of Myrcia saxatilis and other Myrtaceae within thickets of 12 *Clusia minor*. The destruction of stems and branches of *C. minor* by wood-feeding termites 13 and wood fungi creates gaps which allow the establishment by seed of more woody species. 14 Partial or near total erosion of the organic soil which forms during the development of C. 15 minor occurs when the soil remains unprotected (Sarthou et al., in prep.). This erosive process 16 allows the rock savanna to rejuvenate periodically, at least on slopes. Awaiting further 17 development of our study, the successional sequence here described should be considered as a 18 combination of a primary sequence, i.e. the passage from bare rock to *Pitcairnia* then to 19 Clusia profiles, and a secondary sequence from Clusia to Clusia-Myrcia, following partial 20 erosion of the organic soil.

21

22 **5.** Conclusions

23

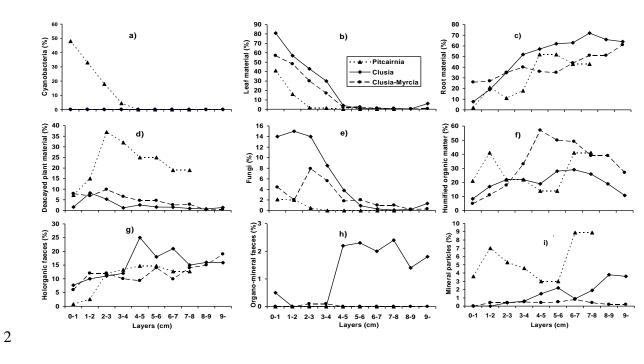
Although limited by the low degree of replication and lack of chemical data, our study described for the first time the composition of organic soils of tropical inselbergs. The

biological origin of most components can be traced, on the basis of recognizable features of 1 2 rootg and faeces and previous analyses of soil animal communities (Kounda-Kiki et al., 3 2004). Strong variation occurs between vegetation types of the rock savanna, the successional 4 development of vegetation being accompanied by the appearance of soil structure: first a fine-5 grained structure created by enchytraeid activity in the absence of macrofauna under 6 cyanobacterial crusts, then a coarse-grain structure created by earthworms and millipede 7 activity under woody leaf litter. The establishment of Myrtaceae within thickets of C. minor 8 (the dominant scrub vegetation of the rock savanna) seems to indicate a decrease in the 9 process of bioturbation, possibly due to erosive processes followed by the input of a more 10 recalcitrant litter. 11 12 Acknowledgements 13 14 We wish to thank the Centre National de la Recherche Scientifique for financial 15 support and commodities, in particular P. Charles-Dominique and his staff at the Nouragues 16 Field Station. 17 18 References 19 20 Bal, L., 1982. Zoological Ripening of Soils. Pudoc, Wageningen. 21 22 Bernier, N. and Ponge, J. F., 1994. Humus form dynamics during the sylvogenetic cycle in a 23 mountain spruce forest. Soil Biol. Biochem., 26: 183-220. 24

1	Boland, D. J., and Brophy, J. J., 1993. Essential oils of the eucalypts and related genera. ACS
2	Symp. Ser., 525: 72-87.
3	
4	Bremer, H., and Sander, H., 2000. Inselbergs: geomorphology and geoecology. In: S.
5	Porembski and W. Barthlott (Editors), Inselbergs. Biotic Diversity of Isolated Rock
6	Outcrops in Tropical and Temperate Regions Springer, Berlin, pp. 7-35.
7	
8	Brêthes, A., Brun, J. J., Jabiol, B., Ponge, J. F. and Toutain, F., 1995. Classification of forest
9	humus forms: a French proposal. Ann. Sci. For., 52: 535-546.
10	
11	Didden, W. A. M., 1990. Involvement of Enchytraeidae (Oligochaeta) in soil structure
12	evolution in agricultural fields. Biol. Fertil. Soils, 9: 152-158.
13	
14	Garay, I. and Hafidi, N., 1990. Study of a mixed forest litter of hornbeam (Carpinus betulus
15	L.) and oak (Quercus sessiliflora Smith). III. Organization of the edaphic
16	macroarthropod community as a function of litter quality. Acta Oecol., 11: 43-60.
17	
18	Green, R. N., Trowbridge, R. L. and Klinka, K., 1993. Towards a taxonomic classification of
19	humus forms. For. Sci. Monogr., 29: 1-49.
20	
21	Greenacre, M. J., 1984. Theory and Applications of Correspondence Analysis. Academic
22	Press, London.
23	

1	Grimaldi, M. and Riéra, B., 2001. Geography and climate. In: F. Bongers, P. Charles-
2	Dominique, P. M. Forget and M. Théry (Editors), Nouragues: Dynamics and Plant-
3	Animal Interactions in a Neotropical Rainforest. Kluwer, Dordrecht, pp. 9-18.
4	
5	Hambler, D.J., 1964. The vegetation of granitic outcrops in western Nigeria. J. Ecol., 52: 573-
6	594.
7	
8	Kounda-Kiki, C., Vaçulik, A., Ponge, J. F. and Sarthou, C., 2004. Soil arthropods in a
9	developmental succession on the Nouragues inselberg (French Guiana). Biol. Fertil.
10	Soils, 40: 119-127.
11	
12	Lavelle, P., 1984. The soil system in the humid tropics. Biology International, 9: 2-17.
13	
14	Lavelle, P., Blanchart, E., Martin, A., Spain, A., Toutain, F., Barois, I. and Schaefer, R., 1993.
15	A hierarchical model for decomposition in terrestrial ecosystems: applications to soils
16	of the humid tropics. Biotropica, 25: 130-150.
17	
18	Lips, J.M. and Duivenvoorden, J.F., 1996. Fine litter input to terrestrial humus forms in
19	Colombian Amazonia. Oecologia, 108: 138-150.
20	
21	Loranger, G., Ponge, J.F. and Lavelle, P., 2003. Humus forms in two secondary semi-
22	evergeen tropical forests. Eur. J. Soil Sci., 54: 17-24.
23	
24	Peltier, A., Ponge, J. F., Jordana, R. and Ariño, A., 2001. Humus forms in Mediterranean
25	scrublands with aleppo pine. Soil Sci. Soc. Am. J., 65: 884-896.

1	
2	Ponge, J. F., 1991. Food resources and diets of soil animals in a small area of Scots pine litter.
3	Geoderma, 49: 33-62.
4	
5	Sadaka, N. and Ponge, J. F., 2003. Climatic effects on soil trophic networks and the resulting
6	humus profiles in holm oak (Quercus rotundifolia) forests in the high Atlas of
7	Morocco as revealed by correspondence analysis. Eur. J. Soil Sci., 54: 767-777.
8	
9	Sarthou, C., 1992. Dynamique de la Végétation Pionnière sur un Inselberg en Guyane
10	Française. Doctorate thesis, Paris.
11	
12	Sarthou, C., 2001. Plant communities on a granitic outcrop. In: F. Bongers, P. Charles-
13	Dominique, P.M. Forget and M. Théry (Editors), Nouragues: Dynamics and Plant-
14	Animal Interactions in a Neotropical Rainforest. Kluwer, Dordrecht, pp. 65-78.
15	
16	Sarthou, C. and Grimaldi, C., 1992. Mécanismes de colonisation par la végétation d'un
17	inselberg granitique en Guyane Française. Rev. Ecol. Terre Vie, 47: 329-349.
18	
19	Sarthou, C., Thérèzien, Y. and Couté, A., 1995. Cyanophycées de l'inselberg des Nouragues
20	(Guyane française). Nova Hedwigia, 61: 85-109.
21	
22	Sarthou, C. and Villiers, J. F., 1998. Epilithic plant communities on inselbergs in French
23	Guiana. J. Veg. Sci., 9: 847-860.
24	


1	Sarthou C., Villiers, J. F. and Ponge J. F., 2003. Shrub vegetation on tropical granitic
2	inselbergs (French Guiana). J. Veg. Sci., 14: 645-652.
3	
4	Topoliantz, S., Ponge J. F. and Viaux, P., 2000. Earthworm and enchytraeid activity under
5	different arable farming systems, as exemplified by biogenic structures. Plant Soil,
6	225: 39-51.
7	
8	Vaçulik, A., Kounda-Kiki, C., Sarthou, C. and Ponge, J. F., 2004. Soil invertebrate activity in
9	biological crusts on tropical inselbergs. Eur. J. Soil Sci., 55: 539-549.
10	

1 Figure captions

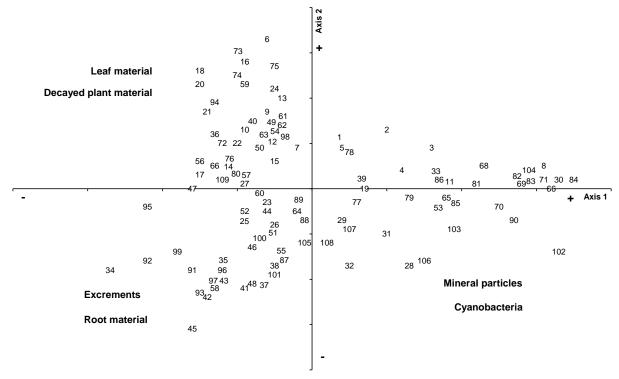

3	Fig. 1. Distribution according to depth of cyanobacteria (a), leaf material (b), root material
4	(c), decayed plant material (d), fungal mycelia (e), humified organic matter (f),
5	holorganic faeces (g), organo-mineral faeces (h) and mineral particles (i) under the
6	three main vegetation types.
7	
8	Fig. 2. Correspondence analysis of humus layers. Projection of active variables (categories of
9	litter/humus components) in the plane of the first two axes. Categories were coded as
10	in Table 1.
11	
12	Fig. 3. Correspondence analysis of humus layers. Projection of passive variables (horizon
13	names, depth indicators and vegetation types) in the plane of the first two axes. Depth
14	levels (from cm to cm) are indicated by broken lines for each of the three sampled
15	successional stages, starting from 0-1 cm. Dotted line = Pitcairnia stage, hyphened
16	line = <i>Clusia</i> stage, full line = <i>Clusia-Myrcia</i> stage.
17	

Table 1. Mean volumes (in %±SE) of gross categories featuring litter/humus components in the three studied successional stages *Pitcairnia*, *Clusia* and *Clusia-Myrcia* (three replicates each).

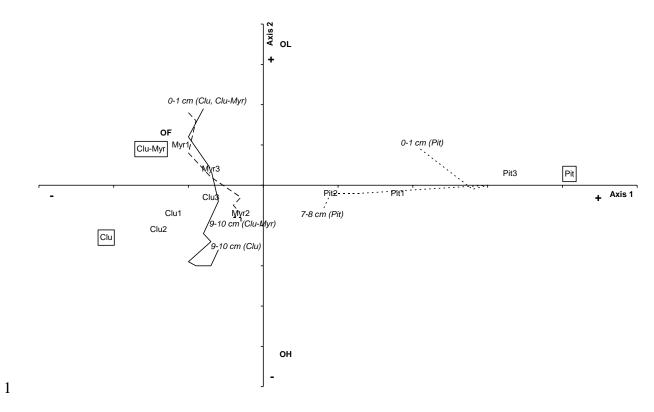

Gross category	Code	Pitcairnia	Clusia	Clusia-Myrcia			
Leaf material	LM	6.4±4.3	22±7.1	17±6.7			
Root material	RM	23±2.1	49±7.2	39±3.7			
Decayed plant material	DPM	11±7.1	2.6±0.9	5.0±1.9			
Miscellaneous plant	MP	1.7±1.3	1.1±0.2	1.2 ± 0.2			
Cyanobacteria	С	46±20	0	0			
Fungal mycelium	F	$0.8{\pm}0.1$	6.1±3.5	3.1±1.5			
Humified organic matter	HOM	36±7.6	20±5.0	32±6.7			
Holorganic faeces	HF	10.4±6.4	16±0.5	13±2.3			
Organo-mineral faeces	OMF	0	1.3±1.1	0.01 ± 0.01			
Mineral particles	MP	4.4 ± 0.9	1.5±0.9	0.36±0.22			

Fig. 1

Fig. 2

- **Fig. 3**

Appendix. Classes of litter/humus components and enchytraeids counted under the dissecting microscope with their code number and volume (in %) according to a count-point method in the nine profiles studied. Pitcairnia, Clusia and Clusia-Myrcia are three stages of a plant succession on the Nouragues inselberg. C = cyanobacteria. DPM = decayed plant material. F = fungal mycelium. LM = leaf material. HF = holorganic faeces. HOM = humified organic matter. MP = mineral particles. MPM = miscellaneous plant material. OMF = organo-mineral feaces. RM = root material.

Company and	Colo	Gross category	Pit1	litcairni Pit2	a Pit3	Chul	Clusia			lusia-Myr	
Component Leaf of Pitcairnia	Code 1	Gross category LM	Pit1 0	Pit2 0	4.1	Clu1	Clu2	Clu3	Myr1 0.11	Myr2 0	Myr: 0
eat of <i>Pitcairnia</i> .eaf of <i>Pitcairnia</i> covered by humified organic matter	1 2	LM LM, HOM	0	0	4.1 0.51	0	0	0	0.11	0	0
eaf of Pitcairnia covered by cyanobacteria crust	3	LM, C	0	0	0.06	0	0	0	0	0	0
eaf of Pitcairnia covered by fungi	4	LM, F	0	0	0.17	0	0	0	0	0	0
ranslucent leaf of Pitcairnia with tannin	5	LM	0	0	0.12	0	0	0	0	0	0
caf of Clusia caf of Clusia covered by humifi ed organic matter	6	LM LM. HOM	0.68 0	0	7.2	5.1	20	13	11	0	0
eat of Clusia covered by numin ed organic matter eaf of Clusia covered by cvanobacterial crust	7	LM, HOM LM, C	0.91	0	1.4 0.29	2.3 0	0.05	2	0.3 0	0	0
Leaf of Clusia covered by cyanobacterial crust	9	LM, C LM, F	0.91	0	0.29	1.08	10	1.3	0	0	0
eaf of Clusia with tannin	10	LM	0	0	0	0.37	0	0	0	0	0
Leaf of Clusia covered by fungi and cyanobacterial crust	11	LM, F, C	0.23	0	0	0	0	0	0	0	0
Translucent leaf of Clusia covered by fungi	12	LM, F	0	0	0	0.08	1.2	0.04	0	0	0
Translucent leaf of Clusia with tannin	13	LM	0	0	0.02	0.05	0.23	0.15	0	0	0
Franslucent leaf of <i>Clusia</i> covered by humified organic matter Translucent leaf of <i>Clusia</i> covered by fungi	14 15	LM, HOM LM, F	0	0	0	0.17 0.16	0	0.01	0	0	0
Translucent leaf of Clusia Translucent leaf of Clusia	15	LM, F LM	0	0	0.08	0.16	1.5	0.8	0.73	0	0
Leaf of Clusia covered by enchytraeid faeces	17	LM. HF	0	0	0	0.39	0.4	0.11	0.13	0	0
Leaf of Myrcia	18	LM	0	1.5	0	0.38	0	1.2	11	4.1	14
Leaf of Myrcia covered by cyanobacterial crust	19	LM, C	0	0.68	0	0	0	0	0	0	0
Translucent leaf of Myrcia	20	LM	0	0	0	0.11	0	0	1.9	0.33	1.7
Leaf of Myrcia covered by fungi	21	LM, F	0	0	0	0.18	0	0.04	1.7	0.22	1.2
Leaf of Myrcia with tannin	22	LM	0	0	0	0	0	0	0	0.45	0.8
Franslucent leaf of <i>Myrcia</i> covered by fungi Petiole of <i>Clusia</i>	23 24	LM, F LM	0	0 0.11	0 0.39	0 0.69	0 0.81	0 0.37	0.13 0.74	0.17 0	0 0.0
Petiole of Clusia Petiole of Clusia covered by humified organic matter	24	LM LM	0	0.11	0.39	0.69	0.81	0.37	0.74	0	0.0
Petiole of Clusia tovered by minimed of game matter	25	LM, HOM	0	0	0	0.11	0.1	0.03	0	0	0
Petiole of Clusia covered by fungi	20	LM, F	0	0	0	0	0.21	0.3	0	0	0
Living fine roots (0-3 mm)	28	RM	12	4.2	8.2	4.79	0	1.1	2.2	2.9	9.3
Living fine roots (0-3 mm) covered by humified organic matter	29	RM, HOM	3.5	11	0.21	1.5	0	1.9	0.62	0.66	0.6
Living fine roots (0-3 mm) covered by cyanobacterial crust	30	RM, C	0.11	0.11	0.06	0	0	0	0	0	0
Dead fine roots (0-3 mm)	31	RM	2	0.11	13	4.74	0	1.6	1.4	0.46	0.4
Dead fine roots (0-3 mm) covered by humified organic matter	32	RM, HOM	0.35	1.3	2	2.71	0	0	0.09	0.47	0.2
Dead fine roots (0-3 mm) covered by cyanobacterial crust	33	RM, C	0.46	0	0	0	0	0	0	0	0
Living medium roots (3-7 mm)	34	RM	0	0.44	0.51	26	12	15	15	9.3	12
Living medium roots (3-7 mm) covered by humified organic matter Living medium roots (3-7 mm) covered by fungi	35	RM, HOM RM. F	0	0	0	7.5 0.27	2.86	4.6 0	2.5 1.3	1.31	0.1 0.4
Livinq medium roots (3-7 mm) covered by fungi Dead medium roots (3-7 mm)	36 37	RM, F RM	0 5	0 0.88	0 1.6	0.27	0.1 2	0 4.7	1.3	0.16 10	0.4
Dead medium roots (3-7 mm) Dead medium roots (3-7 mm) covered by humified organic matter	37	RM RM, HOM	5 0.12	0.88	1.6 0.74	3.65 0.09	2 1.32	4.7 1.6	7.2	10 3.32	3.4 0.6
Dead medium roots (3-7 mm) covered by nummed of game matter	39	RM, IOM	0.12	0.11	0.74	0.05	0	0	0	0	0.0
Dead medium roots (3-7 mm) covered by cyanobacterial crust	40	RM, C RM, F	0	0.11	0	0	0	0	0	0.04	0.0
Dead medium roots (3-7 mm) tunnelled by mites and filled with their excrements	41	RM. HF	0	0	0	2.6	0.34	0.73	0	0.49	0.1
Living large roots (>7 mm)	42	RM	0	0	0	3.37	9.9	6.9	0.11	13	1.6
Living large roots (>7 mm) covered by humified organic matter	43	RM, HOM	0	0	0	1.14	1.49	0.25	0.21	0.75	0.4
Living large roots (>7 mm) covered by fungi	44	RM, F	0	0	0	0.02	0	0.17	0	0	0
Dead large roots (>7 mm)	45	RM	0	0	0.65	4.56	10.7	2.5	3.9	3.5	4.3
Dead large roots (>7 mm) covered by humified organic matter	46	RM, HOM	0	0	0	0	1.38	0.12	0.6	0.04	0.3
Miscellaneous bark	47	MPM	0	0	0	0.15	0.07	0.13	0.13	0	0.0
Root bark	48	MPM, RM	0.12	0	0	0	0.14	0.07	0	0	0
Seed of Clusia	49	MPM	0	0	0	0.01	0	0	0	0	0
Unidentified seed	50	MPM	0.12	0	0.11	0	0	0.1	0.19	0.82	0.4
Unidentified seed tunnelled by mite and filled with their excréments	51	MPM, HF	0	0	0	0	0	0	0.08	0	0.0
Pollen grain Spider web	52 53	MPM MPM	0	0 0	0.03 4.2	0.51 0	0	0.42	0.5 0	0.12	0
Spiter web	55	MPM	0	0	4.2 0	0.04	0	0	0	0	0
Spider egg	55	MPM	0	0	0	0.17	0	0	0	0	0
Decayed piece of wood	56	MPM	0	0	0	0.08	0.07	0.21	0.06	0.03	0.3
Decayed piece of wood covered by fungi	57	MPM	0	0	0	0.06	0	0	0	0.02	0
Flower stem of Clusia	58	MPM	0	0	0	0.26	0.38	0.42	0	0	0
Flower stem of Myrcia	59	MPM	0	0	0	0	0	0	0.48	0.02	0
Gum	60	MPM	0	0	0	0.01	0	0.06	0	0	0
Seedling of Clusia	61	MPM	0	0	0	0	0	0	0.03	0	0
Seedling of Myrcia	62	MPM	0	0	0	0	0	0	0.03	0	0
Unidentified seedling	63	MPM	0	0	0	0	0	0	0.05	0	0
Unidentified fruit	64	MPM	0	0	0	0	0	0	0	0	0.0
Moss	65	MPM	0.46	0	0	0	0	0	0	0	0
Decayed plant material	66	DPM	0.92	0.66	5.1	0.17	0.02	0.77	0.07	0.01	0.0
Decayed plant material covered by fungi	67	DPM, F	0.34	0.22	0	0.22	0.12	0.76	1.6	0.13	0.8
Decayed plant material covered by cyanobacterial crust	68 69	DPM, C DPM, HOM	1.9 2.3	0.11 0.66	1.2 12	0 0.22	0 0.17	0 1.2	0 3	0 0.57	0 2.4
Decayed plant material covered by humified organic matter	69 70	DPM, HF	0	0.00	5.6	0.22	0.17	0.81	0.25	0.57	2.4
Decayed plant material covered by enchytraeid facces Decayed plant material covered by mite facces	70	DPM, HF DPM, HF	0	0	5.6 0.31	0.35	0.05	0.81	0.25	0	0
Franslucent decayed plant material covered by fungi	71	DPM, HF	0	0	0.51	0.35	0.12	0.18	0.04	0	0.0
Franslucent decayed plant material	72	DPM	0.11	0	0.06	0.55	0.69	0.09	0.65	0.17	0.0
Translucent decayed plant material covered by mite faeces	74	DPM, HF	0	0	0.06	0	0.17	0	1.15	0.1	0
Translucent decayed plant material with tanin	75	DPM	0	0	0.14	0	0.4	0.01	0.18	0.06	0.3
Translucent decayed plant material covered by humified organic matter	76	DPM, HOM	0	0	0.02	0.23	0	0.41	0.23	0.44	0.4
Decayed plant material covered by cyanobacterial crust and fungi	77	DPM, C, F	0	0.33	0	0	0	0	0	0	0
Decayed plant material covered by humified organic matter and fungi	78	DPM, HOM, F	0	0	0.12	0	0	0.07	0.08	0	0
Decayed plant material covered by cyanobacterial crust and enchytraeid faeces	79	DPM, C, HF	0	0	0.66	0	0	0	0	0	0
Decayed plant material with tannin	80	DPM	0	0	0	0.08	0	0	0	0	0.0
Cyanobacterial crust	81	C C F	31	36	1.9	0	0	0	0	0	0
Cyanobacterial crust covered by fungi	82	C, F	0 0	0 0	0.06	0	0	U	U	0	0
Cyanobacterial crust covered by enchytraeid faeces	83	C, HF C			0.22	0	U C	U	U	0	0
Isolated cyanobacterial filaments Aggregate of cyanobacteria and humified organic matter	84 85	C C, HOM	2.2 27	2.2 31	2.3 0.06	0	0	0	0	0	0
Aggregate of cyanobacteria and numified organic matter Fungal fructification	85	C, HOM F	0.23	0	0.06	0	0	0	0	0	0
rungai irucunication Crust of humified organic matter	87	HOM	4	4.6	6.4	2.45	4.64	17	12	1.41	25
Grease-like humified organic matter	88	HOM	0	0	0	0	0	0	0	35	0
Holorganic mite faeces	89	HF	0	0	0.4	2.35	0	1.4	0.52	0.65	12
Jolorganic enchytraeid faeces	90	HF	0	0	10	0.27	0.68	2.2	0.64	0.02	0
Jeap of holorqunic enchytraeid faeces	91	HF	0	0	0	2.27	1.27	3.7	1.1	0	0
Iolorganic millipede faeces	92	HF	0	0	0.03	2	5.4	1.4	3.6	0.53	1.5
leap of holorqanic millipede faeces	93	HF	0	0	0	0.17	0.74	0.06	0.61	0	0.0
folorganic woodlice faeces	94	HF	0	0	0	0.24	0.06	0.42	0.64	0.09	0.4
Jolorganic earthworm faeces	95	HF	0	0	0	1.84	1.57	0.17	1.3	0.14	1.4
Enchytraeid-tunnelled holorganic earthworm faeces	96	HF	0	0	0	2.85	2.54	4.4	2	6.4	0
nail faeces	97	HF	0	0	0	0.27	1.44	0.03	0.2	0.01	0.6
Iolorganic faeces of insect larvae	98	HF	0	0	0	0.25	0	0	0	0	0
Jolorganic unidentified faeces	99	HF	0	0	0	0.6	0.29	0.65	0.55	0.3	0.2
Organo-mineral millipede faeces	100	OMF	0	0	0	1.11	0.07	0.16	0	0	0
Organo-mineral earthworm faeces	101	OMF	0	0	0	2.4	0	0.28	0.04	0	0
	102	MP	2.8	1.4	1.6	0.74	0.22	0.46	0.05	0.62	0.0
	103	MP, HOM	0.93	0.23	2.4	0.3	0	0.51	0	0.1	0.0
Gravel particle (> 2 mm) Gravel particle (> 2 mm) covered by humified organic matter			0.34	0.22	1.1	0	0	0	0	0	0
Gravel particle (> 2 mm) covered by humified organic matter Gravel particle (> 2 mm) covered by humified organic matter and cyanobacteria crust	104	MP, HOM, C					-	-	-	-	-
Gravel particle (> 2 mm) covered by humified organic matter Gravel particle (> 2 mm) covered by humified organic matter and cyanobacteria crust Gravel particle (> 2 mm) covered by mite facces	104 105	MP, HF	0	0	0	0.81	0	0	0	0	0
Gravel particle (> 2 mm) covered by humilied organic matter Gravel particle (> 2 mm) covered by humilied organic matter and cyanobacteria crust Gravel particle (> 2 mm) covered by mite faces Caurse sand particle (0-2 mm)	104 105 106	MP, HF MP	0 0.81	0 0.66	0 0.34	0.81 0.65	0 0.07	0 0.17	0	0 0.04	0
irared particle (> 2 mm) covered by humified organic matter irared particle (> 2 mm) covered by humified organic matter and cyanobacteria crust irared particle (> 2 mm) covered by multi chees Yaares and particle (0.2-2 mm) covers and particle (0.2-2 mm)	104 105 106 107	MP, HF MP MP, HOM	0 0.81 0	0 0.66 0	0 0.34 0.25	0.81 0.65 0.23	0 0.07 0	0 0.17 0	0 0 0	0 0.04 0	0 0.0 0
Farvel particle (> 2 mm) covered by humified organic matter Farvel particle (> 2 mm) covered by humified organic matter and cyanobacteria crust Farvel particle (> 2 mm) covered by mite faces Sarves sand particle (0 - 2 mm)	104 105 106	MP, HF MP	0 0.81	0 0.66	0 0.34	0.81 0.65	0 0.07	0 0.17	0	0 0.04	0