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We report the demonstration of relative number squeezing in four-wave mixing of Bose-Einstein
condensates of metastable helium. The collision between two Bose-Einstein condensates produces
a scattering halo populated by pairs of atoms of opposing velocities, which we divide into several
symmetric zones. We show that the atom number difference for opposing zones has sub-poissonnian
noise fluctuations whereas that of non-opposing zones is well described by shot noise. The atom
pairs produced in a dual number state are well adapted to sub shot-noise interferometry and studies
of Einstein-Podolsky-Rosen-type nonlocality tests.

PACS numbers: 03.75.Nt, 34.50.Cx, 42.50.Dv

The creation of squeezed states of the electromagnetic
field has been a major preoccupation of quantum op-
tics for several decades [1]. Such states are not only in-
herently fascinating, but also have the potential to im-
prove sensitivity in interferometers [1], going beyond the
“shot noise” or standard quantum limit. In the field
of atom optics, workers are beginning to use the intrin-
sic non-linearities present in a matter wave field to pro-
duce non-classical states, especially squeezed states [2–
6]. Indeed, an atom interferometer using squeezed inputs
was recently demonstrated [7]. In our case, we produce
dual number states in four-wave mixing of Bose-Einstein
condensates (BECs). These states form the basis of a
very different proposal for atom interferometry beyond
the standard quantum limit [8–10]. The atoms are also
created in such a way as to permit macroscopic spatial
separations and can therefore be adapted to studies of
Einstein-Podolsky-Rosen-type nonlocality tests [11] with
massive particles.
Correlated photon pairs can be generated using opti-

cal processes such as four-wave mixing [12] or parametric
down conversion [13]. The matter wave analogs of these
processes have recently been demonstrated [14, 15]. The
spontaneous four-wave mixing process [15], which we use
here, simply corresponds to the collision of two Bose-
Einstein condensates during which binary collisions pro-
duce scattered pairs of atoms with correlated momenta.
Correlations however, do not guarantee relative number
squeezing (see Ref. [16] for an example of correlations
without squeezing) nor entanglement. The success of
proposals such as those of [8–10], in which dual number
states are used in an interferometer, will likely be deter-
mined by the degree of squeezing. Thus, with a view
towards using such correlated states in interferometry,
it is important to verify that these processes do indeed
produce squeezing. In this letter, we demonstrate and

quantify the relative number squeezing. One can think
of our result as the matter wave analog of the experiment
of Ref. [17] in which relative number squeezing was ob-
served in the generation of twin light beams created by
parametric down conversion.
Squeezing of atom samples may prove even more im-

portant than of light because the number of available
atoms is often limited and therefore surpassing the stan-
dard quantum limit can be the only way to increase
the signal-to-noise and improve performance. In inter-
ferometry proposals relying on dual number states, the
observable corresponding to the relative phase is com-
pletely undetermined. But paradoxically, after passing
through a beam splitter, the phase difference is no longer
undetermined, but is peaked around two values of the
phase [10]. It has been argued that such states can be
more robust to loss processes than maximally entangled
states [9]. The pairs we produce should also be entangled
in a sense analogous to [18]. The fact that they are cre-
ated with a large momentum difference means that after
free flight, they can have significant spatial separations
(several cm here) and are thus well suited to investiga-
tions of (non-local) EPR entanglement [11] and Bell’s
inequalities using atoms.
We use metastable helium atoms which are detected

by a micro-channel plate detector (MCP) with a delay
line anode [19]. The detector allows three dimensional
reconstruction of the momentum of each atom. Atoms
in the 23S1, mx = 1 state are evaporatively cooled in
a vertically-elongated optical trap to produce a BEC
with about 105 atoms and no discernible thermal com-
ponent [20]. The use of an optical trap has resulted in
substantially better shot to shot reproducibility than its
magnetic antecedent [15]. The atomic angular momen-
tum, which is due entirely to the electron spin, is defined
relative to a 4 Gauss magnetic holding field in the x-
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FIG. 1. (Color online) View of the approximately spherical
halo after the collision of two BECs and a subsequent ballis-
tic expansion. (a) Reconstruction of the experimental data,
with each dot corresponding to an atom in momentum space.
Atoms on the collision halo are black, while the colliding, pan-
cake shaped BECs at the top and the bottom of the halo are
very dense and are shown in orange/yellow. The collision axis,
denoted z, and the optical trap axis are both almost vertical.
(b) Schematic view of the analyzed part of the collision halo.
To eliminate the condensates from the analysis, the analyzed
region is limited to |vz | < 0.5 vrec. In this case the sphere is
sliced into NZ = 8 zones that are separated from each other
for better visualization. An example of two correlated zones is
shown (red). The number difference between these two zones
shows sub shot-noise fluctuations.

direction (orthogonal to the optical trap long axis). After
cooling, the atomic spin is rotated away from the axis of
the holding field by π/2 using a 2 ms RF sweep [20]. The
laser trap is then switched off and one microsecond later
the condensate is split by applying counter-propagating
laser beams for 2.5 µs. These beams are blue detuned
from the 23P0 state by 600 MHz, inclined at a 7◦ angle
to the vertical axis and linearly polarized along the quan-
tization axis. About one third of the atoms are diffracted
into each of two momentum classes traveling at ±2 vrec,
where vrec = 9.2 cm/s is the recoil velocity. Most of the
last third remain at zero velocity. Binary collisions take
place between atoms of all three velocity classes produc-
ing 3 collision halos with centers of mass velocities ±vrec
and zero. Since the atomic spin is orthogonal to the local
field, 50% of the atoms are in the mx = 0 state with re-
spect to the magnetic field axis [20], and these atoms fall
to the detector, unperturbed by magnetic field gradients.
The trajectories of atoms in the mx = ±1 states are per-
turbed by residual field gradients and we therefore apply
an additional gradient that causes these atoms to miss
the detector entirely. The analysis is only focused on the
collision halo centered at +vrec (see Fig. 1a).
The collision halo centered at v = 0 has a radius 2 vrec

and is too large to be entirely captured by the detector
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FIG. 2. (Color online) Variance of all possible pairs of zones
for the halo cut into 16 zones (p = 4), and summing 3600
shots. The normalized variance is Vi,j and the error bars
reflect its standard deviation δVi,j . Circles correspond to the
8 correlated zones and crosses to the 112 uncorrelated ones.
The two horizontal lines correspond to the mean of each data
set. The line thickness is twice the standard deviation of
the mean of each data set, considering each pair of zones as
independent.

while the two halos centered at ±vrec, with radii vrec,
are entirely detected. In addition to binary scattering
events, these two latter halos can be populated by spon-
taneous photon scattering whenever an atom at v = 0
scatters a photon from one of the diffraction laser beams.
The diffraction efficiency depends on the product I1I2 of
the two laser intensities, while the spontaneous scattering
into a given halo depends on only one of these intensities.
So to reduce this effect we introduce an intensity imbal-
ance in the two laser beams such that the halo centered
at +vrec is populated by the weaker beam and contains
fewer such optically scattered atoms.
If squeezing is present, we expect a sub-shot noise vari-

ance in the number difference of any two diametrically
opposed volumes in the scattering halo. For any other
pair of volumes, we expect a variance corresponding to
shot noise. We define the halo as a spherical shell of ra-
dius vrec and thickness ±0.15 vrec and remove the areas
on the halo containing the scattered BEC’s. The excised
regions correspond to vertical velocities |vz| > 0.5 vrec.
We divide the remainder of the halo in half at the equa-
tor and then make p vertical cuts along the meridians,
dividing the halo into NZ = 4p equal zones as shown in
Fig. 1b for p = 2.
We define a normalized number difference variance for

zones i and j:

Vi,j =
〈(Ni −Nj)

2〉 − 〈Ni −Nj〉
2

〈Ni〉+ 〈Nj〉
(1)

The brackets 〈...〉 denote the average over the 3600 shots,
and Ni refers to the number of atoms detected in the i-th
zone on a single shot. On average, we detect 150 atoms
per shot on the whole analyzed region. If the zones i
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and j are uncorrelated, the normalized variance should
be unity. Figure 2 shows the measured variances of all
possible pairs of zones when the halo is cut into 16 zones
[21]. The 8 pairs of correlated zones indeed show relative
number squeezing (V < 1) and the 112 pairs of uncorre-
lated zones do not.
Perfectly correlated pairs and perfect detection would

result in a zero variance. This however is almost
unattainable in practice because of various imperfections,
the most significant of which is the non-unit quantum
efficiency η of our MCP detector. The effect of the effi-
ciency alone leads to a variance V = 1 − η of the corre-
lated zones, and therefore we can immediately deduce a
lower limit of 10% on the quantum efficiency, in agree-
ment with estimates we have made in the past [22]. A
second, less severe but intrinsic imperfection comes about
because the momenta of the correlated atoms are not ex-
actly equal and opposite, but have a width determined
by the momentum spread of the atoms within the ini-
tial condensates, as confirmed by the finite width of the
two-body correlation function in momentum space [15].
This function gives the conditional probability of finding
some momentum for one particle, given the momentum
of its partner. Thus it is possible for the two atoms of a
correlated pair to end up in zones that are not diamet-
rically opposed. We can study this effect by observing
how the amount of relative number squeezing varies as
we change the number of zones NZ (Fig. 3). The smaller
the zones into which we cut the sphere, the more likely
that an atom will miss the zone diametrically opposed to
that of its partner.
Since we have measured the correlation function for

back-to-back momenta, we can develop a model to ac-
count for the trend seen in Fig. 3. The back-to-back
correlation function was measured to have rms widths of
0.17 vrec in the radial (x and y) directions, and 0.02 vrec in
the axial (z) direction. Making the approximation of ne-
glecting the much smaller axial correlation width, we es-
timate the probability P (NZ) that, given an atom hitting
one zone, its partner will hit the diametrically opposite
one. This probability decreases as the number of zones
increases, and, neglecting all other effects, should result
in a variance V = 1−P in the number difference. Taking
both quantum efficiency and the geometrical hit proba-
bility into account we expect V = 1 − ηP . The function
V (NZ) is plotted as the solid line in Fig. 3. The approxi-
mate agreement of this simple model with the data leads
us to conclude that the above two loss mechanisms ac-
count very well for the observed variance. We also get
a slightly better lower limit on the quantum efficiency,
η > 12%.
The situation was also analyzed using a stochastic Bo-

goliubov simulation as in Ref. [23]. The result for the
variance is shown as the dashed curve in Fig. 3. The
curve is plotted assuming a detector quantum efficiency
of 12% as in the simpler model. The simulation shows the

FIG. 3. (Color online) Observed variance, as a function of
the number of zones into which we cut the halo. Red circles:
average over all correlated zones, blue squares average over
all uncorrelated zones. Error bars correspond to the standard
deviation of the mean of the variances for a given NZ . The
solid curve is the predicted variation of the simple model dis-
cussed in the text and assuming a 12% quantum efficiency.
The dashed curve results from a stochastic Bogoliubov sim-
ulation like that in Ref. [23], also assuming a 12% quantum
efficiency.

observed trend, but agrees less well with the data than
the simple model. The discrepancy arises because the
simulation predicts a narrower back-to-back correlation
function than was observed in the data which results in
a slower approach to unity for the variance. The origin
of the discrepancy remains to be resolved but the sim-
ulation nevertheless confirms the idea that the lack of
perfect correlation in momentum determines most of the
variation seen in Fig. 3.
Other known imperfections include the possible con-

tamination of the sphere by atom pairs with one atom in
the m = 0 state and another in the m = 1 state. These
pairs contribute a single detected atom without a part-
ner to the halo. We have no independent experimental
estimate of the number of such collisions but they could
account for as much as one half of the observed atoms on
the halo. Their presence would mimic a loss in detector
quantum efficiency and thus raise our lower limit on η.
Spontaneous emission processes act in the same way, but
independent measurements indicate that such processes
contribute only about 1.5% of the detected atoms on the
analyzed halo. As discussed above, the halo centered at
−vrec was more affected by spontaneous emission, though
squeezing on it still also observed, albeit to a lesser de-
gree. While one might hope to improve the quantum ef-
ficiency of the detector, or suppress unwanted scattering
events, the stochastic Bogoliubov simulation with perfect
detection efficiency predicts a limiting variance V ≈ 0.1
for a small number of zones. Thus, correcting for the
quantum efficiency, the intrinsic squeezing appears to be
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at most −10 dB.
Relative number squeezing is also related to the viola-

tion of a classical Cauchy-Schwarz inequality [24, 25],

〈NiNj〉 ≤
√

〈N2
i 〉

〈

N2
j

〉

, (2)

relating the count rates in two correlated zones i and j.
For equal count rates in the two zones, relative number
squeezing is strictly equivalent to the violation of the in-
equality (2). The situation in our experiment is more
complex because the average count rates are not exactly
equal, in which case squeezing and Cauchy-Schwarz vi-
olation are not equivalent [26]. Nevertheless, we do in-
deed observe a violation of the inequality (2). Since the
squeezing we describe here is multimode, more sophis-
ticated inequalities can be invoked involving correlation
functions of atoms with opposite and parallel momenta.
These will be studied in future work.
In order to do interferometry with the production

mechanism we have described, a pair of modes must be
recombined using a technique such as Bragg diffraction
of the atoms by a laser standing wave. Because of the an-
gular selectivity of Bragg reflection, such “mirrors” and
beam splitters would also serve the function of the slits in
an optical experiment which select a single pair of corre-
lated photon modes [18]. To increase count rates and the
number of atoms per mode, one can also use an optical
lattice to modify the dispersion relations of the atoms so
as to populate a single pair of modes [27–29]. Such well
defined twin atom beams would permit the realization
of experiments such has the celebrated HOM experiment
[30], or the realization of interferometry in the spirit of
[8–10]. Even more ambitious would be the demonstration
of entanglement of the pairs by making Bell-type mea-
surements of the well separated neutral atoms, in analogy
with the measurement made in Ref. [18] using photons.
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