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We demonstrate sub-Poissonian number differences in four-wave mixing of Bose-Einstein con-
densates of metastable helium. The collision between two Bose-Einstein condensates produces a
scattering halo populated by pairs of atoms of opposing velocities, which we divide into several
symmetric zones. We show that the atom number difference for opposing zones has sub-Poissonian
noise fluctuations whereas that of nonopposing zones is well described by shot noise. The atom pairs
produced in a dual number state are well adapted to sub shot-noise interferometry and studies of

Einstein-Podolsky-Rosen-type nonlocality tests.

PACS numbers: 03.75.Nt, 34.50.Cx, 42.50.Dv

The creation of squeezed states of the electromagnetic
field has been a major preoccupation of quantum op-
tics for several decades [] Such states are not only in-
herently fascinating, but they also have the potential to
improve sensitivity in interferometers [El], going beyond
the “shot noise” or standard quantum limit. In the field
of atom optics, workers are beginning to use the intrin-
sic non-linearities present in a matter wave field to pro-
duce non-classical states, especially squeezed states [E»
ﬁ] Indeed, an atom interferometer using squeezed inputs
was recently demonstrated [E] In our case, we produce
dual number states in four-wave mixing of Bose-Einstein
condensates (BECs). These states form the basis of a
very different proposal for atom interferometry beyond
the standard quantum limit [JHLI. Squeezing of atom
samples may prove even more important than squeezing
of light because the number of available atoms is often
limited and therefore surpassing the standard quantum
limit can be the only way to increase the signal-to-noise
ratio and improve performance. In interferometry pro-
posals relying on dual number states, the observable cor-
responding to the relative phase is completely undeter-
mined. Paradoxically, after passing through a beam split-
ter, the phase difference is no longer undetermined, but
is peaked with a dispersion below the shot noise [@, E]
It has been argued that such states can be more robust
to loss processes than maximally entangled states [E]
The pairs we produce should also be entangled in a sense
analogous to [@] A potentially interesting feature of our
stuation is that the pairs have large spatial separations
(several cm here) and are thus well suited to investiga-
tions of (non-local) EPR entanglement [[L3J] and Bell’s
inequalities using atoms.

Correlated photon pairs can be generated using opti-
cal processes such as four-wave mixing [@] or parametric
down conversion [@] The matter wave analogs of these

processes have recently been demonstrated [E, E] The
spontaneous four-wave mixing process , which we use
here, simply corresponds to the collision of two Bose-
Einstein condensates during which binary collisions pro-
duce scattered pairs of atoms with correlated momenta.
Correlations however, do not guarantee relative number
squeezing (see Ref. [[[§ for an example) nor entangle-
ment. The success of proposals such as those of Refs. [E»
@] will likely be determined by the degree of squeezing.
Thus, with a view towards using such correlated states in
interferometry, it is important to verify that these pro-
cesses do indeed produce squeezing. In this letter, we
demonstrate and quantify sub-Poissonian number differ-
ences produced in this process. Although the observa-
tion is not strictly sufficient to demonstrate squeezing in
the sense of measuring fluctuations in two conjugate vari-
ables, we will often use the term squeezing below because
the situation is a close atomic analog to experiments such
as Ref. [E] in which relative intensity squeezing was ob-
served in the generation of twin light beams created by
parametric down conversion.

We use metastable helium atoms which are detected
by a micro-channel plate detector with a delay line an-
ode [RJ]. The detector allows three dimensional recon-
struction of the momentum of each atom. Atoms in the
235, m, = 1 state are evaporatively cooled in a verti-
cally elongated optical trap to produce a BEC with about
10° atoms and no discernible thermal component [@]
The use of an optical trap has resulted in substantially
better shot to shot reproducibility than its magnetic an-
tecedent [E] The atomic angular momentum, which is
due entirely to the electron spin, is defined relative to a
4 G magnetic holding field in the z-direction (orthogo-
nal to the optical trap axis). After cooling, the atomic
spin is rotated away from the axis of the holding field by
7/2 using a 2 ms rf sweep [RI. The laser trap is then
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FIG. 1: (Color online) View of the halo after the collision
of two BECs and a subsequent ballistic expansion. (a) The
experimental data plotted in momentum space, with each dot
corresponding to a detected atom. Atoms on the collision halo
are black, while the colliding, pancake shaped BECs at the top
and the bottom of the halo are orange/yellow. The collision
axis v, and the optical trap axis are both almost vertical. (b)
Schematic view of the analyzed part (|vs| < 0.5vrec) of the
collision halo. Here we use Nz = 8 zones that are separated
from each other for better visualization. An example of two
correlated zones is shown (red,arrow). The number difference
between these two zones shows sub shot-noise fluctuations.

switched off and 1 us later the condensate is split by ap-
plying counter-propagating laser beams for 2.5 us. These
beams are blue detuned from the 23 Py state by 600 MHz,
inclined at a 7° angle to the vertical axis and linearly
polarized along the quantization axis. About one third
of the atoms are diffracted into each of two momentum
classes traveling at +2 vyec, where vy = 9.2 cm/s is the
recoil velocity. Most of the rest remain at zero velocity.
Binary collisions take place between atoms of all three
velocity classes producing three collision halos with cen-
ter of mass velocities £v.ec and zero. Since the atomic
spin is orthogonal to the local field, 50% of the atoms
are in the m, = 0 state with respect to the magnetic
field axis [R1], and these atoms fall to the detector, un-
perturbed by magnetic field gradients. The trajectories
of atoms in the m, = 41 states are perturbed by resid-
ual field gradients and we therefore apply an additional
gradient that causes these atoms to miss the detector en-
tirely. The analysis is only focused on the collision halo
centered at +vyec (see Fig. ma).

The collision halo centered at v = 0 has a radius 2 vyec
and is too large to be entirely captured by the detector
while the two halos centered at 4wvpec, with radii vpec,
are entirely detected. In addition to binary scattering
events, these two latter halos can be populated by spon-
taneous photon scattering whenever an atom at v = 0
scatters a photon from one of the diffraction laser beams.
The diffraction efficiency depends on the product I7 1 of
the two laser intensities, while the spontaneous scattering
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FIG. 2: (Color online) Variance of all possible pairs of
zones for the halo cut into 16 zones and summing N, =
3600 shots. The normalized variance is V;; and the er-
ror bars reflect its standard deviation §Vi; with §V;%, =
N4y N2V 2
NL e NJ?]\;-+<](VA.[; N Circles correspond to the 8 cor-
s i 7
related zones and crosses to the 112 uncorrelated ones. The
two horizontal lines correspond to the mean of each data set
with a thickness given by twice the standard deviation of the

mean, considering each pair of zones as independent.

into a given halo depends on only one of these intensities.
So to reduce this effect we introduce an intensity imbal-
ance in the two laser beams such that the halo centered
at +vrec is populated by the weaker beam and contains
fewer such optically scattered atoms.

If squeezing is present, we expect a sub-shot noise
variance in the number difference of any two diametri-
cally opposed volumes in the scattering halo [@] For
any other pair of volumes, we expect a variance corre-
sponding to shot noise. We define the halo as a spher-
ical shell of radius vrec and thickness £0.15 V.. The
results are only weakly sensitive to this thickness but as
defined, it includes about 95% of the scattered atoms.
We remove the areas on the halo containing the scat-
tered BEC’s. The excised regions correspond to vertical
velocities |v,| > 0.5vp. We divide the remainder of
the halo in half at the equator and then make p vertical
cuts along the meridians, dividing the halo into Nz = 4p
equal zones as shown in Fig. b for p = 2. We define a
normalized number difference variance for zones i and j:

((Ni = N;j)?) = (Ni = N;)?
(Ni) + (N;)

The brackets (...) denote the average over the 3600 shots,
and N; refers to the number of atoms detected in the 4
th zone on a single shot. On average, we detect 150
atoms per shot on the whole analyzed region. If the
zones i and j are uncorrelated, the normalized variance
should be unity. Figure [2 shows the measured variances
of all possible pairs of zones when the halo is cut into 16
zones. The eight pairs of correlated zones indeed show
sub-Poissonian number differences (V' < 1) and the 112
pairs of uncorrelated zones do not.

Perfectly correlated pairs and perfect detection would

Vij = (1)



result in a zero variance. This however is almost
unattainable in practice because of various imperfections,
the most significant of which is the non-unit quantum ef-
ficiency n of our detector. The effect of the efficiency
alone leads to a variance V. = 1 — n of the correlated
zones, and therefore we can immediately deduce a lower
limit of 10% on the quantum efficiency, in agreement with
estimates we have made in the past [2d].

A second, less severe but intrinsic imperfection comes
about because the momenta of the correlated atoms are
not exactly equal and opposite, but have a width deter-
mined by the momentum spread within the initial con-
densates, as confirmed by the finite width of the two-body
correlation function in momentum space [[L7. Thus it is
possible for the two atoms of a correlated pair to end
up in zones that are not diametrically opposed. We can
study this effect by observing how the variance changes
as we change the number of zones Ny (Fig. ). The
smaller the zones, the more likely that an atom will miss
the zone diametrically opposed to that of its partner.

Since we have measured the correlation function for
back-to-back momenta, we can model the trend seen in
Fig. E The back-to-back correlation function was mea-
sured to have rms widths of 0.17 vy in the radial (z
and y) directions, and 0.02 vy in the axial (z) direction.
Neglecting the much smaller axial correlation width, we
estimate the probability P(Nz) that, given an atom hit-
ting one zone, its partner will hit the diametrically op-
posite one. This probability decreases as Nz increases,
and, taking both quantum efficiency and the geometri-
cal hit probability into account, we expect V =1 —nP.
The function V(Ny) is plotted as the solid line in Fig. .
The approximate agreement of this simple model with
the data leads us to conclude that the above two loss
mechanisms account very well for the observed variance.
We also get a slightly better lower limit on the quantum
efficiency, n > 12%.

The situation was also analyzed using a stochastic Bo-
goliubov simulation as in Ref. @] The result for the
variance is shown as the dashed curve in Fig. E The
curve is plotted assuming a detector quantum efficiency
of 12% as in the simpler model. The simulation shows the
observed trend, but agrees less well with the data than
the simple model. The discrepancy arises because the
simulation predicts a narrower back-to-back correlation
function than was observed in the data, thus resulting in
a slower approach to unity for the variance. A finite tem-
perature effect may be at the origin of the difference since
the simulation assumes zero temperature. The simula-
tion also neglected mean field repulsion of different spin
components, so that such effects could also be responsi-
ble. The calculation nevertheless confirms the idea that
the lack of perfect correlation in momentum determines
most of the variation seen in Fig. .

Other known imperfections include the possible con-
tamination of the sphere by atom pairs with one atom in
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FIG. 3: (Color online) Observed variance, as a function of
the number of zones into which we cut the halo. Red circles:
average over all correlated zones, blue squares: average over
all uncorrelated zones. Error bars show the standard devia-
tion of the mean of the variances for a given Nz. The solid
curve is the prediction of the simple model discussed in the
text. The dashed curve results from the stochastic Bogoliubov
simulation. Both models assume a 12% quantum efficiency.

the m = 0 state and another in the m = 1 state. These
pairs contribute a single detected atom without a part-
ner to the halo. We have no independent experimental
estimate of the number of such collisions but they could
account for as much as one half of the observed atoms on
the halo. Their presence would mimic a loss in detector
quantum efficiency and thus raise our lower limit on 7.
Spontaneous emission processes act in the same way, but
independent measurements indicate that such processes
contribute only about 1.5% of the detected atoms on the
analyzed halo. As discussed above, the halo centered at
—rec Was more affected by spontaneous emission, though
squeezing is still also observed, albeit to a lesser degree.
While one might hope to improve the quantum efficiency
of the detector, or suppress unwanted scattering events,
the stochastic Bogoliubov simulation with n = 1 predicts
a limiting variance V' = 0.1 for a small number of zones.
Thus, correcting for the quantum efficiency, the intrinsic
squeezing appears to be at most —10 dB.

Relative number squeezing is also related to the viola-
tion of a classical Cauchy-Schwarz inequality [@, E],

(NiNj) < \J(NZ)(N?) (2)

relating the count rates in two correlated zones ¢ and
j. For equal count rates in the two zones, relative num-
ber squeezing is strictly equivalent to the violation of
the inequality (E) In our experiment the average count
rates are not exactly equal, in which case squeezing and
Cauchy-Schwarz violation are not equivalent [@] Never
the less, we do observe a violation of the inequality @)
More sophisticated inequalities can also be invoked and
will be studied in future work.

For purposes of interferometry, one would like to in-
crease count rates and the number of atoms per mode.



This could be achieved in a four-wave mixing experiment
inside an optical lattice to modify the dispersion relations
of the atoms so as to populate a single pair of modes [@»
BdJ. Such well defined twin atom beams would permit the
realization of experiments such has the celebrated exper-
iment of Hong, Ou and Mandel [B1f], or the realization of
an interferometer in the spirit of | . Even more ambi-
tious would be the demonstration of entanglement of the
pairs by making Bell-type measurements of the well sep-
arated neutral atoms, in analogy with the measurement
made in Ref. [[[J] using photons.
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