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Minimax risks for sparse regressions:

Ultra-high-dimensional phenomenons

Nicolas Verzelen∗

Abstract: Consider the standard Gaussian linear regression modelY = Xθ+ǫ, whereY ∈ Rn

is a response vector and X ∈ Rn×p is a design matrix. Numerous work have been devoted to
building efficient estimators of θ when p is much larger than n. In such a situation, a classical
approach amounts to assume that θ is approximately sparse. This paper studies the minimax
risks of estimation and testing over classes of k-sparse vectors θ. These bounds shed light on
the limitations due to high-dimensionality. The results encompass the problem of prediction
(estimation of Xθ), the inverse problem (estimation of θ) and linear testing (testing Xθ = 0).
Interestingly, an elbow effect occurs when the number of variables k log(p/k) becomes large
compared to n. Indeed, the minimax risks and hypothesis separation distances blow up in
this ultra-high dimensional setting. We also prove that even dimension reduction techniques
cannot provide satisfying results in a ultra-high dimensional setting. Moreover, we compute
the minimax risks when the variance of the noise is unknown. The knowledge of this variance
is shown to play a significant role in the optimal rates of estimation and testing.

AMS 2000 subject classifications: Primary 62J05; secondary 62F35, 62C20.
Keywords and phrases: High-dimensional regression, sparse vectors, minimax risk, minimax
hypothesis testing, dimension reduction, adaptive estimation, model selection.

1. Introduction

In many important statistical applications, including remote sensing, functional MRI and gene ex-
pressions studies the number p of parameters is much larger than the number n of observations. An
active line of research aims at developing computationally fast procedures that also achieve the best
possible statistical performances. A typical example is the study of l1-based penalization methods
for the estimation of linear regression models.

In order to assess the qualities of statistical procedures, we need to understand the intrinsic
limitations of a statistical problem: what is the best rate of estimation or testing achievable by a
procedure? Is it possible to design good procedures for arbitrarely large p or are there theoretical
limitations when p becomes ”too large”? The knowledge of such limitations may drive the research
towards areas where computationally efficient procedures are shown to be suboptimal. Furthermore,
these limitations tell us what kind of data analysis problems are too complex so that no statistical
procedure is able to provide reasonnable results.

1.1. Linear regression and statistical problems

We observe a response vector Y ∈ Rn and a real design matrix X of size n× p. Consider the linear
regression model

Y = Xθ + ǫ , (1.1)
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where the vector θ of size p is unknown and the random vector ǫ follows a centered normal distribu-
tion N (0n, σ

2In). Here, 0n stands for the null vector of size n and In for the identity matrix of size n.

In some cases, the design X is considered as fixed either because it has been previously chosen or
because we work conditionally to the design. In other cases such as compressed sensing [20], the rows
of the design matrix X correspond to a n-sample of a random vector X of size p. The designX is then
said to be random. A specific class of random design is made of Gaussian designs where X follows a
centered normal distribution N (0p,Σ). The analysis of fixed and Gaussian designs share many com-
mon points. In this work, we shall enhance the similarities and the differences between both settings.

There are various statistical problems arising in the linear regression model (1.1). Let us list the
most classical issues:
(P1) : Linear hypothesis testing. In general, the aim is to test whether θ belongs to a linear
subspace of Rp. Here, we focus on testing the null hypothesis H0: ”θ = 0”. In Gaussian design, this
is equivalent to testing whether Y is independent from X.
(P2) : Prediction. We focus on predicting the expectation E[Y] in fixed design and the conditional
expectation E[Y |X] in Gaussian design.
(P3) : Inverse problem. The primary interest lies in estimating θ itself and the corresponding loss
function is the ‖θ̂ − θ‖2p, where ‖.‖p is the l2 norm in Rp.
(P4) : Support estimation aims at recovering the support of θ, that is the set of indices corre-
sponding to non-zero coefficients. The easier problem of dimension reduction amounts to estimate
a set M̂ ⊂ {1, . . . p} of “reasonable” size that contains the support of θ with high probability.

Many work have been devoted to these statistical questions in a high dimensional setting (p > n).
For the problem of prediction (P2), procedures based on complexity penalization are proved to
provide good risk bounds for known variance [9] and unknown variance [4] but are computationally
inefficient. In contrast, l1-based penalization methods such as the Lasso or the Dantzig selector are
fast to compute, but only provide good performances under restrictive assumptions on the design X
[6, 11]. Exponential weighted aggregation methods [16, 35] are another examples of fast and efficient
methods. Other popular methods include the elastic net [43]. The l1 penalization methods have also
been analyzed for the inverse problem (P3) [6] and for support estimation (P4) [31, 42]. Dimension
reduction methods are often studied in more general settings than linear regression [15, 23]. In the
linear regression model, [22] have introduced the SIS method based on the correlation between the
response and the covariate. The problem of high-dimensional hypothesis testing (P1) has attracted
less attention yet. Some testing procedures are discussed in [5] for fixed design and in [38] for
Gaussian design.

1.2. Sparsity and ultra-high-dimensionality

We are primary interested in the so-called high-dimensional setting, where the number of covariates
p is possibly much larger than n. A classical approach to perform a statistical analysis in this setting
is to assume that θ is sparse, in the sense that most of the components of θ are equal that to 0. Given
a positive integer k, we say that the vector θ is k-sparse if θ contains at most k non-zero components.
We call k the sparsity parameter. In this paper, we are interested in the setting k < n < p. We note
Θ[k, p] the set of k-sparse vectors in Rp.
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In linear regression, most of the results about classical procedures require that the triplet (k, n, p)
satisfies k[1+ log(p/k)] < n. When k is ”small”, this corresponds to assuming that p is subexponen-
tial with respect to n. Such assumptions are performed for the analysis of the Lasso in prediction,
inverse problems [6], and support estimation [33]. The exponential screening method of [35] is ana-
lyzed under the assumption log(p) ≤ n. In dimension reduction, the SIS method of [22] also requires
this assumption. If the multiple testing procedure of [5] can be analyzed for k[1 + log(p/k)] larger
than n, it exhibits a much slower rate of testing in this case. In the sequel, we say that the problem
is ultra-high dimensional when k[1 + log(p/k)] is large compared to n. We prove in this paper that
a new phenomenon occurs in a ultra-high dimensional setting and that most of the estimation and
testing problems become much more difficult. If we take an asymptotic point of view ((kn, pn) → ∞),
an the ultra-high dimensionality does not necessary imply that pn is exponential with respect to n.
As an example, taking pn = n2 and kn = n/ log log(n) asymptotically yields an ultra-high dimen-
sional problem.

The study of ultra-high dimensional problems is partly motivated by the following question: in
some gene network inference problems [14], the number p of genes can be as large as 5000 while the
number n of microarray experiments is only of the order 50. Let us consider a gene A. How large
can be its degree k in the network so that it is still ”reasonnable” to estimate the set of genes that
interact with the gene A from the microarray experiments? In statistical terms, inferring the set of
genes interacting with A amounts to estimate the support of θ in a linear regression model (1.1).
Our answer is that if k is larger than 4, then the problem of network estimation becomes extremely
difficult. We will come back to this example and explain this answer in Section 7.

1.3. Minimax risks

A classical way to assess the performance of an estimator θ̂ is to consider its maximal risk over a
class Θ ⊂ Rp. This is the minimax point of view. For the time being, we only define the notions of
minimaxity for estimation problems (P2 and P3). Their counterpart in the case of testing (P1) and
dimension reduction (P4) will be introduced in subsequent sections. Given a loss function l(., .) and
estimator θ̂, the maximal risk of θ̂ over Θ[k, p] for a design X (resp. a covariance Σ) and a variance
σ2 is defined by supθ∈Θ[k,p]Eθ,σ[l(θ̂, θ)]. Taking the infimum of the maximal risk over all possible

estimators θ̂, we obtain the minimax risk

inf
θ̂

sup
θ∈Θ[k,p]

Eθ,σ[l(θ̂, θ)] .

We say that an estimator θ̂ is good if its maximal risk over Θ[k, p] is close to the minimax risk.

In practice, we do not know the number k of non-zero components of θ and we seldom know the
value σ2 of Var(ǫ). If an estimator θ̂ does not require the knowledge of k and nearly achieves the
minimax risk over Θ[k, p] for a range of k, we say that θ̂ is adaptive to the sparsity. Similarly, an
estimator θ̂ is adaptive to the variance σ2, if it does not require the knowledge of σ2 and nearly
achieves the minimax risk for all σ2 > 0. When possible, the main challenge is to build adaptive
procedures. In some statistical problems considered here, adaption is in fact impossible and there is
an unavoidable loss when the variance or the sparsity parameter is unknown. In such situations, it
is interesting to quantify this unavoidable loss.
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1.4. Our contribution and related work

In the specific case of the Gaussian sequence model, where n = p and X = In, the minimax risks
over k-sparse vectors have been studied for a long time. Donoho and Johnstone [19, 28] provide the
asymptotic minimax risks of prediction (P2). Baraud [3] studies the optimal rate of testing from
a non-asymptotic point of view while Donoho and Jin [18] provide the asymptotic optimal rate of
testing with exact constants.

Much less results exist for non-orthogonal designs and for p larger than n. Wainwright [39, 40]
has provided minimax lower bounds for the problem of support estimation (P4). Some minimax
lower bounds have also been stated for testing (P1) and prediction (P2) problems with Gaussian
design [37, 38].

This paper provides a general study of the minimax risks for the problems (P1), (P2), (P3) when
the regression vector θ is k-sparse. The main discoveries are the following:

1. High-dimensional and ultra-high dimensional problems. Our results cover both the
high-dimensional and ultra-high dimensional setting. Previous work do not cover the ultra-high
dimensional setting or do not exhibit its specificity. We establish that for each of the problems
(P1), (P2) and (P3), an elbow effect occurs when k[1 + log(p/k)] becomes large compared to
n. This has some consequence on support estimation (P4): in a ultra-high dimensional setting,
it is impossible to recover the support of θ except if the signal to noise ratio is exponentially
large with respect to k log(p)/n. It even becomes almost impossible to reduce efficiently the
dimension of the problem. This phenomenon is illustrated in Section 7.

2. Adaptation to the sparsity k and to the variance σ2. Most theoretical results for
the problems (P1) and (P2) require that the variance σ2 is known. Here, we establish the
minimax bounds for both known and unknown variance and known and unknown sparsity.
The knowledge of the variance is proved to play a fundamental role for the testing problem
(P1) when k[1 + log(p/k)] is large compared to

√
n. The knowledge of σ2 is also proved to be

crucial for (P2) in a ultra-high dimensional setting.
3. Effect of the design. Lastly, the minimax bounds of (P1) and (P2) are established for fixed

and Gaussian designs. Except for the problem of prediction (P2), the minimax risks are of
similar nature for both forms of the design. Furthermore, we investigate the dependency of
the minimax risks on the design X (resp. Σ).

The minimax bounds stated in this paper are non asymptotic. Most of them rely on Fano’s and
Le Cam’s methods [41] and on geometric considerations. In each case, near optimal procedures are
exhibited.

While we were writing this paper we became aware of the work of Raskutti et al. [34] and
of Rigollet and Tsybakov [35]. Raskutti et al. provide minimax upper bounds and lower bounds
for (P2) and (P3) over lq balls for general fixed designs X. In the specific case of q = 0, this
corresponds to studying minimax risks over sparse vectors θ and their bounds agree with our results
(Propositions 5.3 and 6.1). Rigollet and Tsybakov [35] also provide a minimax lower bound the
problem of prediction (P2). Except for the case of degenerate designs X, their bound agrees with
Propositions 5.3. Contrary to our results, these two work do not encompass the case of ultra-high
dimensionality and require that the variance σ2 is known.
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1.5. Organization of the paper

In Section 3, we summarize the minimax bounds for specific designs called ”worst-case” and ”best-
case” designs in order to emphasize the effects of dimensionality. The general results are stated
in Section 4 for the tests and Section 5 for the problem of prediction. The problems of inverse
estimation, support estimation, and dimension reduction are studied in Section 6. In Section 7, we
address the following practical question: For exactly what range of (k, p, n) should we consider a
statistical problem as ultra-high dimensional? A small simulation studies illustrates this answer.
Section 8 contains the final discussion. Section 9 is devoted to the proof of the minimax lower
bounds, while the last section contains the remaining proofs.

2. Notations and preliminaries

Gaussian design and conditional distribution. For a Gaussian design the rows of X correspond
to a n-sample of a random vector X ∼ N (0p,Σ). Then, (Y,X) can be interpreted a n-sample of
the random vector (Y,X∗) ∈ Rp+1 defined by

Y = Xθ + ǫ , (2.1)

where ǫ ∼ N (0, σ2). The linear regression model with Gaussian design is relevant to understand
the conditional distribution of a Gaussian variable Y conditionally to a Gaussian vector since
E[Y |X] = Xθ and Var(Y |X) = σ2. This is why we shall often refer to σ2 as the conditional variance
of Y when considering Gaussian design. This model is also closely connected to the estimation of
Gaussian graphical models [33, 38].

We respectively note ‖.‖n and ‖.‖p the l2 norms in Rn and Rp, while 〈.〉n refers to the inner
product in Rn. For any θ ∈ Rp and σ > 0, Pθ,σ refers to the joint distribution of (Y,X). In the
sequel, we note supp(θ) for the support of θ. For any 1 ≤ k ≤ p, M(k, p) stands for the collections
of all subsets of {1, . . . , p} with cardinality k.

As explained later, the minimax risk over Θ[k, p] strongly depends on the design X. This is why
we introduce some relevant quantities on X.

Definition 2.1. Consider some integer k > 0 and some design X.

Φk,+(X) := sup
θ∈Θ[k,p]

‖Xθ‖2n
‖θ‖2p

and Φk,+(X) := inf
θ∈Θ[k,p]

‖Xθ‖2n
‖θ‖2p

. (2.2)

In fact, Φk,+(X) and Φk,−(X) respectively correspond to the largest and the smallest restricted eigen-
value of order k of X∗X.

Given a symmetric real square matrix A, ϕmax(A) stands for the largest eigenvalue of A. Finally,
C, C1,. . . denote positive universal constants that may vary from line to line. The notation C(.)
specifies the dependency on some quantities.

In the propositions, the constants involved in the assumptions are not always expressly specified.
For instance, sentences of the form ”Assume that n ≥ C. Then, . . .” mean that ”There exists an
universal C > 0 such that if n ≥ C, then . . .”.



Verzelen/Ultra-high dimensional regression 6

3. Main results

The exact results will be stated in Section 4-6. In order to explain these results, we now summarize
the main minimax bounds by focusing on the role of (k, n, p) rather than on the dependency on
the design X. In order to keep the notations short, we do not provide in this section the minimal
assumptions of the results. Let us simply mention that all these results are valid if the sparsity k
satisfies k ≤ p1/3 ∧ n/5 and that p ≥ n ≥ C where C a positive numerical constant.

3.1. Prediction

First, the results are described for the problem of prediction (P2) since the problem of minimax
estimation is more classical in this setting. Different prediction loss functions are used for fixed and
Gaussian designs. When the design is considered as fixed, we study the classical loss ‖X(θ1−θ2)‖2n/n.
For Gaussian design, we consider the integrated prediction loss function:

‖
√
Σ(θ1 − θ2)‖2p = E

[
{X(θ1 − θ2)}2

]
. (3.1)

Given a design X, the minimax risk of prediction over Θ[k, p] with respect to X is

RF [k,X] = inf
θ̂

sup
θ∈Θ[k,p]

Eθ,σ[‖X(θ̂ − θ)‖2n/(nσ2)] . (3.2)

For a Gaussian design with covariance Σ, we study the quantity

RR[k,Σ] := inf
θ̂

sup
θ∈Θ[k,p]

Eθ,σ[‖
√
Σ(θ̂ − θ)‖2p/σ2] . (3.3)

These minimax risks of prediction do not only depend on (k, n, p) but also on the design X (resp.
the covariance Σ). The computation of the exact dependency of the minimax risks on X or Σ is
a challenging question. For the sake of simplicity, we only describe in this section the minimax
prediction risks for worst-case designs defined by

RF [k] := sup
X

RF [k,X], RR[k] := sup
Σ

RR[k,Σ] ,

the supremum being taken over all designs X of size n × p (resp. all covariance matrices Σ). The
quantity RF [k] corresponds to the smallest risk achievable uniformly over Θ[k, p] and all designs
X. In the sequel, we say that RF [k] is of order f(k, p, n,C) when there exist two positive universal
constants C1 and C2 such that

f(k, p, n,C1) ≤ RF [k] ≤ f(k, p, n,C2) .

These minimax risks are computed in Section 5 and are gathered in Table 1.
When k log(p/k) remains small compared to n, the minimax risk of prediction is of the same order

for fixed and Gaussian design. The k log(p/k)/n risk is classical and known for a long time in the
specific case of the Gaussian sequence model [28]. Some procedures based on complexity penaliza-
tion [9, 4] are proved to achieve these risks uniformly over all designs X. Computationally efficient
procedures like the Lasso or the Dantzig selector only achieve a k log(p)/n risk under assumption
on the design X [6]. If the support of θ is known in advance, the parametric risk is of order k/n.
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Fixed Design Gaussian Design

C
k log(p/k)

n ∧ 1 C
k log(p/k)

n exp

[

C
k log(p/k)

n

]

Table 1: Minimax risks of prediction RF [k] and RR[k] over Θ[k, p].

Thus, the price to pay for not knowing the support of θ is only logarithmic in p.

In a ultra-high dimensional setting, the minimax prediction risk in fixed designs remains smaller
than one. It is the minimax risk of estimation of the vector E(Y) of size n. This means that the
sparsity index k does not play anymore a role in ultra-high dimension. For a Gaussian design, the
minimax prediction risk becomes of order C(p/k)Ck/n: it increases exponentially with respect to k
and polynomially with respect to p. Comparing this risk with the parametric rate k/n, we observe
that the price to pay for not knowing the support of θ is now far higher than log(p).

In Section 5, we also study the adaptation to the sparsity index k and to the variance σ2. In
short, we prove that adaptation to k and σ2 is possible for a Gaussian design. In fixed design, no
procedure can be simultaneously adaptive to the sparsity k and the variance σ2.

3.2. Testing

Let us turn to the problem (P1) of testing H0: ”θ = 0” against H1: ”θ ∈ Θ[k, p] \ {0}”. We fix a
level α > 0 and and a type II error probability δ > 0. Minimax lower and upper bounds for this loss
function are discussed in Section 4.

Suppose we are given a test procedure Φα of level α for fixed design X and known variance σ2. The
δ-separation distance of Φα over Θ[k, p], noted ρF [Φα, k,X] is the minimal number ρ, such that Φα

rejects H0 with probability larger than 1−δ if ‖Xθ‖n/
√
n ≥ ρσ. Hence, ρF [Φα, k,X] corresponds to

the minimal distance such that the hypotheses ”θ = 0” and ”‖Xθ‖2n ≥ nρ2F [Φα, k,X]σ2, θ ∈ Θ[k, p]”
are well separated by the test Φα.

ρF [Φα, k,X] := inf

{
ρ > 0, inf

θ∈Θ[k,p], ‖Xθ‖n≥
√
nρσ

Pθ,σ[Φα = 1] ≥ 1− δ

}
.

Then, we consider

ρ∗F [k,X] := inf
Φα

ρ[Φα, k,X] . (3.4)

The infimum runs over all level-α tests. We call this quantity the (α, δ)-minimax separation distance
over Θ[k, p] with design X and variance σ2. The minimax separation distance are a non-asymptotic
counterpart of the detection boundaries studied in the Gaussian sequence model [18].

Similarly, we define the (α, δ)-minimax separation distance over Θ[k, p] with Gaussian Σ design
by replacing the distance ‖Xθ‖n/

√
n by the distance ‖

√
Σθ‖p:

ρR[Φα, k,Σ] := inf
{
ρ > 0, inf

θ∈Θ[k,p], ‖
√
Σθ‖p≥ρσ

Pθ,σ[Φα = 1] ≥ 1− δ
}
, ρ∗R[k,Σ] := inf

Φα

ρR[Φα, k,Σ] .(3.5)
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As for the problem of prediction (P2), we state the orders of the minimax separation distances in
the ”worst case” designs:

ρ∗F [k] := sup
X

ρ∗F [k,X] , ρ∗R[k] := sup
Σ
ρ∗R[k,Σ] . (3.6)

This is the smallest separation distance that can be achieved by a procedure Φα uniformly over
all designs X (resp. Σ). Contrary to the problem of prediction (P2), it is not always possible to
achieve the minimax separation distances with a procedure Φα that does not require the knowledge
of the variance σ2. This is why we also consider ρ∗F,U [k] and ρ

∗
R,U [k] the minimax separation distance

for fixed and Gaussian design when the variance is unknown. Roughly, ρ∗F,U [k] corresponds to the

minimal distances ρ2 that allows to separate well the hypotheses ”θ = 0” and ”‖Xθ‖2n ≥ nρ2σ2”
when σ is unknown. We shall provide a formal definition at the beginning of Section 4.

In Table 2, we provide the orders of the minimax separation distances over Θ[k, p] for fixed and
Gaussian designs, known and unknown variance.

Fixed and Gaussian Design

Known σ2: ρ∗F [k] and ρ∗R[k] C(α, δ)
k log(p/k)

n ∧ 1√
n

Unknown σ2: ρ∗F,U [k] and ρ∗R,U [k] C(α, δ)
k log(p/k)

n exp

[

C(α, δ)
k log(p/k)

n

]

Table 2: Minimax separation distances over Θ[k, p] for fixed and Gaussian design, known and un-
known variance: (ρ∗F [k])

2, (ρ∗R[k])
2, (ρ∗F,U [k])

2, and (ρ∗R,U [k])
2.

In contrast to (P2), the minimax separation distances are of the same order for fixed and Gaussian
design.

When k log(p/k) ≤ √
n, all the minimax separation distances are of order k log(ep/k)/n. This

quantity also corresponds to the minimax risk of prediction (P2) stated in the previous subsection.
This separation distance has already been proved in the specific case of the Gaussian sequence
model [3, 18].

When k log(p/k) ≥ √
n, the minimax separation distances are different under known and unknown

variance. If the variance is known, the minimax separation distance over Θ[k, p] stays of order
1/
√
n. Here, 1/

√
n corresponds in fixed design to the minimax separation distance of the hypotheses

”E[Y] = 0” against the general hypothesis ”E[Y] 6= 0” for known variance (see Baraud [3]).
If the variance is unknown, the minimax separation distance over Θ[k, p] is still of order k log(ep/k)/n

if k log(p/k) is small compared to n. Moreover, the minimax separation distance blows up to the
order C(p/k)Ck/n in a ultra-high dimensional setting. This blow up phenomenon has also been ob-
served in the previous section for the problem of prediction (P2) in Gaussian design. In conclusion,
the knowledge of the variance is of great importance for k log(p/k) larger than

√
n.

3.3. Inverse problem and support estimation

In the inverse problem (P3), we are primarily interested in the estimation of θ rather than Xθ. This
is why the loss function under study is ‖θ1 − θ2‖2p. Minimax lower and upper bounds for this loss
function are discussed in Section 6. For a fixed design X, the minimax risk of prediction is

RI[k,X] := inf
θ̂

sup
θ∈Θ[k,p]

Eθ,σ[‖θ − θ̂‖2p/σ2] . (3.7)
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If one transforms the design X by an homothety of factor λ > 0, then this multiplies the minimax
risk of the inverse problem by a factor 1/λ2. For the sake of simplicity, we restrict ourselves to
designs X such that each columns has a unit norm. The collection of such designs is noted Dn,p.
The supremum of the minimax risks over the designs Dn,p is +∞. Take for instance a design where
the two first columns are equal. We are rather interested in the infimum of the minimax risks over
Θ[k, p] as X varies across Dn,p:

RI[k] := inf
X∈Dn,p

RI[k,X] .

The quantity RI[k] is interpreted the following way: given (k, n, p) what is the smallest risk we can
hope if we use the easiest possible design? We call this quantity the minimax risks of the inverse
problem over Θ[k, p]. In Table 3, we provide the minimax risks in fixed design for different values
of (k, n, p).

(k,n,p) k log(p/k) ≤ Cn k log(p/k) ≫ n log(n)

Minimax risk RI[k] Ck log(p/k) exp[C′k log(p/k)/n].

Table 3: Minimax risks of the inverse problem RI[k] over Θ[k, p]

If k log(p/k) remains smaller than n, it is possible to recover the risk Ck log(p/k) for ”good”
designs. This risk is for instance achieved by the Dantzig selector of Candès and Tao [13] for nearly-
orthogonal designs, that roughly means that the restricted eigenvalues Φ3k,+(X) and Φ3k,−(X) of
X∗X are close to one. In a ultra high-dimensional setting, it is not anymore possible to build nearly-
orthogonal designs X and the minimax risk of the inverse problem blows up as for testing problems
(P1) or problems of prediction in Gaussian design (P2).

In Section 6, we also discuss the consequences of the minimax bounds on the problem of support
estimation (P4). We prove that, in a ultra-high dimensional setting, it is not possible to estimate
with high probability the support of θ unless the ratio ‖θ‖2p/σ2 is larger than C(p/k)2k/n. Moreover,
it is not possible to select of subset of {1, . . . , p} of size n that contains the support of θ unless the
ratio ‖θ‖2p/σ2 is larger than (p/k)Ck/n. Observe that the quantity (p/k)Ck/n is precisely huge in a
ultra-high dimensional setting. In practice, this means that the problems of support estimation and
dimension reduction are almost hopeless in a ultra-high dimensional setting.

4. Hypothesis Testing

We start by the testing problem (P1) because some minimax lower bounds in prediction and inverse
estimation derive from testing considerations.

4.1. Known variance

4.1.1. Test T ∗
α

In order to obtain the minimax upper bounds for known variance, we consider the following testing
procedure. It is taken from Baraud [3] who applies it in the Gaussian sequence model.
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Definition 4.1. [Procedure T ∗
α] Define k∗ as the smallest integer such that k∗[1+log(p/k∗)] ≥ √

n.
Given a subset m of {1, . . . , p}, Πm refers to the orthogonal projection onto the space generated by
the vectors (Xi)i∈m. For any 1 ≤ k < k∗, we define the statistics T ∗

α,k by

T ∗
α,k := sup

m∈M(k,p)
‖ΠmY‖2n − σ2χ̄−1

k

[
α/(kp)

]
,

where M(k, p) is defined in Section 2 and χ̄k(u) denotes the probability for a χ2 distribution to be
larger than u. We also consider

T ∗
α,n := ‖Y‖2n − σ2χ̄−1

n (α) .

The procedure T ∗
α is defined by

T ∗
α =

[
∨1≤k<k∗T

∗
α/(2k∗),k

]
∨ T ∗

α/2,n . (4.1)

The hypothesis H0 is rejected if T ∗
α is positive.

T ∗
α is a Bonferroni multiple testing procedure based on a large number of parametric tests of the

hypothesis H0: ”θ = 0” against H1,m ”θ 6= 0 and supp(θ) ⊂ m”.

4.1.2. Gaussian design

As mentioned in the introduction, the knowledge of σ2 = Var(Y |X) is really unlikely in many
practical applications. Nevertheless, we study this case to enhance the differences between known
and unknown conditional variances. Furthermore, these results turn out to be useful for analyzing
the minimax separation distances in fixed design problems. We recall that the notions of minimax
separation distance have been defined in Section 3.2.

Theorem 4.1. [Minimax lower bounds] Assume that α + δ ≤ 53% and that p ≥ n. For any
k ∈ {1, . . . n}, the (α, δ)-minimax separation distance (3.5) with covariance Ip is lower bounded by

(ρ∗R[k, Ip])
2 ≥ C(α, δ)

[
k

n
log

(
1 +

p

k2
∨
√

p

k2

)
∧ 1√

n

]
. (4.2)

This lower bound also implies that (ρ∗R[k])
2 ≥ C(α, δ)

[
k
n log

(
1 + p

k2 ∨
√

p
k2

)
∧ 1√

n

]
. Next, we

state that T ∗
α achieves this rate of testing for any covariance Σ.

Proposition 4.2. [Power of T ∗
α] For any covariance Σ, the size of the procedure T ∗

α is smaller
than α. Consider some δ > 0 and assume that n ≥ 8 log(2/δ). For any k ∈ {1, . . . , p} and any
covariance Σ, we have

ρ2R[T
∗
α, k,Σ] ≤ C(α, δ)

[
k

n
log
(ep
k

)
∧ 1√

n

]
. (4.3)

Remark 4.1. [Minimax adaptation]
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1. If p ≥ n1+γ with γ > 0, then the procedure T ∗
α defined in (4.1) simultaneously achieves up to

a constant C(α, δ, γ) the optimal separation distance

k

n
log
(ep
k

)
∧ 1√

n
,

for all sparsities k between 1 and n. The separation distance of T ∗
α proved in Proposition 4.6

is valid for any covariance matrix Σ of the vector X. In contrast, the minimax lower bound of
Theorem 4.5 is restricted to the case Σ = Ip. This implies that the minimax separation distance
for a general matrix Σ is (up to a positive constant that does not depend on Σ) smaller than
the minimax separation distance for Σ = Ip. In other words, there exists a positive constant
C(α, δ) such that for all covariance matrices Σ,

ρ∗R[k, Ip] ≥ C(α, δ)ρ∗R[k,Σ] .

2. When p is close to n and k is close to
√
n, the minimax lower bound (4.2) and the upper bound

(4.3) only match up to a possible log(n) factor. Such a difficulty has already been observed by
Baraud [3] in the case of Gaussian sequence model which corresponds to p = n and a fixed
design X = Ip.

4.1.3. Fixed design

The separation distances share similar behaviors with the Gaussian design case.

Theorem 4.3. [Minimax lower bound] Assume that α + δ ≤ 53% and that p ≥ n ≥ C(α, δ).
For any k ∈ {1, . . . , n}, there exist some n× p designs X such that

(ρ∗F [k,X])2 ≥ C(α, δ)

[
k

n
log

(
1 +

p

k2
∨
√

p

k2

)
∧ 1√

n

]
. (4.4)

More specifically, we consider designs X that are realisations of a standard Gaussian design: all
Xi,j follow independent standard normal distribution. Then, with large probability, the design X
satisfies (4.4). See the proof for more details. Theorem 4.3 implies that

(ρ∗F [k])
2 ≥ C(α, δ)

[
k

n
log

(
1 +

p

k2
∨
√

p

k2

)
∧ 1√

n

]
.

In order to get the minimax upper bounds, we still use the procedure T ∗
α.

Proposition 4.4. [Power of T ∗
α in fixed design] For any design X, the size of the procedure Tα

is smaller than α. Consider some δ > 0 and assume that n ≥ 8 log(2/δ). For any design X and any
k ∈ {1, . . . , n}, we have

ρ2F [T
∗
α, k,X] ≤ C(α, δ)

[
k

n
log
(ep
k

)
∧ 1√

n

]
, (4.5)

Remark 4.2. The minimax lower bounds and the upper bounds are analogous to the random design
case studied in Section 4.1.2 and the same comments apply. If p ≥ n1+γ with γ > 0, T ∗

α is minimax
adaptive to the sparsity k. Moreover, Theorem 4.3 tells us that, with high probability, realisations
X of a standard Gaussian design almost yield the largest minimax separation distance, that is
ρ∗F [k,X] ≥ ρ∗F [k].
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4.2. Unknown variance

4.2.1. Preliminaries

We now turn to the study of the minimax separation distances when the variance σ2 is unknown. In
Section 3.2, we have introduced the notions of δ-separation distances and (α, δ)-minimax separation
distances when the variance σ2. We now define their counterpart for an unknown variance σ2.

Let us consider a test Φα of the hypothesis H0 for the linear regression model with fixed design
X. We say that Φα has a level α under unknown variance if

sup
σ>0

P0,σ[Φα(Y,X) > 0] ≤ α .

This means that the type I error probability is controlled uniformly over all variance σ2. Similarly,
we want to control the type II error probabilities uniformly over all variances. The δ-separation
distance ρF,U [Φα, k,X] of Φα over Θ[k, p] for unknown variance variance is defined by

ρF,U [Φα, k,X] := inf

{
ρ > 0, inf

σ>0, θ∈Θ[k,p],

‖Xθ‖n≥
√
nρσ

Pθ,σ[Φα = 1] ≥ 1− δ

}
. (4.6)

Hence, ρF,U [Φα, k,X] corresponds to the minimal distance such that the hypotheses ”θ = 0” and
”‖Xθ‖2n ≥ nρ2F,U [Φα, k,X]σ2, θ ∈ Θ[k, p] and σ > 0” are well separated by the test Φα. Taking the
infimum over all level α tests, we get the (α, δ) minimax separation distance over Θ[k, p] with design
X and unknown variance is

ρ∗F,U [k,X] := inf
Φα

ρF,U [Φα, k,X] . (4.7)

Finally, ρ∗F,U [k] := supX ρ
∗
F,U [k,X] corresponds to the (α, δ)-minimax separation distance over

Θ[k, p] with the ”worst-case designs”.
In the Gaussian design, we define ρR,U [Φα, k,Σ], ρ

∗
R,U [k,Σ], and ρ

∗
R,U [k] analogously to (4.6) and

(4.7) by replacing the norm ‖Xθ‖n/
√
n by ‖

√
Σθ‖p.

4.2.2. Test Tα

We introduce a second testing procedure to handle the case of unknown variance σ2.

Definition 4.2. [Procedure Tα] Fixing some subset m of {1, . . . , p} such that n − |m| > 0, we
note dm(X) the rank of the subdesign Xm of X of size n×|m|. We define the Fisher statistic φm by

φm(Y,X) :=
[n− dm(X)]‖ΠmY‖2n
dm(X)‖Y −ΠmY‖2n

. (4.8)

We build the statistic Tα,k(Y,X) as

Tα,k := sup
m∈M(k,p)

φm(Y,X)− F̄−1
dm(X),n−dm(X)

[
α/(kp)

]
, (4.9)
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where F̄k,n−k(u) denotes the probability for a Fisher variable with k and n− k degrees of freedom to
be larger than u. Finally, the statistic Tα is defined by

Tα := sup
k=1,...,⌊n/2⌋

Tα/⌊n/2⌋,k . (4.10)

The hypothesis H0 is rejected when Tα is positive.

As T ∗
α , the Tα is a a Bonferroni multiple testing procedure. Contrary to T ∗

α, it is based on Fisher
tests to handle the unknown variance. The ideas underlying this statistic have been introduced in [5]
in the context of fixed design regression.

4.2.3. Gaussian design

Theorem 4.5. [Minimax lower bound] Suppose that α + δ ≤ 53% and that p ≥ C. For any
k ∈ {1, . . . , ⌊p1/3⌋}, the (α, δ)-minimax separation distance over Θ[k, p] with covariance Ip and
unknown variance satisfies

(ρ∗U [k, Ip])
2 ≥ C

k

n
log
(ep
k

)
exp

[
C
k

n
log
(ep
k

)]
. (4.11)

Remark 4.3. This theorem extends a result of [38] to encompass both the high-dimensional and the
ultra-high dimensional setting. The condition p ≤ k1/3 can be replaced by k ≤ p1/2−γ with γ > 0.
This condition is not really restrictive for a sparse high-dimensional regression since the usual setting
is k ≤ n≪ p.

Proposition 4.6. [Power of Tα] For any covariance Σ, the size of Tα is smaller than α. Consider
some δ > 0 and assume that p ≥ n ≥ 8 log(2/δ). For all 1 ≤ k ≤ n/2 and all covariance matrices
Σ, we have

ρ2R,U [Tα, k,Σ] ≤ C(α, δ)
k log(ep/k)

n
exp

[
C2(α, δ)

k log(ep/k)

n

]
. (4.12)

This proposition extends a result of [38] to encompass both the high-dimensional and the ultra-
high dimensional setting.

Remark 4.4.

1. [Minimax adaptation] If k ≤ p1/3 ∧ n/2, the upper bound (4.12) agrees with the minimax
lower bound (4.11). Consequently, the test Tα simultaneously achieves the optimal rate of test-
ing over all Θ[k, p] with k ≤ n/2∧p1/3. The minimax separation distance is of order k log(p)/n
when k log(p/k) remains small compared to n. In a ultra-high dimensional setting it blows up
to the order of exp[C(α, δ)k log(p)/n].

2. [Dependent design] As for known conditional variance, the separation distance of Tα proved
in Proposition 4.6 is valid for any Σ, while the minimax lower bound of Theorem 4.5 has only
been proved for Σ = Ip. This implies that there exists a constant C(α, δ) such that for all
covariance matrices Σ,

ρ∗R,U [k, Ip] ≥ C(α, δ)ρ∗R,U [k,Σ] .

For some covariance matrices Σ, the minimax separation distance with covariance Σ is much
smaller than ρ∗R,U [k, Ip]. Next, we provide an example of such a matrix Σ.
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Example 4.1. Consider a covariance Σc such that Σc[i, i] = 1 and Σc[i, j] = c > 0 for any i 6= j.
Let us introduce Xp+1 =

∑p
i=1Xi/

√
p. For nc ≥ C(α, δ) the test T ′

α defined by

T ′
α :=

(n− 1)‖Π{p+1}Y‖2n
‖Y −Π{p+1}Y‖2n

− F̄−1
k,n−k(α) ,

satisfies P0 (T
′
α > 0) = α and ρ2R,U [Tα, 1,Σc] ≤ C(α, δ)(cn)−1. When c ≥ 1/ log p, this separation

distance is minimax.

This example is derived from Propositions 8 and 9 in [38] and its proof is analogous. Observe
that ρR,U [Tα, 1,Σc] does not depend on p. Thus, for large p, we get ρ∗R,U [1,Σc] ≪ ρ∗R,U [1, Ip]. We
cannot easily generalize the computations of this example to other covariances. The computation of
sharp minimax bounds that capture the dependency of ρ∗R,U [k,Σ] on Σ remains an open problem.

Remark 4.5. [Comparison between known and unknown variance] There are three regimes
depending on (k, p, n):

1. klog(p/k) ≤ √
n. The minimax separation distances are of the same order for known and

unknown σ2. The minimax distance k log(p/k)/n is also of the same order as the minimax
risk of prediction.

2.
√

n ≤ klog(p/k) ≤ n. If σ2 is known, the minimax separation distance is always of order
1/
√
n. In such a case, an optimal procedure amounts to test the hypothesis “Var(Y ) = σ2”

against “Var(Y ) 6= σ2” using the statistic T ∗
α,n introduced in Definition 4.1. If σ2 is unknown,

we cannot use the statistic T ∗
α,n and the minimax separation distance behaves like k log(p/k)/n.

3. klog(p/k) ≥ n. If σ2 is unknown, the minimax separation distance blows up. It is of order
(p/k)Ck/n. Consequently, the problem of testing ”θ = 0” becomes extremely difficult in this
setting.

4.2.4. Fixed design

Proposition 4.7. [Minimax lower bound] Assume that α+ δ ≤ 53% and that p ≥ n ≥ C(α, δ).
For any k ∈ {1, . . . , ⌊p1/3⌋}, there exist some n× p designs X such that

(ρ∗F,U [k,X])2 ≥ C
k

n
log
(ep
k

)
exp

[
C
k

n
log
(ep
k

)]
. (4.13)

As for Theorem 4.5, the assumption k ≤ p1/3 can be replaced by k ≤ p1/2−γ with γ > 0.
Proposition 4.7 implies that

(ρ∗F,U [k,X])2 ≥ C
k

n
log
(ep
k

)
exp

[
C
k

n
log
(ep
k

)]
.

To assess the optimality of the lower bound, we use the procedure Tα. The following result is a
consequence of Theorem 1 in Baraud et al [5].

Proposition 4.8. [Power of Tα in fixed design] Assume that n ≥ 4. For any design X, the size
of Tα is less than α. Consider some δ > 0. For any k ≤ n/2 and any n× p designs X we have

ρ2F,U [Tα, k,X] ≤ C(α, δ)
k

n
log
(ep
k

)
exp

[
C2(α, δ)

k log(ep/k)

n

]
. (4.14)
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Again, we observe an analogous phenomenon to the random design: the procedure Tα is minimax
adaptive to the sparsity. Moreover, the minimax separation hypotheses grow exponentially fast with
k in a ultra-high dimensional setting.

5. Prediction

In contrast to the testing problem, the minimax risks of predictions (P2) exhibit really different
behaviors in fixed and in random design.

5.1. Gaussian design

Proposition 5.1. [Minimax lower bound for prediction] Assume that p ≥ C. For any k ∈
{1, . . . , ⌊p1/3⌋}, we have

RR[k, Ip] ≥ C
k

n
log
(ep
k

)
exp

{
C2
k

n
log
(ep
k

)}
. (5.1)

Remark 5.1. [General covariances Σ] The lower bound (5.1) is only stated for the identity
covariance Σ = Ip. For general covariance matrices Σ, we have

RR[k,Σ] ≥ C
Φ2k,−(

√
Σ)

Φ2k,+(
√
Σ)

× k

n
log
(ep
k

)
. (5.2)

This statement has been proved in [37] (Proposition 4.5) in the special case of restricted isometry,
but the proof straightforwardly extends to any restricted eigenvalue. For Σ = Ip, the lower bound
(5.2) does not capture the elbow effect in an ultra-high dimensional setting (compare with (5.1)).

Next, we build an estimation procedure θ̃V that achieves the lower bound (5.1).

Definition 5.1. [Estimator θ̃V ] For any integer k ∈ {1, . . . , p}, we consider a least-squares esti-
mator θ̂k defined by

θ̂k ∈ arg min
θ∈Θ′[k,p]

‖Y −Xθ′‖2n . (5.3)

Let us define the penalty function pen : {1, . . . , ⌊(n − 1)/4⌋} 7→ R+ by

pen(k) = K
k

n
log
(ep
k

)
, (5.4)

where K > 0 is a tuning parameter. The dimension k̂V is selected as follows

k̂V ∈ arg min
1≤k≤⌊(n−1)/4⌋

log
[
‖Y −Xθ̂k‖2n

]
+ pen(k) .

For short, we note θ̃V = θ̂
k̂V

.

This variable selection procedure relies on complexity penalization. The penalty pen(k) depends
on the size of k and on the number

(p
k

)
of subsets of {1, . . . , p} of size k. Observe that the estimator

θ̃V does not require the knowledge of σ2. The choice of the tuning parameter K is universal: it
neither depends on n, p, k, nor on Σ, θ, σ2.
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Theorem 5.2. [Risk bound for θ̃V ] Assume that n ≥ C. There exists a universal choice of K in
the penalty (5.4) such that the following holds. For any covariance Σ ,any k ∈ {1, . . . , ⌊(n − 1)/4⌋}
and any θ ∈ Θ[k, p] we have

E
[
‖
√
Σ(θ̃V − θ)‖2p

]
≤ C(K)

k

n
log
(ep
k

)
exp

{
C
k

n
log
(ep
k

)}
σ2 . (5.5)

In contrast to similar results such as Theorem 1 in Giraud [24] or Theorem 3.4 in Verzelen [37],
we do not restrict the size of the models |m| to be smaller than n/(2 log p). The proof of the theorem
is based on a new concentration inequality for the spectrum of Wishart matrices stated in Lemma
A.2.

Remark 5.2.

1. [Minimax risk] We derive from Theorem 5.2 and Proposition 5.1 that the minimax risk
RR[k] is of order

C
k

n
log
(ep
k

)
exp

{
C
k

n
log
(ep
k

)}
.

If k log(p/k) is small compared to n, the minimax risk of estimation is of order Ck log(p/k)/n.
In an ultra-high dimensional setting, we again observe a blow up.

2. [Adaptation to sparsity] It also follows from Theorem 5.2 and Proposition 5.1 that θ̃V is
minimax adaptive to all 1 ≤ k ≤ p1/3 ∧ (n− 1)/4. As a consequence, adaptation is possible for
this problem.

3. [Unknown Variance] The estimator θ̃V does not requires the knowledge of the variance
σ2 = Var(Y |X). Consequently, the minimax risk of prediction is of the same order for known
and unknown variance.

4. [Dependent design] The risk upper bound of θ̃V stated in Theorem 5.2 is valid for any
covariance matrix Σ of the covariance X. In contrast, the minimax lower bound of Theorem
4.5 is restricted to the identity covariance. This implies that the minimax prediction risk for
a general matrix Σ is at worst of the same order as in the independent case: there exists an
universal constant C > 0 such that for all covariance Σ,

RR[k, Ip] ≥ CRR[k,Σ] .

In Remark 5.1, we have stated a minimax lower bound for prediction that depends on the
restricted eigenvalues of Σ. Fix some 0 < γ < 1. If we consider some covariance matrices Σ
such that Φ2k,−(

√
Σ)/Φ2k,+(

√
Σ) ≥ 1−γ , the minimax lower bound (5.2) and the upper bound

(5.5) match up to constant C(γ). However, the lower and the upper bounds do not exhibit the
same dependency with respect to Σ, especially when Φ2k,−(

√
Σ)/Φ2k,+(

√
Σ) is away from one.

5.2. Fixed design

5.2.1. Known variance

Proposition 5.3. [Minimax lower bound] For any design X and any 1 ≤ k ≤ n, the minimax
risk RF [k,X] is lower bounded as follows

RF [k,X] ≥ C
Φ2k,−(X)

Φ2k,+(X)

k

n
log
(ep
k

)
. (5.6)
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For any 1 ≤ k ≤ n, we also have

RF [k] ≥ C

[
k

n
log
(ep
k

)
∧ 1

]
. (5.7)

The minimax lower bound (5.6) has been independently proved by Raskutti et al. [34]. Rigollet
and Tsybakov [35] have also independently derived a bound similar to (5.6) which better handles
the case where the rank of X is smaller than k. The bound (5.6) is useful to derive the second lower
bound (5.7). The designs X that allow to prove this second lower bound when k log(p/k) ≤ n/32
correspond to realizations of a Gaussian standard independent design. See the proof for more details.

Remark 5.3. We easily retrieve from (5.6) a result of asymptotic geometry first observed by
Baraniuk et al. [2] in the special of restricted isometry property [12]. For any 0 < δ ≤ 1, there
exists a constant C(δ) > 0 such that no n × p matrix X can fulfill Φk,−(X)/Φk,+(X) ≥ δ if
k(1 + log(p/k)) ≥ C(δ)n.

Proof. If Φ2k,−(X)/Φ2k,+(X) ≥ δ, then RF [k,X] ≥ Cδk log (ep/k) /n.
We also have RF [k,X] ≤ RF [p,X] ≤ RF [p] ≤ 1 Gathering these two bounds allows to conclude.

Let us turn to the upper bound. For the sake of simplicity, we assume in the rest of the section that
p ≥ n. Let us define a specific version of an estimation procedure due to Birgé and Massart [9, 10].

Definition 5.2. [Procedure for fixed design regression] Define k∗ as the smallest integer k
such that k[1 + log(p/k)] ≤ n. Let us consider the collection of dimensions K := {1, . . . , k∗} ∪ {n}.
Then, is defined by the penalty function pen : K 7→ R+

pen(k) :=





2k

[
1 +

√
2 log

(
e2p
k

)]2
if k ≤ k∗

2n if k = n ,

The size k̂BM is selected by minimizing the following penalized criterion

m̂BM := arg inf
m∈M

‖Y −Xθ̂k‖2n + σ2pen(k) , (5.8)

For short, we write θ̃BM = θ̂
k̂BM .

Observe that the estimator θ̃BM requires the knowledge of the variance σ2. The following risk
bound is a special case of Theorem 1 in Birgé and Massart [10].

Proposition 5.4. [Risk bound for θ̃BM (Birgé and Massart)] Assume that p ≥ n. For any
1 ≤ k ≤ n, we set k1 = k if k ≤ k∗ and k1 = n else. For any design X, we have

sup
θ∈Θ[k,p]

E
[
‖X(θ̂k1 − θ)‖2n/n

]
≤ C

[
k

n
log
(ep
k

)
∧ 1

]
σ2 . (5.9)

For any 1 ≤ k ≤ n and any design X, the estimator θ̃V satisfies

sup
θ∈Θ[k,p]

E
[
‖X(θ̃BM − θ)‖2n/n

]
≤ C

[
k

n
log
(ep
k

)
∧ 1

]
σ2 . (5.10)
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Remark 5.4.

1. [Minimax risks] We derive from (5.7) and (5.4) that the minimax risk RF [k] is of order

C

[
k

n
log(ep/k)

]
∧ 1 .

If k log(p/k) is small compared to n, the minimax risk is of order Ck log(p/k)/n. In an ultra-
high dimensional setting, this minimax risk remains close to one. This corresponds (up to
renormalization) to the minimax risk of estimation of the vector E[Y] of size n . As a con-
sequence, the sparsity assumption does not play anymore a role in a ultra-high dimensional
setting.

2. [Adaptation to sparsity] For any design X, θ̃BM simultaneously achieves the minimax risk
of estimation at the sense of (5.7) over all Θ[k, p] with 1 ≤ k ≤ n. Thus, adaptation to the
sparsity is possible when σ2 is known.

3. [Adaptation to the design] For designs X, such that the ratio Φ2k,−(X)/Φ2k,+(X) is close
to one, the lower bounds (5.6) and the upper bounds (5.10) agree with each other. However, the
dependency of (5.6) on X is not sharp when the ratio Φ2k,−(X)/Φ2k,+(X) is away from one.
Take for instance and orthogonal design with p = n and duplicate the last column. Then, the
lower bound (5.6) for this new design X is 0 while the minimax risk is of order k log(p/k)/n.

Remark 5.5. [Comparison with l1 procedures] The designs X for which l1 procedures such as
the Lasso or the Dantzig selector are proved to perform well require that Φ2k,−(X)/Φ2k,+(X) is close
to one. It is interesting to notice that these designs X precisely correspond to situations where the
minimax risk is close to its maximum k log(p/k)/n (see Equation (5.6)).

5.2.2. Unknown variance

We now consider the problem of prediction when the variance σ2 is unknown. The optimal risk of
prediction remain of the same order when σ2 is unknown. Indeed, the minimax upper bound (5.9)
involves the estimator θ̂k1 that do rely on the knowledge of σ2. Let us now study to what extent
adaptation is possible when the variance σ2 is unknown.

The estimator θ̃V introduced in the previous subsection does not rely on the knowledge of σ2. As
a benchmark, we first provide a risk bound for θ̃V . This risk bound derives from the work of Baraud
et al. [4].

Proposition 5.5. [Risk bound for θ̃V ] Assume that n ≥ 14. There exists a universal choice of K
in the penalty (5.4) such that the following holds. For any design X and any 1 ≤ k ≤ ⌊(n − 1)/4⌋,
we have

sup
θ∈Θ[k,p]

E
[
‖X(θ̃V − θ)‖2n/n

]
≤ C

k

n
log
(ep
k

)
exp

[
C
k

n
log
(ep
k

)]
σ2 . (5.11)

Remark 5.6. As a consequence, θ̃V simultaneously achieves the minimax risk over all Θ[k, p] for
all k ≤ ⌊(n− 1)/4⌋ such that k(1+log(p)/k) ≤ n. In a ultra-high dimensional setting, the maximum
risk of θ̃V over Θ[k, p] is controlled by (ep/k)Ck/n while the minimax risk is smaller than n. In
contrast, the estimator θ̂n is minimax adaptive over all Θ[k, p] such that k(1 + log(p)/k) ≥ n. Can
we merge the qualities of θ̃V and of θ̂n? The following proposition tells us that it is impossible.
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Proposition 5.6. [Adaptation is impossible] Consider any p ≥ n ≥ C and k ∈ {1, . . . , p1/3}
such that k log(ep/k) ≥ Cn. There exists a design X of size n× p such that for any estimator θ̂, we
have either

sup
σ2>0

E0,σ

[
‖X(θ̂ − 0p)‖2n/(nσ2)

]
> C ,

or sup
θ∈Θ[k,p] , σ2>0

Eθ,σ

[
‖X(θ̂ − θ)‖2n/(nσ2)

]
> exp

[
C
k

n
log
(p
k

)]
.

As a benchmark, we recall the minimax upper bounds (5.9):

RF [1] ≤ C
log(p)

n
and RF [k] ≤ C

k

n
log
(ep
k

)
∧ 1

The proof of proposition 5.6 uses the minimax lower bounds (4.13) for the testing problem (P1)
under unknown variance.

Remark 5.7. In the setup of Proposition 5.6, any estimator θ̂ that does not rely on σ2 has to pay
at least one of these two prices:

1. The estimator θ̂ does not use the sparsity of the true parameter θ. Its risk for estimating 0p is

of the same order as the minimax risk over Rp. The estimator θ̂n has this drawback.
2. For any 1 ≤ k ≤ p1/3, we have

sup
X

sup
σ>0

sup
θ∈Θ[k,p]

Eθ,σ

[
‖X(θ̂ − θ)‖2n/(nσ2)

]
≥ C

k

n
log
(p
k

)
exp

[
C
k

n
log
(p
k

)]
.

This is the price for adaptation when σ2 is unknown. The estimator θ̃V exhibits this behavior.

In short, it is impossible to merge the qualities of θ̃V and of θ̂n. Furthermore, θ̃V achieves the optimal
adaptive rate of estimation under unknown variance.

In conclusion, the minimax risk of prediction are of the same order for fixed and Gaussian design
and for known and unknown variance when k log(p/k) is small compared to n. In a ultra-high
dimensional setting, the minimax risks behave differently. In Gaussian design, the minimax risk is
of the order (p/k)Ck/n. In contrast, the minimax risk of prediction remains smaller than one for
fixed design regression. Finally, there is a price to pay for adaptation under unknown variance and
fixed design.

6. Inverse problem and support estimation

6.1. Minimax risk of estimation

First, we consider the problem (P3) for a fixed design regression model. The minimax risk of
estimation over Θ[k, p] with a design X is noted RI[k,X] and is defined in (3.7).

Proposition 6.1. [Minimax lower bound in fixed design] For any design X and any 1 ≤ k ≤
n, we have

RI[k,X] ≥ C

[
1

Φ2k∧p,− (X)
∨ k log(ep/k)

Φ2k∧p,+ (X)

]
. (6.1)
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Proposition 6.2. [Upper bound in fixed design] Consider any k ≤ n ∧ p. The least-squares
estimator θ̂k defined in (5.3) satisfies

sup
θ∈Θ[k,p]

E
[
‖θ̂k − θ‖2p

]
≤ C

k log (ep/k)

Φ2k,−(X)
σ2 . (6.2)

The minimax lower and upper bounds match up to the ratio Φ2k,+ (X) /Φ2k,− (X). If the restricted
eigenvalues of X are close to one, then the minimax risk is of order k log(ep/k)σ2. Note that the
Lasso is proved to achieve this optimal rate under stronger assumptions on the design matrix X
(see [34] Section 3.1).

Let us now study to what extent we can build designs that constrain the ratio Φ2k,+ (X) /Φ2k,− (X)
to be close to one. We restrict ourselves to designs X such that each column has a unit norm, as
justified in Section 3.3. The collection of such designs is noted Dn,p. We recall that RI[k] is defined
by infX∈Dn,p RI[k,X].

Corollary 6.3. Assume that k log(ep/k) ≤ Cn. Then, we have

C1k log
(ep
k

)
≤ RI[k] ≤ C2k log

(ep
k

)
.

This bound is achieved by θ̂k for some designs X that are realisations of a normalized Gaussian
design.

This result is due to the following property: as soon as k log(ep/k) is small compared to n, there
exists a design X such that the restricted eigenvalues of X∗X of order 2k are close to one. For such
designs, the minimax risk of estimation is of order k log(ep/k).

Proposition 6.4. For any design X ∈ Dn,p and any k ≤ n ∧ p/2, we have

Φ2k,−(X) ≤ Ck2
(
k

p

)2k/n

∨ 1 . (6.3)

Consider a sequence (kn, pn) such that [kn log(pn/kn)]/{n log(n)} goes to infinity and kn = o(n∨pn).
Then, we have

(
pn
kn

)4kn/n log

& RI[kn] log∼ inf
X∈Dn,pn

Φ−1
2kn,−(X)

log

&

(
pn
kn

)2kn/n

, (6.4)

where
log∼ stands for log equivalent and

log

& stands for log dominance.

In a ultra-high dimensional setting, this is not anymore possible to build a design X such that
the restricted eigenvalues of X∗X of order 2k are close to one. In fact, the term 1/Φ−1

2kn,−(X) blows
up and becomes preponderant in the lower bound (6.1). As a consequence, it is not possible to
achieve a smaller risk than C(p/k)2k/n. While the quantity k log(p/k) in Corollary 6.3 is due to the
size Θ[k, p], the minimax risk in ultra-high dimension is essentially driven by geometrical constrains
on the design X. Whatever design X ∈ Dn,p we have, the minimax risk blows up to the order of
(p/k)Ck/n.
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6.2. Consequences on support estimation

We deduce from the minimax lower bounds for the inverse problem (P3) some consequences for the
support estimation problem (P4) in a ultra-high dimensional setting.

Definition 6.1. For any ρ > 0 and any k ≤ p, the set Cp
k(ρ) is made of all θ in θ[k, p] such that θ

contains exactly k non-zero coefficients that are all equal to ρ/
√
k.

Proposition 6.5. [Support recovery is almost impossible] For any ρ2 ≤ Ck−1
( p
k

)2k/n
, we

have

inf
X∈Dn,p

inf
m̂

sup
θ∈Cp

k
(ρσ)

Pθ [m̂ 6= supp(θ)] ≥ 1/(2e + 1) .

Assume that k log(ep/k)/[n log(n)] is larger than 4 (ultra-high dimensional setting). Then, for
any design X ∈ Dn,p it is not possible to recover the support of θ with high probability, unless θ
satisfies:

‖θ‖2p
σ2

≥ C
(p
k

)k/n
.

As it is almost impossible to estimate the support of θ in a ultra-high dimensional setting, we
may aim to an easier objective. Can we choose a subset M̂ of {1, . . . , p} of size p0 ≤ p that contains
the support of θ with high probability? This would allow to reduce the dimension of the problem
from p to p0. Dimension reductions techniques are popular for analyzing high dimensional problems.
We study here to what extent dimension reduction is a realistic objective: how large should be the
non-zero components of θ? How small can we choose p0?

Proposition 6.6. Consider a Gaussian design regression with Σ = Ip and σ2 = 1. We assume that
p ≥ k3 ∨ C and n ≥ C. Set

ρ2 = C
k

n
log
(p
k

)
exp

[
C
k

n
log
(p
k

)]
.

There exists a universal constant 0 < δ < 1 such that for any measurable subset M̂ of {1, . . . , p} of
size p0 ≤ pδ, we have

sup
θ∈Cp

k
(ρ)

Pθ,1

[
supp(θ) * M̂

]
≥ 1/8 . (6.5)

In a ultra-high dimensional setting, it is therefore not possible to reduce the dimension of the
problem to pδ unless the square norm of θ is of order exp[Ck/n log(p/k)]. In (6.5), the number 1/8 is
of no particular significance. It can be replaced by any constant c ∈ (0, 1) if we take an asymptotic
point of view ((k, p, n) → ∞).

In order to shed light on the phenomenon, let us consider a simple asymptotic example: pn =
exp(nγ1) and kn = n1−(γ1∧1)+γ2 with γ1 > 0 and γ2 > 0. If we assume that that θn ∈ Θ[kn, pn] is

such that ‖θn‖2p ≤ exp(Cnγ2+(γ1−1)+), then it not possible to find a subset M̂n of size exp(δnγ1)
that contains the support of θn with probability going to one, where δ is defined as in Proposition
6.6. Consequently, we still have to keep at least exp(δnγ1) variables after the process of dimension
reduction!
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7. What is a ultra-high dimensional problem?

Until now, we have stated that a problem is ultra-high dimensional when k log(ep/k) is large com-
pared to n. At the end of this section, we provide a simple rule of thumb to decide whether a problem
should be considered as ultra-high dimensional. This claim is supported by a simulation study.

First simulation setting. Following the example described in the introduction, we consider a
Gaussian design linear regression model with p = 5000 and p = 200, n = 50, Σ = Ip, and σ = 1.
We set the number of non zero components k ranging from 1 to 15. k being fixed, we take θ
such that θ1 = . . . = θk = 4

√
log(p)/n ≈ 1.30 (resp. 1.65) for p = 200 (resp. p = 5000) and

θk+1 = . . . = θp = 0. As a consequence, we have ‖θ‖2 = 16k log(p)/n. The non-zero coefficients of θ
are chosen large enough so that the support of θ is recoverable when the problem is not ultra-high
dimensional. Each experiment is repeated N = 100 times.

Dimension reduction procedures. We apply the SIS method [22] to reduce the dimension to a

set M̂S of size p0 = 50. We then compute the Power of the procedure,

Power :=
Card[M̂S ∩ {1, . . . , k}]

k
.

The power measures whether the dimension reduction has been performed efficiently.
We also compute the regularization path of the LASSO using the LARS [21] algorithm. Before

applying the LASSO, each column of X is normalized. We consider the set M̂L made of the p0 co-
variates occurring first in the path. We do not argue that SIS and the LASSO are the best methods
here. We have chosen them because they are classical and easy to implement.

2 4 6 8 10 12 14

0.
2

0.
4

0.
6

0.
8

1.
0

SIS p=5000
LASSO p=5000
SIS p=200
LASSO p=200

Figure 1. Power of the dimension reduction procedures (SIS and LASSO)

Results. The results are presented on Figure 1. When k is small, the dimension reduction problem
is not ultra-high dimensional and the LASSO and the SIS methods keep all the relevant covariates.
For large k, the both methods miss some of the relevant covariates. For p = 5000, there is a clear
decrease in the power beyond k = 4. For p = 5000 and k = 8, both methods only have a power close
to 0.5. In expectation, only four covariates belong to the sets M̂S and M̂L of size 50. For p = 200,
there is not a so clear transition, but the power decreases slowly for k > 8.
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Second simulation setting. We still take p = 5000, n = 50, Σ = Ip, σ = 1, and k ranging from 1
to 5. k being fixed, we we take θ such that θ1 = . . . = θk = u

√
log(p)/n and θk+1 = . . . = θp = 0.

Thanks to N = 100 experiments, we estimate u∗k the smallest u such that M̂L has a power larger
than 0.9. u∗k corresponds (up to the renormalization

√
log(p)/n) to the minimal intensity of the

signal so that the dimension reduction method does not forget relevant covariates.

1 2 3 4 5

2
3

4
5

6
7

Figure 2. Minimal signal u∗
k as a function of k.

Results. The results are presented on Figure 2. For small k, u∗k remains close to
√
2. In contrast,

we observe that u∗k blows up at k = 5. We have not depicted u∗6, but we have u∗6 ≥ 100.

These two simulation studies confirm that when k becomes large (in comparison to p and n), the
dimension reduction problem becomes extremely difficult. This phenomenon is particularly striking
when p is much larger than n. From these simulations and from other theoretical arguments (e.g.
[24]), we derive a simple rule of thumb. We say that a problem is ultra-high dimensional if

k log(p/k)

n
≥ 1/2.

For p = 5000 and n = 50, this corresponds to k ≥ 4. Setting p = 200 and n = 50 yields k ≥ 8.

8. Discussion

As proved in Sections 3–6, the behaviors of the minimax separation distances and of the minimax
risks become really different in a ultra-high dimensional setting. Apart from the test problem (P1)
with known variance and the problem of prediction (P2) with fixed design, all the other separations
distances and minimax risks blow up when k log(p/k) becomes larger than n.

This elbow effect has important practical implications: there is no hope of selecting the relevant
covariates in a ultra-high dimensional setting, except if signal over noise ratio is exponentially large.
Moreover, even dimension reduction techniques like correlation screening cannot work well in such
a setting.

In linear testing (P1), we have proved that the optimal separation distances highly depend on the
knowledge of the variance. Most of the testing procedures in the literature rely on the knowledge
σ2. Some specific work is therefore needed to derive fast and efficient procedures under unknown
variance.
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We have not discussed so far the problem of variance estimation. From the testing minimax
lower bounds, we can deduce that the minimax square risks of estimation of σ̂ is at least of order
exp(Ck/n log(p/k)) in a ultra-high dimensional setting when θ ∈ Θ[k, p] is unknown.

In Propositions 5.3 and 6.1, we have provided minimax lower bounds for (P2) and (P3) over
Θ[k, p] for arbitrary designs X. Our corresponding upper bounds match these lower bounds when
the restricted eigenvalues of X∗X are close to one. However, these bounds do not agree anymore
when these restricted eigenvalues are away from one. Deriving the exact dependency of the minimax
risks on X would require sharper lower bounds and the analysis of new estimation procedures.

Our minimax results use the Gaussianity of the noise ǫ and the Gaussianity of the design X in
the random design setting. In a ultra-high dimensional setting, the minimax upper bounds do not
seem to be robust with respect to the Gaussianity. In smaller dimensions (k[1 + log(p/k)] < n),
the Gaussian distribution of the design seems less critical. For instance, consider a design X where
all the components are independent and follow a subgaussian distribution. By a result of Rudelson
and Vershynin [36], the restricted eigenvalues of X∗X remain away from 0 with high probability.
Consequently, some of the minimax bounds should still hold for subgaussian designs. Nevertheless,
the derivation of sharp minimax bounds for non-Gaussian designs and noises remains an open
problem.

9. Proofs of the minimax lower bounds

In order to keep our notations as short as possible, we set

η = 2(1− α− δ) .

We also note ‖.‖TV for the total variation norm. For any subset T ⊂ Rp, α ∈ (0, 1), covariance
matrix Σ, and any variance σ2, we denote βΣ,σ,α(T ) the quantity

βΣ,σ,α(T ) := inf
Φα

sup
θ∈T

Pθ,σ[Φα = 0] ,

the infimum being taken over all tests Φα satisfying P0,σ[Φα = 0] ≤ α. Similarly, we define βX,σ,α(T )
for fixed design and βX,α(T ) for fixed design and unknown variance.

Most of the minimax lower bounds in this paper are based on an approach which comes back
to Ingster [25, 26, 27]. The following lemma encompasses fixed and random design and fixed and
random variance.

Lemma 9.1. Let T be a subset of Rp \ {0} × R∗
+ and let µ a probability measure on F . We note

Pµ =
∫
T Pθ,σdµ and Lµ = dPµ/dP0,σ0

. Then,

βα(T ) ≥ 1− α− 1

2
‖Pµ − P0,σ0

‖TV .

≥ 1− α− 1

2

(
E0,σ0

[
L2
µ(Y,X)

]
− 1
)1/2

. (9.1)

Here, βα should be replaced by βΣ,σ,α, βΣ,α, βX,σ,α, or βX,α depending on the design (fix or
random) or the variance (known or unknown). We refer to Baraud [3] Section 7.1 for a proof and
further explanations in a close framework. The main idea is to find a prior probability on T so that
the total variation distance between Pµ and P0,σ0

is as large as possible. We have βα(T ) ≥ δ if
E0,σ0

[L2
µ(Y,X)] ≤ 1 + η2.
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9.1. Proof of Theorem 4.1

Proof of Theorem 4.1. By homogeneity, we can assume that σ2 = Var(Y |X) = 1. We first build a
suitable prior probability µρ on Θ[k, p] in order to apply Lemma 9.1.

Let us take the set m̂ of size k uniformly in M(k, p). We recall that M(k, p) is the collection
of all subsets of {1, . . . , p} of size k. For each m ∈ M(k, p), let ξm = (ξmj )j∈m be a sequence of

independent Rademacher random variables. Consider some ρ > 0. Define λ = ρ/
√
k and consider

µρ the distribution of the random variable θm̂,ξ =
∑

j∈m̂ λξ
m̂
j ej . Here, (ej)1≤j≤p is the orthonormal

family of vectors of Rp defined by

(ej)i = 1 if i = j and (ei)j = 0 otherwise.

The likelihood ratio Lµρ(X,Y) = Pµρ/P0 writes:

Lµρ(X,Y) = Eξ,m

[
exp

(
−‖Y −Xθm,ξ‖2n − ‖Y‖2n

2

)]

In order to apply Lemma 9.1, we need to upper bound the expectation of L2
µρ
(X,Y). Let us first

take the expectation of L2
µρ
(X,Y) with respect to Y.

E0

[
L2
µρ
(X,Y)

]

= 2−2k

(
p

k

)−2 ∑

m,m′,ξ1,ξ2

E0

[
e−(‖Xθm1,ξ1

‖2n+‖Xθm2,ξ2
‖2n)/2+〈Y,X(θm1,ξ1

+θm2,ξ2)〉n
]

= EX [Em1,m2,ξ1,ξ2 {exp (〈Xθm1,ξ1 ,Xθm2,ξ2〉)}] . (9.2)

Lemma 9.2. If we assume that

ρ2 ≤ C(η)

[
k

n
log
(
1 +

p

k2

)
∧ 1√

n

]
.

then, we have

EX

[
E0,Y

{
L2
µρ

(Y,X)
}]

≤ 1 + η2 .

In this lemma, we have specifically distinguished the integration with respect to X from the
integration with respect with respect to Y. This will be useful for deriving minimax lower bound in
fixed design (Proposition 4.3). Gathering Lemmas 9.1 and 9.2 allow to derive that

(ρ∗R[k, Ip])
2 ≥ C(α, δ)

[
k

n
log
(
1 +

p

k2

)
∧ 1√

n

]
.

Proof of Lemma 9.2. Let us fix m1, m2, ξ1 and ξ2. First, we shall compute the expectation
E[exp(〈Xθm1,ξ1 ,Xθm2,ξ2〉)].
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Let us decompose the set m1 ∪m2 into four sets (which possibly are empty): m1 \m2, m2 \m1,
m3, and m4, where m3 and m4 are defined by:

m3 :=
{
j ∈ m1 ∩m2|ξ1j = ξ2j

}

m4 :=
{
j ∈ m1 ∩m2|ξ1j = −ξ2j

}
.

For the sake of simplicity, we reorder the elements of m1 ∪m2 from 1 to |m1 ∪m2| such that the
first elements belong to m1 \m2, then to m2 \m1 and so on.

E [exp (〈Xθm1,ξ1 ,Xθm2,ξ2〉)]

=



∫

Rp

(2π)−p/2 exp


−

p∑

i=1

t2i /2 +
∑

1≤i,j≤p

[θm1,ξ1 ]i[θm2,ξ2 ]jtitj




p∏

i=1

dti



n

=
∣∣I|m1∪m2| − λ2C

∣∣−n/2
,

where I|m1∪m2| is the identity matrix of size |m1 ∪ m2| and C is block symmetric matrix of size
|m1 ∪m2| defined by

C :=




1 0 1 1
0 1 1 1
1 1 2 0
1 1 0 −2


 .

Each block corresponds to one of the four previously defined subsets of m1 ∪ m2 (i.e. m1 \ m2,
m2 \m1, m3, and m4). The matrix C is of rank at most four. Hence, I|m1∪m2| − λ2C has the same
determinant as the matrix D of size 4 defined by:

D :=




1− λ2

n |m1 \m2| 0 −λ2

n |m3| −λ2

n |m4|
0 1− λ2

n |m2 \m1| −λ2

n |m3| −λ2

n |m4|
−λ2

n |m1 \m2| −λ2

n |m2 \m1| 1− 2λ2

n |m3| 0

−λ2

n |m1 \m2| −λ2

n |m2 \m1| 0 1 + 2λ2

n |m4|


 .

After some computations, we lower bound the determinant of D

|D| ≥ 1− 2(2|m3| − |m1 ∩m2|)λ2 − 8ρ4 .

From now on, we assume that ρ2 ≤ 1/20 so that |D| ≥ 1/2. Hence, we get

E[exp(〈Xθm1,ξ1 ,Xθm2,ξ2〉)] ≤
[
1− 2(2|m3| − |m1 ∩m2|)λ2 − 8ρ4

]−n/2

≤ exp
(
8nρ4

)
exp

[
2nλ2(2|m3| − |m1 ∩m2|)

]
. (9.3)

Then, we take the expectation with respect to ξ1, ξ2, m1 and m2. When m1 and m2 are fixed
the expression (9.3) depends on ξ1 and ξ2 only through the cardinality of m3. As ξ

1 and ξ2 follow
independent Rademacher distributions, the random variable 2|m3|−|m1∩m2| follows the distribution
of Z, a sum of |m1 ∩m2| independent Rademacher variables and

EX

[
E0,Y

{
L2
µρ

(Y,X)
}]

≤ exp
(
8nρ4

)
E
[
exp

(
2nλ2Z

)]
. (9.4)
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We now proceed as in the proof of Theorem 1 in Baraud [3] in order to upper bound the term

E
[
exp

(
2nλ2Z

)]
=

(
p

k

)−2 ∑

m1,m2∈M(k,p)

cosh
(
2nλ2

)|m1∩m2| .

Following Baraud’s arguments, we get that E
[
exp

(
2nλ2Z

)]
≤
√

1 + η2 when

ρ2 ≤ C(η)
k

n
log

(
1 +

p

k2
∨
√

p

k2

)
.

Moreover, we have exp(8ρ4n) ≤
√

1 + η2 as soon as ρ2 ≤ C(η)/
√
n . Gathering these observations

with (9.4), we conclude that EX[E0{L2
µρ

(Y,X)}] ≤ 1 + η2 as soon as

ρ2 ≤ C(η)

[
k

n
log

(
1 +

p

k2
∨
√

p

k2

)
∧ 1√

n

]
.

9.2. Proof of Theorem 4.5

Proof of Theorem 4.5. Consider the Condition

(A.1)
k

n
log
( p

e4k2

)
≥ 2 .

We deduce Theorem 4.5 from the following result.

Lemma 9.3. Suppose that α+ δ ≤ 53%. We have

βIp,α

({
θ ∈ Θ[k, p], σ2 > 0,

‖θ‖2p
σ2

= ρ2

})
≥ δ , (9.5)

for any ρ2 > 0 such that

ρ2 ≤ k

2n
log

(
1 +

p

k2
∨
√

p

k2

)
. (9.6)

Under Condition (A.1), (9.5) holds for any ρ > 0 such that

ρ2 ≤ −1 +
( p
ek

) k
n
(8k)−2/n . (9.7)

If p ≥ k1/3 ∨ C and k log(p)/n ≥ C1 with C and C1 large enough, then Assumption (A.1) is
satisfied. For C large enough, the quantity k log(p)/ log(k) is large enough so that the lower bound
(9.7) satisfies

−1 +
( p
ek

) k
n
(8k)−2/n ≥ −1 + exp

[
C
k

n
log
(ep
k

)]

≥ C
k

n
log
(ep
k

)
exp

[
C
k

n
log
(ep
k

)]
.
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Let us now assume that p ≥ k1/3 ∨ C and k log(p)/n ≤ C1 where C1 has been previously fixed.
Then, the first lower bound (9.6) satisfies:

k

2n
log

(
1 +

p

k2
∨
√

p

k2

)
≥ C

k

n
log
(ep
k

)
exp

[
C
k

n
log
(ep
k

)]
.

Gathering the two previous lower bounds with Lemma 9.3 allows to conclude that

(ρ∗U [k, Ip])
2 ≥ C

k

n
log
(ep
k

)
exp

[
C
k

n
log
(ep
k

)]
.

Proof of Lemma 9.3. The minimax lower bound (9.6) has already been proved in Theorem 4.3
in [38]. We only have to prove the lower bound (9.7).

Consider some ρ > 0. To apply Lemma 9.1, we first have to define a suitable prior µρ on θ and
σ2. More specifically, the distribution µρ is support by Θ[k, p, ρ]× {σ2(ρ)} defined by

Θ[k, p, ρ] :=

{
θ ∈ Θ[k, p] ,

‖θ‖2p
1− ‖θ‖2p

= ρ2

}

σ2(ρ) = 1− ‖θ‖2p

Let m̂ be some random variable uniformly distributed over M(k, p). For each m ∈ M(k, p), let
ξm = (ξmj )j∈m be a sequence of independent Rademacher random variables. We assume that for all
m ∈ M(k, p), ξm and m̂ are independent. Let ρ be given and µρ be the distribution of the random

variable θ̂ =
∑

j∈m̂ λξ
m̂
j ej where

λ2 :=
ρ2

k(1 + ρ2)
,

and where (ej)1≤j≤p is the orthonormal family of vectors of Rp defined by (ej)i = 1 if i =
j and (ei)j = 0 otherwise. By Lemma 9.1, we only have to prove that for any ρ2 ≤ −1 +

(p/(ek))k/n (8k)−2/n, we have
E0,1(L

2
µρ
(Y,X)) ≤ 1 + η2 .

Observe here that we use a variance 1 for H0 and a variance 1−‖θ‖2p for the hypothesis H1. Using
these two different variances allows us to take advantage of the fact that we work under unknown
variance.

Let us define the random variable Z =
∑R

i=1 ξi, where R is distributed as a Hypergeometric
distribution with parameters p, k, and k/p and the ξi are independent Rademacher random variables.
In [38] Eq.(8.6) , It has been proved that

E0,1(L
2
µρ
(Y,X)) = E

(
1− ρ2Z

(1 + ρ2)k

)−n

, (9.8)

Let us define the random variable W by W =
∑k

i=1 ξiai where (ξi)i=1,...,k are independent
Rademacher variables and (ai)i=1,...,k are independent Bernoulli random variables with parame-
ters k/p. We first provide the main steps of the proof. These steps are proved afterwards.
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FACT 1.

E

[(
1− ρ2Z

(1 + ρ2)k

)−n
]
≤ E

[(
1− ρ2W

(1 + ρ2)k

)−n
]
, (9.9)

Hence, we only need to upper bound the expectation of the second random variable. We have

E

[(
1− ρ2W

(1 + ρ2)k

)−n

− 1

]
≤

k∑

i=1

P [W ≥ i]

(
1− ρ2i

(1 + ρ2)k

)−n

.

Since we need to ensure that E[{1− ρ2W/((1 + ρ2)k)}−n − 1] ≤ η2, it is sufficient to prove that

P [W ≥ i]

(
1− i

k

)−n

≤ η2i−i

4
for any 1 ≤ i ≤ ⌊k/2⌋ , (9.10)

P [W ≥ i]

(
1− ρ2i

(1 + ρ2)k

)−n

≤ η2

2k
for any ⌊k/2⌋ + 1 ≤ i ≤ k . (9.11)

In order to prove these bounds, we shall use a concentration inequality of the random variable
W/k.

Lemma 9.4. For any k ≥ 1, 0 < x ≤ 1, it holds that

P

[
W

k
≥ x

]
≤
[(

k

2px

)x 1

(1− x)1−x

]k
. (9.12)

FACT 2. For any 1 ≤ i ≤ ⌊k/2⌋, the upper bounds (9.10) hold under Condition (A.1).

FACT 3. The upper bound (9.11) holds for any ⌊k/2⌋ + 1 ≤ i ≤ k as soon as

ρ2 ≤ −1 +
( p
ek

)k/n( η2
2k

)2/n

. (9.13)

We derive that under (9.13), we have E0,1[L
2
µρ
(Y,X)] ≤ 1 + η2 . The fact that η2 ≥ 1/8 allows to

conclude.

Proof of Fact 1. Let us introduce the function ψ(.) defined by

ψ(r) = Eξ

[(
1− ρ2

∑r
i=1 ξi

1 + ρ2k

)−n
]
.

FACT 4. ψ(r) is a convex function with respect to r.

We deduce from the definition of ψ that

E [ψ(R)] = E

[(
1− ρ2Z

(1 + ρ2)k

)−n
]
,
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where Z is a random variable distributed according to a Hypergeometric distribution with param-
eters p, k and k/p. We know from Aldous (p.173) [1] that Z follows the same distribution as the
random variable E(W |Bp) where W is binomial random variable of parameters k, k/p and Bp some
suitable σ-algebra. By a convexity argument, we get

E

[(
1− ρ2Z

(1 + ρ2)k

)−n
]

≤ E [ψ(W )] ≤ E

[(
1− ρ2W

(1 + ρ2)k

)−n
]
,

which concludes the proof.

Proof of Fact 4. We shall prove that for any 0 ≤ r ≤ k − 2, we have

ψ(r + 2)− 2ψ(r + 1) + ψ(r) ≥ 0 .

Let us first express ψ(r + 1) in terms of
∑r

i=1 ξi.

ψ(r + 1) = Eξ

[(
1− ρ2

∑r+1
i=1 ξi

(1 + ρ2)k

)−n]

=
1

2
Eξ

[(
1− ρ2(

∑r
i=1 ξi + 1)

(1 + ρ2)k

)−n

+

(
1− ρ2(

∑r
i=1 ξi − 1)

(1 + ρ2)k

)−n
]
.

Similarly, we express ψ(r + 2) in terms of
∑r

i=1 ξi. If we define

V =
(1 + ρ2)k

ρ2
−

r∑

i=1

ξi ,

then ψ(r + 2)− 2ψ(r + 1) + ψ(r) decomposes as

ψ(r + 2)− 2ψ(r + 1) + ψ(r) =

[
ρ2

(1 + ρ2)k

]n

× EV

[
1

4
(V − 2)−n − (V − 1)−n +

3

2
V −n − (V + 1)−n +

1

4
(V + 2)−n

]
.

We shall prove that the random variable inside the expectation is almost surely non-negative. For
any x ≥ 2, we consider the expression

1

4
(x− 2)−n − (x− 1)−n +

3

2
x−n − (x+ 1)−n +

1

4
(x+ 2)−n .

Let us define the function g by

g(u) = (x+
√
u)−n + (x−√

u)−n =
(x+

√
u)n + (x−√

u)n

(x2 − u)n
.

The function u 7→ (x2 − u)−n is positive, increasing and convex.

(x+
√
u)n + (x−√

u)n =

⌊n/2⌋∑

i=0

(
2i

n

)
uixn−2i .
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Hence, the function u 7→ (x+
√
u)n + (x−√

u)n positive, increasing and convex. It follows that the
function g is convex. Consequently, we have

1

4
(x− 2)−n +

3

2
x−n +

1

4
(x+ 2)−n − (x− 1)−n − (x+ 1)−n ≥ 0 ,

and we conclude that ψ(.) is convex.

Proof of Fact 2. Since log(1− x) ≥ −x/(1− x) for any 0 ≤ x < 1, we derive that (1− x)1−x ≥ e−x.
Gathering this bound with Lemma 9.4, we get a new concentration inequality for W .

P

[
W

k
≥ x

]
≤
(
ke

2px

)xk

, (9.14)

for any x < 1. We apply this bound with x = i/k. Then, Inequality (9.10) holds if

(
k2e

2p

)i/n(
4

η2

)1/n

≤ 1− i

k
.

Taking the logarithm of this expression leads to

− i

n
log

(
2p

ek2

)
+

1

n
log
(
4/η2

)
+

i/k

1− i/k
≤ 0 ,

Since i is constrained to be smaller than k/2, we get

− ik
n

log

(
2p

ek2

)
+
k

n
log
(
4/η2

)
+ 2i ≤ 0 .

By Assumption (A.1), k/n log[2p/(ek2)] is larger than 2. Consequently, the worst case among all i
between 1 and k/2 is i = 1. Hence, we only need to prove that:

k

n

[
log
( p
k2

)
− log

(
2e

η2

)]
≥ 2 .

Since η is larger than 0.41, log(2e/η2) is smaller than 4 and this last inequality is ensured by
Assumption (A.1).

Proof of Fact 3. We consider here the case 1/2 < i/k ≤ 1. We derive from (9.14) that

P [W ≥ i] ≤
(
ek

p

)i

.

Consequently, we want to ensure that

(
ek

p

)i/n(2k

η2

)1/n

≤
(
1− ρ2i

(1 + ρ2)k

)
,
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for any i between ⌊k/2⌋ and k. For any x and u between 0 and 1, (1 − x)u ≤ (1 − xu). Setting
u = i/k and x = ρ2/(1 + ρ2), we obtain that the last inequality holds if

1− ρ2

1 + ρ2
≥ sup

⌊k/2⌋≤i≤k

(
ek

p

)k/n(2k

η2

)k/(in)

Since 2k/η2 is positive, the largest term in the bound corresponds to i = k/2.

1

1 + ρ2
≥
(
ek

p

)k/n(2k

η2

)2/n

We conclude that the upper bounds hold if

ρ2 ≤ −1 +
( p
ek

)k/n( η2
2k

)2/n

.

Proof of Lemma 9.4. We prove this concentration inequality using the Laplace transform of W/k.

log [E {exp(λW/k)}] = k log

[
1 +

k

p

(
cosh

(
λ

k

)
− 1

)]

≤ k log

[
1 +

k

2p

(
exp

(
λ

k

)
− 1

)]
,

if λ is positive. Consider some x ∈ (0, 1).

log

[
P

{
W

k
≥ x

}]
≤ −λx+ log [E {exp(λW/k)}]

≤ −λx+ k log

[
1 +

k

2p

(
exp

(
λ

k

)
− 1

)]
.

Deriving with respect to λ an upper bound of the last expression leads to to the following choice

eλ
∗/k =

x

1− x

(
2p

k
− 1

)
.

Hence, we get

log

[
P

{
W

k
≥ x

}]
≤ −kx log

[
x

1− x

(
2p

k
− 1

)]
+ k log

[
1− k/2p

1− x

]
.

Since we assume that x < 1, we conclude that

P

{
W

k
≥ x

}
≤
[(

k

2px

)x 1

(1− x)1−x

]k
.

Since P(W = k) = [k/(2p)]k , this upper bound is also valid when x = 1.



Verzelen/Ultra-high dimensional regression 33

9.3. Proof of Theorem 4.3

By homogeneity, we can assume that σ2 = 1. The design X will be fixed later. Given ρ > 0, we
take exactly the same prior probability µρ on θ as in the proof of Theorem 4.1. The likelihood ratio
Lµρ(X,Y) = Pµρ/P0 writes:

Lµρ(X,Y) = Eξ,m

[
exp

(
−‖Y −Xθm,ξ‖2 − ‖Y‖2

2

)]

As in the random design case (proof of Theorem 4.1), we compute the expectation of L2
µρ
(X,Y):

E0

[
L2
µρ
(X,Y)

]
= Em1,m2,ξ1,ξ2 [exp (〈Xθm1,ξ1 ,Xθm2,ξ2〉n)] . (9.15)

We want to prove that for some design X the quantity E0[L
2
µρ
(X,Y)] is smaller than 1 + η2.

Suppose that the design X is the observation of a standard normal design: for any 1 ≤ i ≤ p and

1 ≤ j ≤ n, Xi,j ∼ N (0, 1). By Lemma 9.2, we have EX

[
E0{L2

µρ
(Y,X)}

]
≤ 1 + η2/2 if we take

ρ2 ≤ C(η)

[
k

n
log

(
1 +

p

k2
∨
√

p

k2

)
∧ 1√

n

]
.

For such a ρ2, we apply Markov’s inequality and get

PX

[
E0

{
L2
µρ

(Y,X)
}
≤ 1 + η2

]
≥ η2

2(1 + η2)
. (9.16)

With positive probability, the design X satisfies E0{L2
µρ
(Y,X)} ≤ 1 + η2. To conclude, we need to

study different cases depending on the values of k, n, and p.

CASE 1. k log
(
1 + p

k2
∨
√

p
k2

)
≤ √

n/2. It follows that k ≤ √
p since p ≥ n. Hence, we derive that

k(1 + log(p/k)) ≤ C
√
n log(n).

Applying Lemma A.2, we control the largest restricted eigenvalue of order k of the random matrix
X∗X. With probability larger 1− 2 exp(−√

n/2),

Φk,+(X
∗X/n) ≤

(
1 + 3

√
k(1 + log(p/k))

n
+ n−1/4

)2

,

Φk,−(X
∗X/n) ≥

(
1− 3

√
k(1 + log(p/k))

n
− n−1/4

)2

.

If n is larger than some constant C, then Φk,+(X
∗X/n) ≤ 3/2 and Φk,−(X∗X/n) ≤ 1/2 with prob-

ability larger than 1− 2 exp(−√
n/2).

Gathering this result with (9.16), we conclude that for n larger than some quantity C(η) with
probability larger than η2/(4(1 + η2) the design X/

√
n satisfies a 1/

√
2-restricted isometry of order
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k, and E0,Y{L2
µρ
(Y,X)} ≤ 1 + η2. Let us consider such a design X. For any subset m ∈ M(k, p)

and any ξ ∈ {−1, 1}k , we have

‖Xθm,ξ‖2n/n ≥ 1/2‖θm,ξ‖2p = ρ2/2.

As a consequence µρ is supported by Θ′[k, p, ρ
√
n/

√
2] defined by

Θ′[k, p, ρ/
√
2] :=

{
θ ∈ Θ[k, p] , ‖Xθ‖2n/n ≥ ρ2/2

}
.

Applying Lemma 9.1, we conclude that

βX,1,α

(
Θ′ [k, p, ρ/2]

)
≥ δ .

CASE 2. k log
(
1 + p

k2 ∨
√

p
k2

)
≥ √

n/2.

CASE 2.a. log (1 + p) ≤ √
n/2. In such a case, there exists some k′ between 1 and k such that

√
n/4 ≤ k′ log

(
1 +

p

k′2
∨
√

p

k2

)
≤ √

n/2 .

As proved in CASE 1, it is possible to build designsX of size n×p such that the ρ∗F [k
′,X] ≥ C(η)/

√
n.

Since ρ∗F [k,X] ≥ ρ∗F [k
′,X], we can conclude.

CASE 2.b. log (1 + p) >
√
n/2. For n large enough, there exists some p′ between n and p, such

that √
n/4 ≤ log

(
1 + p′

)
≤ √

n/2 .

By CASE 2.a, we can build design X′ of size n×p′ such that the (α, δ) minimax separation distance
over Θ[k, p′] is larger than C(η)

√
n. To conclude, we only have to take any completion of the design

X′ to get a design X of size n× p.

9.4. Proof of Proposition 4.7

Take some ρ < ρ∗R[k, Ip]/2 as defined in Theorem 4.5. Assume that for any design X of size n × p,
there exists a test φα[X] of level α that satisfies the following property. For any σ2 > 0 and any
θ ∈ Θ[k, p] such that ‖Xθ‖2n/n ≥ ρ2σ2, we have

Pθ,σ [φα[X] = 0] ≤ δ/2 .

Let us consider a Gaussian random design with the identity covariance as in the proof of Theorem
4.5. Then, the test T defined by T (Y,X) = φα[X](Y) has a level α and does not require the
knowledge of σ2.

Take any θ ∈ Θ[k, p] and and σ > 0 such that ‖θ‖2p/σ2 = 2ρ2. The random variable ‖Xθ‖2n/‖θ‖2p
follows a χ2 distribution with n degrees of freedom. Applying Lemma A.1, we derive that with
probability larger than 1− e−n/16, we have ‖Xθ‖2n/n ≥ ρ2σ2. If follows that

Pθ,σ [T (X,Y) = 0] ≤ δ/2 + e−n/16 ,

which contradicts Theorem 4.5.
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9.5. Proof of Proposition 5.1

We derive this minimax lower bound from the hypothesis testing problem ”θ = 0” studied in
Section 4. Since the covariance Σ = Ip, the loss E

[
{X(θ1 − θ2)}2

]
is simply ‖θ1− θ2‖2p. For the sake

of simplicity, we assume that p is even. We split the p covariates into two groups M1 and M2 of size
p/2. Given some ρ > 0, we fix σ2 = 1 and we consider the two sets

Θ1[ρ] = Θ[k, p] ∩ {θ : supp(θ) ⊂M1 and ‖θ‖p = ρ}
Θ2[ρ] = Θ[k, p] ∩ {θ : supp(θ) ⊂M2 and ‖θ‖p = ρ} .

Take any estimator θ̂. We consider an estimator θ̃ ∈ Θ1[ρ] ∪Θ2[ρ] such that

‖θ̃ − θ̂‖p = min
θ′∈Θ1[ρ]∪Θ2[ρ]

‖θ′ − θ̂‖p .

By the triangle inequality, we have ‖θ̃ − θ‖p ≤ 2‖θ̂ − θ‖p, for any θ ∈ Θ1[ρ] ∪Θ2[ρ].

sup
i=1,2

sup
θ∈Θi[ρ]

E
[
‖θ̂ − θ‖2p

]
≥ ρ2

4
sup
i=1,2

sup
θ∈Θi[ρ]

Pθ,1[supp(θ̃) *Mi] . (9.17)

It is enough to prove that for ρ2 = C k
n log

( p
k

)
exp{C k

n log
( p
k

)
}, the supremum of the probabilities

Pθ[supp(θ̃) *Mi] is lower bounded by a positive constant. This is equivalent to lower bounding the
minimax separation distance for H0 : θ ∈ Θ1[ρ] against H1: θ ∈ Θ2[ρ].

As in the proof of Theorem 4.5, we build a prior distribution µ1,ρ on Θ1[ρ]. Consider the collec-
tion M1(k) of subsets of M1 of size k. Let m̂ be be some random variable uniformly distributed
over M1(k). For each m ∈ M1(k), let ξ

m = (ǫmj )j∈m be a sequence of independent Rademacher
random variables. We assume that for all m ∈ M1(k), ξ

m and m̂ are independent. Then, µ1,ρ is the

distribution θ̂ =
∑

j∈m̂ ρ/
√
kξm̂j ej . Similarly, we define the prior distribution µ2,ρ on Θ2[ρ]. We note

Pµi
=
∫
Pθ,1dµi,ρ. We have

sup
i=1,2

sup
θ∈Θi[r]

Pθ[supp(θ̃) *Mi] ≥ 1− 1

2
‖Pµ1

− Pµ2
‖TV .

≥ 1− ‖Pµ1
− P0,1+ρ2‖TV , (9.18)

by the triangle inequality. Lemma 9.1 states that

‖Pµ1
− P0‖TV ≤ E0

[
L2
µ1,ρ

− 1
]
,

where Lµ1,ρ
= dPµ1,ρ

/dP0,1+ρ2 . In fact, the second moment of Lµ1,ρ
has been studied in the proof of

Theorem 4.5 and in the proof of Theorem 4.3 in Verzelen and Villers [38]. If we take α + δ = 53%
in these two proofs, we derive from (9.13) and from the proof of Theorem 4.3 [38] that

E0

[
L2
µ1,ρ

]
≤ e1/2 , if ρ2 ≤ Ck/n log(p/k) exp(Ck/n log(p/k)) and if p ≥ k3 ∨C .

Gathering this result with Equations (9.17) and (9.18) allows to conclude.
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9.6. Proof of Proposition 5.3

This lower bound is based on Birgé version of Fano’s Lemma [8]. Consider θ1 and θ2 in Cp
k(
√
kr),

where the set Cp
k(.) has been introduced in Definition 6.1. We upper bound the Kullback distance

between K(θ1, θ2) between the probability distribution Pθ1,σ and Pθ2,σ.

K(θ1, θ2) =
‖X(θ1 − θ2)‖2n

2σ2
≤ Φ2k,+(X)

‖θ1 − θ2‖2p
2σ2

≤ Φ2k,+(X)k
r2

σ2

Let us also lower bound the loss ‖X(θ1 − θ2)‖2n.

‖X(θ1 − θ2)‖2n ≥ r2Φ2k,−(X)dH (θ1, θ2) ,

where dH is the Hamming distance. The rest of the proof is analogous to the case of Gaussian se-
quence model (e.g. Proposition 4.11 in [32]). Thanks to combinatorial results such Varshamov lemma

or Lemma 4.10 in [32], we build a subset C′p
k (

√
kr) of Cp

k(
√
kr) whose points are at least k/2-separated

with respect to the Hamming distance. The cardinal of C′p
k (

√
kr) is larger than Ck log(ep/k). Then,

we apply Birgé’s version of Fano’s lemma [8] to conclude that:

inf
θ̂

sup
θ∈Conv[Cp

k
(
√
kr)]

E
[
‖X(θ̂ − θ)‖2n/n

]
≥ CΦ2k,−(X)

k

n

[
r2 ∧ 1 + log(p/k)

Φ2k,+(X)
σ2
]
,

where Conv[A] stands for the convex hull A. Taking r2 = [1 + log(p/k)]σ2/Φ2k,+(X) allows to con-
clude.

Let us turn to the proof of (5.7). Assume that k log(ep/k) ≤ n/16 and assume that all the entries
of X follow independent centered normal distribution with variance 1/

√
n. Applying Lemma A.2,

we derive that:
P [Φ2k,−(X) ≤ 1/16] ≤ e−Cn and P [Φ2k,+(X) ≥ 4] ≤ e−Cn .

Then, we deduce from (5.6) that for such X,

RF [k,X] ≥ C
k

n
log
(ep
k

)
.

Let us now assume that k log(ep/k) > n/16. For n larger than a numerical constant, we can find
k′ < k and p′ < p such that

n/32 ≤ k′ log(ep′/k′) ≤ n/16 .

Hence, there exists a design X′ of size n× p′ such that

inf
θ̂

sup
θ∈θ[k′,p′]

E
[
‖X′(θ̂ − θ)‖2n/n

]
≥ Cσ2 .

Then, we only have to take any completion of X′ since

inf
θ̂

sup
θ∈θ[k′,p′]

E
[
‖X′(θ̂ − θ)‖2n

]
≤ inf

θ̂
sup

θ∈θ[k,p]
E
[
‖X(θ̂ − θ)‖2n

]
.
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9.7. Proof of Proposition 5.6

Let us set α = δ = 0.01. Consider a design X that achieves the bound (4.13) and take ρ =
ρ∗F,U [k,X]/2. If k log(p/k)/n is large enough, then ρ ≥

√
2. Take any estimator θ̂ that does not rely on

the variance σ2. Let us build a test T of the hypothesesH0: ”θ = 0” againstH1: “θ ∈ Θ[k, p] and ‖Xθ‖2n/(nσ2) ≥ ρ

T =

{
0 if 2‖Xθ̂‖2n < ‖Y‖2n
1 if 2‖Xθ̂‖2n ≥ ‖Y‖2n

By Proposition 4.7, we have at least one of the two following properties:

sup
σ>0

P0,σ(T = 1) ≥ α (9.19)

sup
σ>0, θ∈Θ[k,p], ‖Xθ‖2n/(nσ2)≥ρ2

Pθ,σ(T = 0) ≥ δ (9.20)

CASE 1: (9.19) holds. With probability larger 1 − e−n/16, we have ‖Y‖2n ≥ nσ2/2. There exists
σ > 0 such that ‖Xθ̂‖2n ≥ nσ2/4 with probability larger than α/2 − e−n/16. As a consequence, we
have

sup
σ>0

E0,σ

[
‖X(θ̂ − θ)‖2n/[nσ2]

]
≥ C .

CASE 2: (9.20) holds. The random variable ‖Y‖2n/σ2 follows a noncentral χ2 distribution with n
degrees of freedom and a non centrality parameter ‖Xθ‖2n/σ2. By Lemma 1 in Birgé [7], we have
‖Y‖2n ≤ 3/2

[
nσ2 + ‖Xθ‖2n

]
, with probability larger than 1 − e−Cn. Consequently, there exists

σ > 0 and θ ∈ Θ[k, p] such that ‖Xθ‖2n/(nσ2) ≥ ρ2 and

‖Xθ̂‖2n/(nσ2) ≤
3

4

[
1 + ‖Xθ‖2n/(nσ2)

]
≤ 7

8
‖Xθ‖2n/(nσ2),

with probability δ/2 − e−Cn, since ρ2 ≥ 2.

Eθ,σ

[
‖X(θ̂ − θ)‖2n/n

]
≥ Eθ,σ

[(
‖Xθ̂‖n − ‖Xθ‖n

)2
/n

]

≥ C‖Xθ‖2n/n ≥ Cρ2σ2 .

9.8. Proof of Proposition 6.1

This lower bound is based on Fano’s lemma. For the sake of simplicity, we assume that 2k ≤ p
and that σ2 = 1. First, we consider a unit vector θ ∈ Θ[2k, p] such that ‖Xθ‖2n = Φ2k,−(X). Let
us define κ = 2e/(2e + 1). It is possible to find two vectors (θ1, θ2) ∈ Θ[k, p] such that θ1 − θ2 =
2κ log(2)θ/Φ2k,−(X) and supp(θ1) ∩ supp(θ2) = ∅. Consequently, the Kullback distance K(θ1, θ2)
between the two distributions Pθ1 and Pθ2 is exactly κ log(2). Applying Corollary 2.19 in [32], we
derive the first part of the lower bound:

RI[k,X] ≥ C
1

Φ2k∧p,− (X)
.
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The proof of the second part follows closely the proof of the minimax lower bound for prediction
(Proposition 5.3). Given some r > 0, we consider the set Cp

k(
√
kr) (Definition 6.1). The Kullback

discrepansy K(θ1, θ2) between any two elements of this set is smaller than 4Φ2k∧p,+(X)r2, while the
loss ‖θ1−θ2‖2p is lower bounded by r2dH(θ1, θ2). We recall that dH(.) is the Hamming distance. As in

the proof of Proposition 5.3, we find a subset C′p
k (

√
kr) ⊂ Cp

k(
√
kr) whose points are well separated

with respect to the Hamming distance. Applying Fano’s lemma, we conclude that

inf
θ̂

sup
θ∈Conv[Cp

k
(
√
kr)]

E
[
‖θ̂ − θ‖2p

]
≥ Ck

[
r2 ∧ 1 + log(p/k)

Φ2k,+(X)
σ2
]
,

where Conv[A] stands for the convex hull A. Taking r2 = [1 + log(p/k)]σ2/Φ2k,+(X) allows to
conclude.

9.9. Proof of Corollary 6.3

Consider a standard Gaussian design W of size n × p. Rescaling to one each column of W, we get
a new design X. If the constant C in the statement of Corollary 6.3 is large enough, we can Apply
Lemma A.2 and control the restricted eigenvalues of W:

Φ2k,+(W/
√
n) ≤ (7/4)2 and Φ2k,−(W/

√
n) ≥ (1/4)2 ,

with probability larger than 1 − exp(−n/32). Consider any θ ∈ Θ[2k, p] such that ‖θ‖p = 1. By
definition of X, there exists some θ′ ∈ Θ[2k, p] such that Xθ = Wθ′/

√
n. Moreover we have

Φ−1
1,+(W/

√
n) ≤ ‖θ′‖2p ≤ Φ−1

1,−(W/
√
n) .

Hence, we derive that

Φ2k,+(X) ≤ Φ2k,+(W/
√
n)

Φ−1
1,−(W/

√
n)

and Φ2k,−(X) ≥ Φ2k,−(W/
√
n)

Φ−1
1,+(W/

√
n)

.

With high probability the 2k-restricted eigenvalues ofX therefore lie between 1/49 and 49. Gathering
the minimax bounds of Propositions 6.1 and 6.2 allows to conclude.

9.10. Proof of Proposition 6.4

We fix some 1 ≥ δ > 0. We consider M(k, p) the collections of subsets of {1, . . . , p} of size k. For any
m ∈ M(k, p), we define the vector θm by (θm)i = 1/

√
k if i ∈ m and 0 else. For any m 6= m′, we have

‖θm − θm′‖2p ≥ 2/k. If there exists two sets (m,m′) ∈ M(k, p) such that ‖X(θm − θm′)‖2n ≤ δ2, then
the design X satisfies Φ2k,−(X) ≤ δ2k/2. A necessary condition for X to satisfy Φ2k,−(X) ≥ δ2k/2
is therefore that the vectors Xθm are δ-separated. For any m ∈ M(k, p), we have ‖Xθm‖n ≤

√
k.

If X satisfies Φ2k,−(X) ≥ δ2k/2, then the sum of the volume of the balls in Rn centered at
Xθm with radius δ is smaller than the volume of a ball a radius

√
k + 1 in Rn. This implies that

δ ≤ (
√
k + 1)

(
k
p

)−1/n
. Hence, for any design X with unit columns, we have

Φ2k,−(X) ≤ Ck2
(
k

p

)2k/n

,
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which allows to prove the first result.

Let us turn to the second result (6.4). By the first result, we have

(
pn
kn

)2kn/n
log∼ Ck−2

n

(
pn
kn

)2kn/n

= O

[
sup

X∈Dn,pn

Φ−1
2kn,−(X)

]
.

Comparing this results with the minimax lower bounds and upper bounds (Propositions 6.1 and
6.2), we realize RI[k] is log-equivalent to supX∈Dn,pn

Φ−1
2kn,−(X).

In order to finish the proof, it remains to asymptotically upper bound supX∈Dn,pn
Φ−1
2kn,−(X).

Consider a standard Gaussian design Xn with size n× pn. Applying the deviation inequality (A.3)
of Lemma A.2, we derive that with probability going to one, we have

Φ−1
2kn,−(Xn/

√
n) ≤ C

(
pn
kn

)4kn/n(1+o(1)) kn
n

log

(
pn
kn

)
.

However, the design Xn/
√
n does not belong to Dn,pn. This is why we consider the design X′

n

which corresponds to the design Xn/
√
n whose columns have been normalized to one. Hence, we

have X′
n = Xn/

√
nD−1

n , where Dn is a diagonal matrix of size pn, whose l-th diagonal element
corresponds to the norm of the l-th column of Xn/

√
n. Obviously, X′

n belongs to Dn,pn .

Φ2kn,−(X
′
n) = inf

θ∈Θ[kn,pn]

‖X′
nθ‖2n

‖θ‖2pn
= inf

θ∈Θ[kn,pn]

‖Xn/
√
nθ‖2n

‖Dnθ‖2pn
≥ Φ2xn,−(Xn/

√
n)

ϕmax(D2
n)

,

Each diagonal element of nD2
n follows of χ2 distribution with n degrees of freedom. Apply Lemma

A.1, we derive that ϕmax(Dn) ≤ C
√
1 ∨ log(pn)/n with probability going to one. We conclude that

Φ−1
2kn,−(X

′
n) ≤ C

(
pn
kn

)4kn/n(1+o(1)) [kn
n

log

(
pn
kn

)]2
,

with probability going to one. This allows to conclude.

9.11. Proof of Proposition 6.5

For the sake of simplicity, we assume that σ2 = 1. Consider a design X ∈ Dn,p. By the proof of
Proposition 6.4, there exist two vectors θ1 and θ2 such that:

1. θ1 and θ2 contain exactly k non-zero components which are all equal to 1/
√
k.

2. supp(θ1) 6= supp(θ2).

3. ‖X(θ1 − θ2)‖2n ≤ (
√
k + 1)2

(
p
k

)−2/n
:= ρ∗−2.

Let us set θ∗1 = Cρ∗θ1 and θ∗2 = Cρ∗θ2 with C = 4 log(2)e/(2e + 1). Consequently, the Kullback

discrepansy between Pθ∗
1
and Pθ∗

2
is smaller than log(2)2e/(2e + 1). Consider an estimator θ̂ taking

its values in {θ∗1, θ∗2}. Applying Birgé’s lemma or more precisely Corollary 2.18 in [32], we derive

that infθ∗
1
,θ∗

2
Pθ(θ̂ = θ) ≤ 2e/(2e + 1). This allows to conclude.
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9.12. Proof of Proposition 6.6

For the sake of simplicity, we assume that σ2 = 1 and that p is even. Consider any estimator M̂ of
size p0. We set

ρ2 = Ck/(2n) log(p/k) exp[Ck/(2n) log(p/k)]

where the constants C correspond to the ones used at the end of the proof of Proposition 5.1. We
also consider the set Cp

k(ρ). Suppose that we have

sup
θ∈Cp

k
(ρ)

Pθ[supp(θ) ⊂ M̂ ] ≥ 7/8 . (9.21)

Assume we are given a second n-sample of (Y,X) independent of the first one. We note (Y′,X′)
this new sample. We consider the estimator θ̃k defined by

θ̃k := arg min
θ′∈Θ[k,p] and supp(θ′)⊂M̂

‖Y′ −X′θ′‖2n .

Since Σ = Ip, all the covariates that do not lie in the support of θ play a symmetric role in

the distribution of (Y,X). This estimator θ̃k has the same form as the estimator θ̂ introduced in
Definition 5.1. Arguing as in the proof of Theorem 5.2, we derive that

‖θ̃k − θ‖2p1supp(θ)⊂M̂
≤ Ck log

(ep0
k

)
exp

[
C
k

n
log
(ep0
k

)]
,

with probability larger than 7/8. Gathering this bound with (9.21), we derive that for any θ ∈ Cp
k(ρ),

we have

‖θ̂k − θ‖2p ≤ C
k

n
log
(ep0
k

)
exp

[
C
k

n
log
(ep0
k

)]
, (9.22)

with probability larger than 3/4.

We shall prove that (9.22) is impossible if p0 is too large. Let us split the p covariates into two
groups M1 and M2. We consider the subsets Cp

k,1(ρ) (resp. Cp
k,2(ρ)) of Cp

k(ρ) whose elements have

their support in M1 (resp. M2). Arguing as in (9.17) and (9.18), we derive that for any estimator θ̂,
there exists θ ∈ Cp

k,1(ρ) ∪ Cp
k,2(ρ) such that

‖θ̂ − θ‖2p ≥
ρ2

4
,

with probability larger than 1/4.

The last lower bound contradicts (9.22) is log(p0)/ log(p) ≤ δ, where δ > 0 is a positive constant.

10. Proofs of the upper bounds

10.1. Analysis of the testing procedures

Proof of Proposition 4.2. By homogeneity, we can assume that σ2 = 1. Let us consider a subset
m ⊂ {1, . . . , p}. We note dm the rank of the covariance matrix Σm of Xm. Under H0, ‖ΠmY‖2n
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follows a χ2 distribution with dm ≤ |m| degrees of freedom

P0

[
‖ΠmY‖2n > χ̄−1

|m|
{
α/[2k∗(|m|

p )]
}]

≤ α/[2k∗(|m|
p )] .

Under H0, ‖Y‖2n is χ2 distribution of size n. If follows that T ∗
α is of level α.

Let us turn to the type II error probability. First, take some k between 1 and k∗ − 1. Consider
some θ ∈ Θ[k, p] \ {0}. We call m the support of θ. We can assume that the size of this support is
k. If the size of the support is smaller than k, then we only have to complete m to obtain a set of
size k.

‖ΠmY‖2n = ‖Xθ +Πmǫ‖2n

The random vector ǫ is independent of X. Conditionally to X, ‖ΠmY‖2n follows a non-centered χ2

distribution with dm ≤ k degrees of freedom and a non centrality parameter ‖Xθ‖2n.
Let us denote Q(a,D, u) the 1 − u quantile of a noncentral χ2 distribution with D degrees of

freedom and noncentrality parameter a. Thanks to Lemma 1 in Birgé [7], we know that the following
inequalities hold for all u ∈ (0, 1):

Q(a,D, 1− u) ≥ D + a− 2
√

(D + 2a) log(1/u) .

We derive that

Q
(
‖Xθ‖2n, dm, 1− δ/2

)
≥ dm +

4

5
‖Xθ‖2n − 2

√
dm log(2/β)

− 10 log(2/δ) . (10.1)

The variable ‖Xθ‖2n/‖
√
Σθ‖2p follows a χ2 distribution with n degrees of freedom. With probability

1−δ/2, we have ‖Xθ‖2n ≥ n‖
√
Σθ‖2p[1−2

√
log(2/δ)/n] by Lemma A.1. Applying again Lemma A.1,

we derive that

χ̄−1
k

[
α/(2k∗(kp))

]
≤ k + 5k log

(ep
k

)
+ 3 log

(
2k∗

α

)
≤ C(α)k log

(ep
k

)
.

With probability larger than 1− δ, we have

‖ΠmY‖2n − χ̄−1
k

[
α/(2k∗(kp))

]
≥ Cn‖

√
Σθ‖2p −C(α, δ)

k

n
log
(ep
k

)
,

since we assume that log(2/δ) ≤ n/8. Hence, T ∗
α > 0 with probability larger than 1− δ as soon as

‖
√
Σθ‖2p > C(α, δ)

k

n
log
(ep
k

)
.

We now consider the case k ≥ k∗. Consider some θ ∈ Θ[k, p]. Arguing as previously, we derive that

‖Y‖2n − χ̄−1
n (α/2) ≥ C‖Xθ‖2n − C(α, δ)

1√
n
,

with probability larger than 1− δ.
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Proof of Proposition 4.4. We argue as in the proof of the previous proposition, the only difference
being that the design X is now fixed.

Let us consider a subset m ⊂ {1, . . . , p}. We note dm, the rank of the n × |m| submatrix Xm of
X. Under H0, ‖ΠmY‖2n follows a χ2 distribution with dm ≤ |m| degrees of freedom. Then, arguing
as in the proof of Proposition 4.2, we derive that the level of T ∗

α is smaller than α.
Let us turn to the type II error probability. Take some k between 1 and k∗− 1 and consider some

θ ∈ Θ[k, p] \ {0}. We call m the support of θ. We can assume that the size of this support is k.
Then, ‖ΠmY‖2n follows a χ2 distribution with dm degrees of freedom and a non centrality parameter
‖Xθ‖2n. Arguing as in the proof of Proposition 4.2, we derive that

‖ΠmY‖2n − χ̄−1
k

[
α/(2k∗(kp))

]
≥ C‖Xθ‖2p − C(α, δ)

k

n
log
(ep
k

)
,

with probability larger than 1− δ. Then, we conclude as in the proof of Proposition 4.2.

Proof of Proposition 4.6. A similar procedure has been studied in Theorem 3.3 in [38], the main
difference being that Σ was assumed to be non singular and that the ultra-high dimension setting
was not taken into account.

Consider a subset m ⊂ {1, . . . , p} whose size is smaller than n. We note dm the rank of the
covariance matrix Σm of Xm. Almost surely, we have dm(X) = dm. Under H0, conditionally to
X, φm(X,Y) follows a Fisher distribution with dm and n − dm degrees of freedom. Integrating
with respect to X, we derive that φm(X,Y) still follows a Fisher distribution with dm and n− dm
degrees of freedom. As a consequence, Tα is a Bonferroni multiple testing procedure based on Fisher
statistics. It follows that Tα has level α.

Let us turn to the type II error probability. We mainly follow the steps the proof of Theorem 3.3
of [38], since their specific assumptions of Theorem 3.3 are only used in the last three lines of their
proof.

Fix some 1 ≤ k ≤ n/2. Observe that log[(kp)] ≤ k log(ep/k). Consider a setm ∈ M(k, p). Adapting
Eq.(7.5), (7.6), and (7.9) in [38] and using the inequality dm ≤ k, we find that the test Tα is rejected
with probability larger than 1− δ as soon as

Var(Y )−Var(Y |Xm)

Var(Y |Xm)
≥ ∆̄m(δ)

n
(
1− 2

√
log(2/δ)/n

) , (10.2)

where ∆̄m(δ) is defined as follows

∆̄m(δ) := 2.5
√

1 +K2
m(U)

√
k log

(
4

αmδ

)(
1 +

√
k

n− k

)
+

2.5 [kmKm(U) ∨ 5] log

(
4

αmδ

)(
1 +

2k

n− k

)
,

where αm = α/(⌊n/2⌋|M(k, p)|), U := log(2/δ),

km := 2 exp

[
4

k

n− k
log(ep/k) + 4

log(1/α) + log(n)

n− k

]
,

Km(U) := 1 + 2

√
U

n− k
+ 2km

U

n− k
.
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Since k ≤ n/2, log(2/δ) ≤ n/8, p ≥ n, we get

∆̄m(δ) ≤ C(α, δ)k log
(ep
k

)
exp

(
C2(α, δ)

k log(ep/k)

n

)
.

Now, we take m to be the support of θ. Gathering (10.2) with this last equation, we derive that Tα
is rejected with probability larger than 1− δ if

‖
√
Σθ‖2p

Var(Y |X)
≥ C(α, δ)

k

n
log
(ep
k

)
exp

(
C2(α, δ)

k log(ep/k)

n

)
.

Proof of Proposition 4.8. The testing procedure has already been studied in Baraud et al. [5]. They
proved that the size Tα is less than α.

Consider some k ≤ n/2 and θ ∈ Θ[k, p]. Applying Theorem 1 in [5], we derive that the test rejects
H0 with probability larger than 1− δ if

‖Xθ‖2n
σ2

≥ C(α, δ)k log

(
2ep

kαδ

)
exp

[
C
k

n
log
( ep
kα

)] [
1 ∨ exp

[
4
k

n
log
( ep
kα

)] log(2/δ)
n

]

≥ C(α, δ)k log
(ep
k

)
exp

[
C(α, δ)

k

n
log
(ep
k

)]
.

10.2. Proof of Theorem 5.2

Proof of Theorem 5.2. We noteM the collection of subsets of {1, . . . , p} of size smaller than (n− 1)/4.
For any m ∈ M, θ̂m refers to the least-squares estimator of θ whose support is included in m. We
have

m̂V ∈ arg min
m∈M

‖Y −Xθ̂m‖2n
[
1 + pen′(|m|)

]
,

where pen′(|m|) = −1 + exp[Kk/n log(ep/k)]. In the following, θm refers to the best approximation
of θ whose support is included in m with respect to the distance ‖

√
Σ(. − θ)‖p. We shall prove a

stronger result than (5.5):

Proposition 10.1. Assume that n ≥ C. There exists a universal choice of K in the penalty (5.4)
such that the following holds. For any covariance Σ and any θ ∈ Rp, we have

E
[
‖
√
Σ(θ̃V − θ)‖2p

]
≤ C(K) inf

m∈M

[
‖
√
Σ(θm − θ)‖2p{1 + pen′(|m|)} + σ2

{
pen′(|m|) ∨ 1

n

}]
.(10.3)

Take any θ ∈ Θ[k, p]. Consider the risk bound (10.3) with the set m = supp(θ). We obtain

E
[
‖
√
Σ(θ̃V − θ)‖2p

]
≤ C(K)

k

n
log
(ep
k

)
exp

{
C
k

n
log
(ep
k

)}
σ2 .
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Proof of Proposition 10.1. Given a subset m ∈ M, Σm denotes the covariance matrix of Xm. We
can assume that for all m ∈ M, the covariance matrices Σm are non-singular.

If this is not the case, we can define the subcollection M′ ⊂ M, which contains all subsets m
such that Σm is non-singular. We have

m̂V ∈ arg min
m∈M′

‖Y −Xθ̂m‖2n
[
1 + pen′(|m|)

]
a.s. .

Thus, θ̃V can be analyzed using the collection M′ instead of M.
Let us fix a set m ∈ M. By definition of m̂, we have

‖Y −Xθ̂m̂‖2n
[
1 + pen′(|m̂|)

]
≤ ‖Y −Xθm‖2n[1 + pen′(|m|)] (10.4)

As in [37], we define the random variable ǫm by

Y = Xθm + ǫm + ǫ a.s. .

By definition of θm, ǫm is independent of Xm and follows a centered normal distribution with
variance ‖

√
Σ(θm − θ)‖2p. Consider some 0 < u ≤ 1, which will be fixed later. For any subset m and

any vector Z of size n, Π⊥
mZ stands for Z − ΠmZ. Since ‖Y −Xθ̂m̂‖2n = ‖Π⊥

m̂ǫ + ǫm̂‖2n, we derive
from (10.4) that

u‖
√
Σ(θ − θ̂m̂)‖2p ≤ ‖ǫ+ ǫm‖2n/n[1 + pen′(|m|)] + u

[
‖
√
Σ(θm̂ − θ)‖2p + ‖

√
Σ(θm̂ − θ̂m̂)‖2p

]

− ‖Π⊥
m̂ǫ+ ǫm̂‖2n/n[1 + pen′(|m̂|)] .

Then, we get

u‖
√
Σ(θ − θ̂m̂)‖2p ≤

[
2〈ǫ, ǫm〉n + ‖ǫm‖2n

]
/n(1 + pen′(|m|)) + ‖ǫ‖2npen′(|m|)/n

+
‖ǫ‖2n
n

+ u
[
‖
√
Σ(θm̂ − θ)‖2p + ‖

√
Σ(θm̂ − θ̂m̂)‖2p

]
− ‖Π⊥

m̂ǫ+ ǫm̂‖2n
n

[1 + pen′(|m̂|)] .

We call the first line Am and the second line Bm̂. We shall prove that for a good choice of u, Bm̂ is
non-positive with large probability. First, we provide a control of Am with large probability.

Lemma 10.2. With probability larger than 1− 3e−x, we have

Am ≤ C‖
√
Σ(θm − θ)‖2p[1 + pen′(|m|)]

(
1 +

x

n

)
+ Cσ2

1 ∨ x
n

+ Cσ2pen′(|m|)
(
1 +

x

n

)
. (10.5)

Let us consider a partition (M1,M2) of M. such that the collection M1 contains all the sets m
such that |m| log(ep/|m|) ≤ n/16. One of the collections M1 or M2 is possibly empty. We shall first
upper bound the loss ‖

√
Σ(θ̃ − θ)‖2p1m̂∈M2

and then ‖
√
Σ(θ̃ − θ)‖2p1m̂∈M1

.

Lemma 10.3. Let us define Vm̂ = |m̂|/n log(ep/|m̂|). For any x > 0 and any 0 < u ≤ 1, we have

Bm̂ ≤ σ2
(
3/2 + 4

x

n

)
+ u‖

√
Σ(θm̂ − θ)‖2p

+
[
σ2 + ‖

√
Σ(θm̂ − θ)‖2p

] [
uC1 exp [C2Vm̂] eC3x/n − C4 exp [(K − C5)Vm̂] e−C6x/n

]
,

with probability larger than 1− Ce−x.
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CASE 1. Large sets: m̂ ∈ M2. First, we apply Lemma 10.3 with x = n and u = C4/(2C1)e
−C6−C3∧

1. If we constrain K to satisfy K ≥ C2 + C5, we have

Bm̂

σ2 + ‖
√
Σ(θm̂ − θ)‖2p

1m̂∈M2
≤
[
11

2
− C4 exp [(K − C5)Vm̂] eC6

]

+

,

which is zero for K large enough since Vm̂ ≥ 1/16 for m̂ ∈ M2. Combining this result with (10.5),
we obtain

‖
√
Σ(θ̃ − θ)‖2p1m̂∈M2

≤ C
[
‖
√
Σ(θm − θ)‖2p(1 + pen′(|m|)) + σ2pen′(|m|)

]
+ σ2

1 ∨ x
n

, (10.6)

with probability larger than 1−Ce−n − Ce−x.

CASE 2. Small sets: m̂ ∈ M1. In this case, we use a slightly different decomposition for Bm̂:

Bm̂ ≤ u‖
√
Σ(θm̂ − θ)‖2p −

‖Π⊥
m̂ǫm̂‖2n
2n

+ u‖
√
Σ(θ̃ − θm̂)‖2p +

‖Πm̂ǫ‖2n
n

+
2

n
〈Π⊥

m̂ǫ,
Π⊥

m̂ǫm̂

‖Π⊥
m̂ǫm̂‖n

〉2n − ‖Π⊥
m̂ǫm̂ + ǫ‖2n

n
pen′(|m̂|) .

Lemma 10.4. Let us constrain K > C and 0 < u < C(K) (explained in the proof). For any x ≤ n,
we have

Bm̂1m̂∈M1
≤ C

x

n
σ2 ,

with probability larger than 1− Ce−x − Ce−Cn.

We also bound the term Am in probability by Lemma 10.2. All in all, we get that for any x < n

‖
√
Σ(θ̃ − θ)‖2p1m̂∈M1

≤ C(K)

[
‖
√
Σ(θm − θ)‖2p(1 + pen′(|m|)) + σ2pen′(|m|) + σ2

1 ∨ x
n

]
, (10.7)

with probability larger than 1−Ce−Cn−Ce−x. Gathering (10.6) and (10.7), we derive that for any
x < n

‖
√
Σ(θ̃ − θ)‖2p ≤ C(K)

[
‖
√
Σ(θm − θ)‖2p(1 + pen′(|m|)) + σ2pen′(|m|) + σ2

1 ∨ x
n

]
, (10.8)

with probability larger than 1−Ce−Cn − Ce−x.

Control of the tail. Consider Lemma 10.3 with any x > n and take u defined by

u = C4/[2(C1 ∨ 1)] exp [−(C3 + C6)x/n] ∧ 1 .

Constraining K ≥ C2 + C5 yields

Bm̂ ≤ Cσ2
(
1 +

x

n

)
,
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with probability larger than 1− Ce−x. Gathering this bound with Lemma 10.2, we derive that for
any x > n

‖
√
Σ(θ̃ − θ)‖2p ≤ C exp [Cx/n]

[
‖
√
Σ(θm − θ)‖2p + σ2

]
(1 + pen′(|m|)) , (10.9)

with probability larger than 1−Ce−x. Integrating the upper bounds (10.8) and (10.9), we conclude

E
[
‖
√
Σ(θ̃ − θ)‖2p

]
≤ C(K)

[
‖
√
Σ(θm − θ)‖2p(1 + pen′(|m|)) + σ2pen′(|m|)

]
+ C(K)

σ2

n
.

Taking the minimum over all m ∈ M concludes the proof.

Proof of Lemma 10.2.

Am ≤
[
2‖ǫm‖2n

]
/n[1 + pen′(|m|)] + ‖ǫ‖2npen′(|m|)/n + 2〈ǫ, ǫm

‖ǫm‖n
〉2n/n[1 + pen′(|m|)] .

The three random variables ‖ǫm‖2n/‖
√
Σ(θm − θ)‖2p, ‖ǫ‖2n/σ2 and 〈ǫ, ǫm

‖ǫm‖n 〉
2
n/σ

2 respectively follow

χ2 distributions with n, n and 1 degrees of freedom. Applying the deviation inequalities of Lemma
A.1 allows to conclude.

Proof of Lemma 10.3. For any subset m of {1, . . . , p}, we recall that Σm denotes the covariance

matrix of the vector X∗
m. Moreover, we define the row vector Zm := Xm

√
Σ−1
m in order to deal with

standard Gaussian vectors. Similarly to the matrix Xm, the n × dm matrix Zm stands for the n
observations of Zm. By Lemma 7.1 in Verzelen [37], ‖

√
Σ(θ̂m̂ − θm̂)‖2p decomposes as

‖
√
Σ(θ̂m̂ − θm̂)‖2p = (ǫ+ ǫm̂)∗Zm̂(Z∗

m̂Zm̂)−2Z∗
m̂(ǫ+ ǫm̂)

≤ ϕ−1
min [Z

∗
m̂Zm̂] ‖Πm̂(ǫ+ ǫm̂)‖2n . (10.10)

Moreover, the random variables ‖Πm′ǫ + ǫm′‖2n/(σ2 + ‖
√
Σ(θm′ − θ)‖2p) and ‖Π⊥

m′ǫ + ǫm′‖2n/(σ2 +
‖
√
Σ(θm′ − θ)‖2p) respectively follow χ2 distributions with |m′| and n− |m′| degrees of freedom.

By Lemma A.1, we have

‖ǫn‖2n/σ2 ≤ 3/2 + 4x/n , (10.11)

with probability larger than 1−e−x. We recall that the maximal size of any subsetm ∈ M is smaller
than n/2. Applying the deviation inequality (A.1) and Lemma A.2, we get for any set m′ ∈ M and
for any x > 0,

‖Π⊥
m′ǫ+ ǫm′‖2n

n
(
σ2 + ‖

√
Σ(θm′ − θ)‖2p

) ≥ C1 exp

[
−C2

|m′| log(ep/|m′|)
n

]
exp(−C3x/n) , (10.12)

ϕ−1
min [Z

∗
m′Zm′/n] ≤ C1 exp

[
C2

|m′| log(ep/|m′|)
n

]
exp(C3x/n) , (10.13)

‖Πm′ǫ+ ǫm′‖2n
n
(
σ2 + ‖

√
Σ(θm′ − θ)‖2p

) ≤ C1
|m′|
n

log

(
ep

|m′|

)
+
C2x

n
, (10.14)
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with probability larger than 1 − 3
(|m′|

p

)−1
e−|m′|e−x. We derive from (10.10), (10.13) and (10.14),

that

‖
√
Σ(θ̂m̂ − θm̂)‖2p ≤

[
σ2 + ‖

√
Σ(θm̂ − θ)‖2p

]
C1 exp

[
C2

|m̂|
n

log

(
ep

|m̂|

)]
exp (C3x/n) , (10.15)

with probability larger than 1−Ce−x. We derive from (10.12) and the definition (5.4) that

‖Π⊥
m̂ǫ+ ǫm̂‖2n

n

[
1 + pen′(|m̂|)

]
≥
[
σ2 + ‖

√
Σ(θm̂ − θ)‖2p

]
exp(−C6x/n)

×C4 exp

[
(K − C5)

|m̂|
n

log

(
ep

|m̂|

)]
, (10.16)

with probability larger than 1− Ce−x. Gathering the bound (10.11), (10.15) and (10.16) allows to
conclude.

Proof of Lemma 10.4. Applying deviations inequalities for χ2 distributions (Lemma A.1) to all m ∈
M1 we prove

‖Π⊥
m̂ǫm̂ + ǫ‖2n

n
≥ C(σ2 + ‖

√
Σ(θm̂ − θ)‖2p) (10.17)

‖Π⊥
m̂ǫm̂‖2n
n

≥ C‖
√
Σ(θm̂ − θ)‖2p , (10.18)

with probability larger than 1− 2e−Cn. We also apply the deviation inequality (A.2) for the largest
eigenvalue of an inverse Wishart matrix and we get:

ϕ−1
min [Z

∗
m̂Zm̂/n] ≤ C ,

with probability larger than 1−e−Cn. Applying again deviation inequalities for χ2 random variables,
we get

‖Πm̂ǫ‖2n
n

+
2

n
〈Π⊥

m̂ǫ,
Π⊥

m̂ǫm̂

‖Π⊥
m̂ǫm̂‖n

〉2n ≤ C
|m̂|
n

log

(
ep

|m̂|

)
σ2 + C

x

n
σ2 ,

with probability larger than 1−Ce−x. The two previous bounds allow to prove that

‖
√
Σ(θ̃ − θm̂)‖2p ≤ C

[ |m̂|
n

log

(
ep

|m̂|

)
+
x

n

] [
σ2 + ‖

√
Σ(θm̂ − θ)‖2p

]
,

with probability larger than 1−Ce−x − Ce−Cn.

Gathering (10.17) and (10.18) with the last bound, we derive that for any x > 0,

Bm̂ ≤ σ2
[
C1

|m̂|
n

log

(
ep

|m̂|

)
+ C2

x

n
− C3pen

′(|m̂|)
]

+ ‖
√
Σ(θm̂ − θ)‖2p

[
u

(
1 +C4

|m̂|
n

log

(
ep

|m̂|

)
+ C5

x

n

)
− C6{1 + pen′(|m̂|)}

]
,

with probability larger 1−Ce−x−Ce−Cn. Since ex ≥ 1+x, we have pen′(|m̂|) ≥ K|m̂| log(ep/|m̂|).
It follows that if we take K larger than some numerical constant, x ≤ n and u smaller than some
constant C(K), we have Bm̂ ≤ Cx/nσ2, with probability larger than 1− Ce−x − Ce−Cn.
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10.3. Proof of Proposition 5.5

Given m ⊂ {1, . . . , p}, we write θ̂m, the least-squares estimator of θ whose support is included in m.
For any subset m, we note dm the rank of the subdesign Xm of size n× |m|. Consider the collection
of M′ of non-empty subsets m such that |m| ≤ (n − 1)/4. Upon defining the penalty pen′(m) by
the identity

1 +
pen′(m)

n− dm
= exp[pen(|m|)] ,

we have almost surely

m̂V ∈ arg min
m∈M′

‖Y −Xθ̂m‖2n
[
1 +

pen′(m)

n− dm

]
.

Let us consider the penalty pen2,L:M′ → R+ introduced in Definition 3 in [4] with Lm = |m|+ log[(|m|
p )].

By Proposition 4 in [4], we have for any |m| ∈ M′,

pen2,L(m) ≤ C|m|
[
1 +

√
C log

(
ep

|m|

)
exp

{
C
|m|
n

log(ep/|m|)
}]2

≤ C|m| log
(
ep

|m|

)
exp

{
C
|m|
n

log(ep/|m|)
}
.

If we choose K large enough in the penalty function (5.4), then we have for any m ∈ M′, pen′(m) ≥
pen2,L(m). By Theorem 2 and Proposition 3 in Baraud et al. [4], we obtain that for any 1 ≤ k ≤
(n− 1)/4 and any θ ∈ Θ[k, p],

E
[
‖X(θ̃V − θ)‖2n/(nσ2)

]
≤ C

pen′(k)
n

+
C

n
≤ C(K)

k

n
log
(ep
k

)
exp

{
C
k

n
log(ep/k)

}
.

10.4. Proof of Proposition 6.2

This result is a again a consequence of Theorem 1 in Birgé and Massart [10]. We have

E
[
‖X(θ̂k − θ)‖2n

]
≤ Ck log (ep/k) σ2 .

We conclude by using the fact that θ̂k and θ are k-sparse.

Appendix A: Concentration inequalities

Lemma A.1 (χ2 distributions). For any integer d > 0 and any number 0 < x < 1,

P
(
χ2(d) ≥ d+ 2

√
d log(1/x) + 2 log(1/x)

)
≤ x ,

P
(
χ2(d) ≤ d− 2

√
d log(1/x)

)
≤ x .

For any positive number 0 < x < 1

P
[
χ2(d) ≤ dCx2/d

]
≤ x , (A.1)

where the constant C = exp(−1).
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Proof of Lemma A.1. The two first bounds are classical and are shown by Laplace method. We refer
to Lemma 1 in [29] for more details. We only provide a proof for the third bound (A.1). Consider
some 0 ≤ u < 1 and some λ > 0. We write Xd for a random variable that follows a χ2(d) distribution.
Applying Laplace method, we get

P [Xd ≤ ud] ≤ E
[
e−λXdeλud

]
= exp [λud] exp

[
−d
2
log (1 + 2λ)

]
.

Taking λ = (1− u)/(2u) leads to

P [Xd ≤ ud] ≤ exp

[
d

2
(1− u+ log(u))

]
≤ exp

[
d

2
log(eu)

]
.

Consider some 0 < x < 1. Then x2/d/e is smaller than one and we get

P

[
Xd ≤ d

e
x2/d

]
≤ x .

Lemma A.2 (Wishart distributions). Let Z∗Z be a standard Wishart matrix of parameters (n, d)
with n > d. For any number 0 < x < 1,

P

[
ϕmax (Z

∗Z) ≥ n
(
1 +

√
d/n +

√
2 log(1/x)/n

)2]
≤ x ,

P

[
ϕmin (Z

∗Z) ≤ n
(
1−

√
d/n−

√
2 log(1/x)/n

)2
+

]
≤ x . (A.2)

For any (n, d) with n ≥ 4d+ 1 and any number 0 < x < 1,

P

[
ϕmin (Z

∗Z) ≤ nCx
2

n−2d

[
1 ∨ log(2/x)

n

]−1
]

≤ x , (A.3)

where C is a numerical constant.

The two first deviation inequalities are taken from Theorem 2.13 in [17]. The bound (A.3) allows to
control the tail of the distribution of the largest eigenvalue of a Wishart distribution. Rudelson and
Vershynin [36] have provided a control similar to (A.3) under subgaussian assumptions. However,
their results only holds for events of probability smaller than 1− e−n.

Proof of Lemma A.2. In this proof, we adopt the same approach as Litvak et al. [30]. Fix some
x > 0 and some ǫ > 0. We consider a minimal ǫ-net N (ǫ) of the l2 unit sphere in Rd, whose elements
are included in the unit sphere. Since the ǫ-covering number of the ball in Rd is smaller than (5/ǫ)d,
we get

|N (ǫ)| ≤ (10/ǫ)d . (A.4)

Consider some θ ∈ N (ǫ). The random variable ‖Zθ‖2n follows a χ2 distribution with n degrees of
freedom. Applying Lemma A.1, we derive that for any 0 < x < 1

P
[
‖Zθ‖2n ≤ Cnx2/n

]
≤ x .
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Applying an union bound over all θ ∈ N (ǫ), we derive that

P

[
inf

θ∈N (ǫ)
‖Zθ‖2n ≤ nCx2/n

( ǫ

10

) 2d
n

]
≤ x/2 .

Applying the first result of Lemma A.2, we control the largest singular value of Z.

P


 sup
θ∈Rd , ‖θ‖2

d
≤1

‖Zθ‖2n ≤ n

{
1 +

√
k

n
+

√
2 log(2/x)

n

}2

 ≤ x/2 .

Consider any θ ∈ Rd such that ‖θ‖d = 1. There exists θ0 ∈ N (ǫ) such that ‖θ − θ0‖d ≤ ǫ.

‖Zθ‖2n = ‖Zθ0‖2n+ < Z(θ − θ0), Z(θ + θ0) >n

≥ inf
θ0∈N (ǫ)

‖Zθ0‖2n −
√
2ǫ sup

θ, ‖θ‖2
d
=1

‖Zθ‖2n .

Applying the two deviations inequalities, we derive that for any ǫ > 0

inf
θ, ‖θ‖2

d
=1

‖Zθ‖2n/n ≥ Cx2/n
( ǫ
10

) 2d
n −

√
2ǫ

{
1 +

√
d

n
+

√
2 log(2/x)

n

}2

, (A.5)

with probability larger than 1−x. Since we assume that 2d/n < 1, we can choose ǫ so that the first
term of (A.5) is twice the second term. After some computations, this leads to the bound

inf
θ, ‖θ‖2

d
=1

‖Zθ‖2n/n ≥ Cx
2

n−2d

[
1 ∧ n

log(2/x)

]
,

with probability larger than 1− x. This allows to conclude.
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