

Acute effects of coffee on endothelial function in healthy subjects

Silvio Buscemi, Salvatore Verga, John A. Batsis, Mariella Donatelli, Maria Rosaria Tranchina, Serena Belmonte, Alessandro Mattina, Andrea Re, Giovanni Cerasola

▶ To cite this version:

Silvio Buscemi, Salvatore Verga, John A. Batsis, Mariella Donatelli, Maria Rosaria Tranchina, et al.. Acute effects of coffee on endothelial function in healthy subjects. European Journal of Clinical Nutrition, 2010, n/a (n/a), pp.n/a-n/a. 10.1038/ejcn.2010.9. hal-00508325

HAL Id: hal-00508325

https://hal.science/hal-00508325

Submitted on 3 Aug 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Acute effects of coffee on endothelial function in healthy subjects

Short title: Coffee and FMD

5 Silvio Buscemi, Salvatore Verga, John A. Batsis[#], Mariella Donatelli*, Maria Rosaria Tranchina, Serena Belmonte, Alessandro Mattina, Andrea Re, and Giovanni Cerasola

Dipartimento di Medicina Interna, Malattie Cardiovascolari e NefroUrologiche; Facoltà di

10 Medicina, University of Palermo (Italy)

- Section of General Internal Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, United States

* Dipartimento Biomedico di Medicina Interna e Specialistica: Facoltà di Medicina, University of Palermo (Italy).

15

Corresponding author:

Silvio Buscemi, MD

U.O. di Medicina Interna, Nefrologia ed Ipertensione

20 Policlinico "P. Giaccone"

Via del Vespro, 129 – I-90127 Palermo (Italy)

2 0039-91-6554580 - fax: 0039-91-6552144

e-mail: silbus@tin.it

Abstract

5

10

15

20

25

Background/Objectives: Coffee is the most widely consumed beverage in the world, but its effect on the cardiovascular system has not been fully understood. Coffee contains caffeine and antioxidants which may influence endothelial function, both of which have not yet been investigated. The objective of the present study was to investigate the acute effects of coffee on endothelial function measured by brachial artery flow-mediated dilation (FMD).

Subjects/Methods: Twenty (10 males and 10 females) healthy non-obese subjects underwent a double-blind, crossover study. Subjects ingested one cup of caffeinated (CC) and one cup of decaffeinated (DC) Italian espresso coffee in random order at 5-7 day intervals.

Results: Following CC ingestion FMD progressively and significantly decreased (mean \pm SEM: 0 min, 7.7 \pm 0.6; 30 min, 6.3 \pm 0.7; 60 min, 6.0 \pm 0.8 %; ANOVA: P< 0.05) and did not significantly increase after DC ingestion (0 min, 6.9 \pm 0.6; 30 min, 8.1 \pm 0.9; 60 min, 8.5 \pm 0.9 %; P= 0.115). Similarly, CC significantly increased both systolic and diastolic blood pressure; this effect was not observed after DC ingestion. Blood glucose concentrations remained unchanged after ingestion of both CC and DC, but insulin (0 min, 15.8 \pm 0.9; 60 min, 15.0 \pm 0.8 μ U/mL; P< 0.05) and C-peptide (0 min, 1.25 \pm 0.09; 60 min, 1.18 \pm 0.09 ng/mL; P< 0.01) blood concentrations significantly decreased only after CC ingestion. **Conclusions**: Caffeinated coffee acutely induced unfavorable cardiovascular effects especially on endothelial function. In the fasting state, insulin secretion also is likely reduced following CC ingestion. Future studies will determine whether CC has detrimental clinically relevant effects, especially in unhealthy subjects.

This study was registered with the Current Controlled Trials (ISRCTN85096812)

Keywords: coffee, endothelial function, FMD, insulin

Introduction

5

10

15

20

25

Coffee, a major source of caffeine (Frary et al., 2005), is the most widely consumed beverage in the world and is manufactured under various formulations and preparations. Although not all components of coffee have been fully identified, some phenolic components, such as those of the family of chlorogenic acids, are well known to be abundant in coffee and possess high antioxidant capacity (Fujioka and Shibamoto, 2008). Information with regard to the metabolic and cardiovascular effects of coffee has been conflicting (Greenberg et al., 2006; Bonita et al., 2007; Klatsky et al., 2008). Short-term studies on the acute effects of coffee intake have generally reported detrimental cardiovascular and metabolic influences (Mahmud and Feely, 2001; Riksen et al., 2009; Moisey et al., 2008). In some instances, epidemiologic studies have indicated that regular consumption of coffee is associated with lower risk of cardiovascular disease and type 2 diabetes (Van Dam et al., 2008; Odegaard et al., 2008; Silletta et al., 2007; van Woundenbergh et al., 2008; Larsson et al., 2008). A possible explanation for this "coffee paradox" is related to both the caffeine and the antioxidant content in coffee, as the latter may be efficacious in the long-term, while the former may have more immediate effects. Therefore, understanding the potential biological effects of coffee may have important public health implications.

Impaired endothelial function is involved in the pathogenesis of atherosclerosis and cardiovascular diseases, and is characterized by a reduction in the bioavailability of nitric oxide (NO), a potent vasodilator and inhibitor of platelet adhesion and aggregation with anti-inflammatory and anti-proliferative properties (Fuchgott and Zawadzki., 1980; Deanfield *et al.*, 2007). Endothelial function is measured *in vivo* by flow-mediated dilation (FMD) in the brachial artery and has proven to be a strong predictor of cardiovascular events (Gokce *et al.*, 2002; Widlansky *et al.*, 2003; Yeboah *et al.*, 2007; Rossi *et al.*, 2008). Flow-mediated dilation

is influenced by many factors, including insulin resistance, diabetes, drugs and diet (Keogh *et al.*, 2005; Vogel *et al.*, 2000; Wu and Meininger, 2002; Hamdy *et al.*, 2003; Shimabukuro *et al.*, 2007). Inflammation and oxidative stress influence endothelial function and play a crucial role in atherogenesis (Libby *et al.*, 2002). However, the data have been conflicting demonstrating that coffee consumption is either inversely (Lopez-Garcia *et al.*, 2006) or positively (Zampelas *et al.*, 2004) associated with C-reactive protein, interleukin-6 and tumornecrosis factor-α.

Because of the limited data on the effect of coffee on endothelial function, the aim of the present study was to investigate the acute effects of caffeinated *vs.* decaffeinated coffee, prepared as Italian espresso coffee, on FMD and some post-absorptive fasting measures of glucose metabolism in healthy subjects.

Subjects and Methods

15 Subjects

5

10

20

25

Twenty non-obese healthy hospital employees voluntarily participated in the study after responding to an announcement in the medical center. There was no incentive provided to the participants. The study period was from November 2007 to February 2008. Inclusion criteria included ages 25-50 years and body mass index (BMI; body weight (kg) /height (m)²) of 20-28 kg/m². Exclusion criteria included patients with any dyslipidemia, hypertension, diabetes, cardiovascular, or systemic disease, any medication treatment, smoking of any tobacco products, pregnancy or lactation in the past 6 months, habitual daily consumption of > 2 cups of coffee or weekly ingestion of more than one commercial caffeinated beverage, abstaining from chocolate or other flavonoid containing beverages the day preceding. The study protocol was approved by the Ethics Committee of the University Hospital Policlinico P. Giaccone of

Palermo, Italy, and an approved informed consent form was signed by each subject. This study is registered as an International Standardized Randomized Controlled Trial, (ISRCTN85096812).

5 Study design

The study followed a randomized, crossover, double-blind design with each subject receiving two different study treatments, in random order, and repeated on separate days at 5-7 day intervals. Anthropometric measurements, routine blood tests, and an oral glucose (75 g) tolerance test were obtained in all subjects before participating in the study by M.R.T., S.B., 10 A.M., A.R., G.P. who were blinded to study participant randomization. Subjects were tested in the morning after an overnight fast; women underwent measurements between the 7th and the 21th day from their menstrual cycle. Flow-mediated dilation of the brachial artery was performed by the same operator (S.B.) who was blinded to the participant's mixture of coffee tested before, 30 min and 60 min after drinking a cup of Italian espresso caffeinated (CC) or 15 decaffeinated coffee (DC).); ultrasound images were video recorded and analyzed by a trained reader who was blinded to the participant's mixture of coffee tested (S.V.) The intraobserver coefficient of variation for FMD is 2.9% in our laboratory. A venous blood sample was taken before and 60 min after coffee ingestion. Subjects had continuous electrocardiogram and blood pressure (10 min intervals) recorded for the duration of each test. 20 Serum samples obtained at each time-point of the study were frozen at -80°C for subsequent analysis.

Coffee testing

25

Fresh CC or DC was prepared using a commercial automatic machine (easy serving espresso; Italy) by a blinded study nurse. The blinding process involved a coffee envelope that was

coded anonymously by the Morettino farm, only to be decoded by means of a code at the conclusion of the study. One cup of coffee consisted of 25 ml of espresso obtained with an average extraction time of 20 s from 7 g of a coffee mixture pressed in packet. Each packet of CC or DC contained a mixture of 65% Robusta (variety Canephora) and Arabica (A.

Morettino s.p.a.; Palermo, Italy). The average caffeine content in 25 ml of CC and DC measured by chromatography-spectrophotometry (Chemical Laboratory, Camera di Commercio Industria Artigianato e Agricoltura, Trieste, Italy) was 130 mg and 5 mg, respectively. No addition of sugar or milk was permitted.

Measurements

10

15

Body composition and fat distribution. Fat mass (FM, % body weight) was estimated as previously described (Verga et al., 1994) by means of bioelectrical impedance analysis (BIA-103, RJL, Detroit, MI, USA; Akern, Florence, Italy). Body circumference was obtained at the umbilicus (waist circumference) and at the most prominent buttock level (hip circumference).

- Assessment of endothelial function. Endothelium-dependent reactivity in the macrocirculation, measured by FMD of the brachial artery, was determined using high-resolution vascular ultrasound (Sonoline G50; Siemens, Germany) with a 10 MHz linear array transducer. The transducer was held at the same position throughout the test by a stereotactic clamp with micrometer adjustment (EDI Progetti e Sviluppo; Pisa, Italy) to ensure image consistency.
- Reactive hyperemia was produced by inflating a sphygmomanometer cuff 2 cm below the antecubital fossa to occlude the artery for 5 min at approximately 220-250 mm Hg, then deflating it. A video processing system computed the brachial artery diameter in real-time by analyzing B-mode ultrasound images (FMD Studio; Institute of Physiology CNR; Pisa, Italy). Briefly, the device captures the analog video signal from the ultrasound equipment. An edge detection algorithm, based on the localization of gray level discontinuities, automatically

locates the two walls of the vessel. The diameter is obtained with subpixel precision and temporal resolution of 25 samples/s. The brachial artery diameters were displayed on a graphical interface over a time scale of 9 min. Baseline vessel size was considered the mean of the measures obtained during the first minute. The FMD was calculated as the maximum percentage of increase of brachial artery diameter over baseline. These procedures are described in detail elsewhere (Deanfield *et al.*, 2007; Corretti *et al.*, 2002; Barac *et al.*, 2007; Buscemi *et al.*, 2009). The intra-observer coefficient of variation for FMD was 2.9% in our laboratory.

Laboratory analysis. Basal lipid measurements and uric acid were ascertained using common clinical chemistry methods (IL Test CHOL; IL Test HDL-CHOL; IL Test Triglycerides; IL Test Uric Acid. Instrumentation Laboratory; Milano, Italy). Low-density lipoprotein (LDL) cholesterol concentration was calculated according to the Friedewald formula (Friedewald, 1972). Plasma glucose concentrations were measured using the glucose oxidase method (Instrumentation Laboratory; Milano, Italy. Blood concentrations of insulin were measured by radioimmunoassay (Insik-5, DiaSorin, Saluggia, Italy). Blood concentrations of C-peptide (CPR) were measured by electrochemiluminescence (ECLIA; Roche Diagnostics, Monza, Italy). The homeostasis model assessment of insulin resistance (HOMA-IR) was calculated according to Matthews et al (Matthews et al., 1985).

20 Statistic Analysis

5

10

15

25

All data are presented as means \pm standard error of means. Basal pairwise comparisons between the two treatments (CC vs. DC) were tested for statistical significance using the paired Student's t-test. An overall 3 x 2 ANOVA for repeated measures was performed in order to evaluate the composite effect of the two different (CC and DC) ingested coffees over time (three periods: baseline, 30 and 60 min) on the parameters of interest. ANOVA for

repeated measures was also carried out in order to detect significant changes in variables over time within the two sessions separately; Bonferroni's t-test was performed for individual differences between 2 time points (paired) when appropriate. A two-tailed P<0,05 was considered significant. All analyses were performed using Systat (Windows version 11.0; San Jose, CA, USA).

Results

5

10

15

20

The physical and clinical characteristics of subjects included in the study are reported in Table 1. The effects of CC and DC on FMD are reported in Table 2 and Figure 1. Despite no time x treatment effect was observed, both systolic and diastolic blood pressures were higher in the hour following ingestion in the caffeinated coffee group. In particular, the average increase of systolic blood pressure from baseline was 2.7% both 30 min (P<0.05) and 60 min (P< 0.05) following CC ingestion; similarly, diastolic blood pressure increased from baseline an average of 5.9% at both 30 min (P < 0.05) and 60 min (P < 0.05) after CC. The FMD significantly decreased from baseline until reaching an average maximum of 22.1% at 60 min (P< 0.05) after CC ingestion. Both systolic and diastolic blood pressure and FMD didn't significantly change after decaffeinated coffee. Table 3 also reports the changes in metabolic variables following coffee ingestion. There were no differences in glucose concentration in either group, but reductions in insulin and C-peptide concentration and in HOMA-IR were observed in the CC group. DC patients had no change in any of their variables. No significant correlation was observed between changes in FMD and changes in parameters, including insulin and C-peptide concentrations, systolic and diastolic blood pressure.

Discussion

5

10

15

20

25

This study demonstrates that in non-obese healthy subjects CC acutely induces significant endothelial dysfunction. Conversely, DC ingestion appears to improve endothelial function, although the change in FMD approached but did not reach statistical significance. To our knowledge, this is the first study that has assessed the effects of espresso coffee on FMD in healthy subjects with a double-blind, cross-over study design in an Italian cohort.

Our results parallel a study of 17 healthy subjects testing an instant-caffeinated or decaffeinated coffee with randomized single-blind (operator) cross-over design (Papamichael *et al.*, 2005). Results demonstrated a significant reduction of FMD after CC ingestion with a maximum at 60min, but a non significant reduction of FMD with DC ingestion, contrary to the trend that we observed. Although FMD was measured for two hours, this may lead to excessive patient discomfort and potential harm due to persistant sphygmomanometer compression. Furthermore, the coffee preparation was not thoroughly standardized, thereby introducing bias into their results. By measuring caffeine content in a systematic manner as we did in our own study, we feel justified in the accuracy and precision of our results.

We cannot exclude the possibility that the reduction in FMD of 22% may be extended based on the slope of the time-course (Figure 1). Subjects were examined for a limited 1h period to exclude confounders that may influence FMD, such as prolonged fasting, stress or artificial ischemic episodes imposed by frequent FMD measurements (Moens *et al.*, 2005). Since the reduction of FMD was not observed after DC ingestion, we can reasonably attribute the effects of CC on endothelial function to the presence of caffeine. In contrast with this hypothesis, two studies on tea consumption (Duffy *et al.*, 2001; Alexopoulos *et al.*, 2008)

included a caffeine control group and showed that acutely administered caffeine had no effect on FMD. However, these studies differ slightly with our own study. In particular, Duffy et al. measured the FMD two hours after caffeine ingestion while we demonstrated significant changes 1h after coffee ingestion. The above study included participants with coronary artery disease, a group of patients expected to have lower FMD (Kitta *et al.*, 2009) which may not have further been suppressed by caffeine. Finally, despite withhold 12-24hours beforehand, the interference of concurrent vasoactive medications cannot be excluded. In the study by Alexopoulos et al. FMD was measured at 30, 90 and 120 min, and not at 60 min after caffeine ingestion. However, 50% of studied subjects were smokers and it was not specified whether they were habitual coffee consumers, a condition that, if present, may induce caffeine tolerance (Riksen *et al.*, 2009). Other confounding factors may have influenced the Alexopoulos' study results since the presented basal average value of FMD before caffeine ingestion (4.35%) is generally considered low for healthy non obese subjects (Kitta *et al.*, 2008).

Antioxidants contained in coffee may also be responsible for the beneficial effects of DC ingestion on FMD. In fact, our group demonstrated a dose-dependent favourable effect of DC on FMD (Buscemi *et al.*, 2009b). Caffeic acid and chlorogenic acid are present in coffee, both of which have antioxidant properties (Daglia *et al.*, 2000) which thereby may mitigate the detrimental effects of caffeine contained in CC on FMD. We cannot therefore exclude that the same amount of caffeine might produce additional negative effects on endothelial function when ingested with other commercial beverage preparations different from coffee that do not contain antioxidants (Frary *et al.*, 2005). Both animal (Suzuki *et al.*, 2006) and human (Esposito *et al.*, 2003) studies have demonstrated that antioxidants improve endothelial function. In fact, antioxidants are also present in chocolate, which can be rich in flavanols

(polyphenols) known to increase FMD and impact endothelial dysfunction (Grassi *et al.*, 2008). However, in this study no measurement was performed of serum concentrations of oxidative stress markers that would have drawn more specific conclusion concerning the role of oxidative stress in coffee induced changes in endothelial function.

Our results support prior evidence of the association between increased blood pressure and coffee (Whitsett *et al.*, 1984; Casiglia *et al.*, 1991) or caffeine intake (Nurminen *et al.*, 1999; Casiglia *et al.*, 1991), suggesting that CC may have acute unfavourable cardiovascular effect in healthy subjects. However, in a study by Corti et al (Corti *et al.*, 2002) decaffeinated espresso coffee increased systolic, but not diastolic, blood pressure in 4 subjects, 30 and 60 min after coffee ingestion, suggesting that components of coffee other than caffeine may be responsible for the pressor effect. The results of our study and similarly those of the report on DC (Buscemi *et al.*, 2009b), do not support the conclusions by Corti et al. which may be due to the small number of studied subjects or to other methodological bias. For instance, Corti investigated the acute pressor effects of DC after the ingestion of three cups of coffee. Since these authors do not report the concentrations of caffeine in each cup of DC, we cannot exclude that a significant amount of this substance was consumed initially by the studied subjects. We cannot exclude that the ingestion of three non sweetened cups of DC may activate in nonhabitual coffee drinkers the sympathetic nervous system independently from his content.

An interesting potential hypothesis is that the effects we observed on FMD and blood pressure may be even more relevant in subjects who are genetically "slow caffeine metabolizers" as recently defined by Cornelis et al. (Cornelis *et al.*, 2006). In their cohort the carrier frequency of this gene was 54%, and it may therefore act as a confounder that can

explain the inconclusive results of epidemiologic studies examining coffee consumption and cardiovascular risk (Klatsky *et al.*, 2008). Further studies are needed to assess this hypothesis.

Our results suggest that coffee might influence glucose homeostasis. Although speculative, plasma glucose may remain unchanged in fasting conditions despite decreases in insulin production, if peripheral insulin sensitivity increases and/or hepatic glucose output decreases. A previous study demonstrated in 10 patients that caffeinated coffee impairs post-prandial glucose and insulin sensitivity compared to DC (Moisey *et al.*, 2008). On the contrary, CC impairs insulin secretion in the fasting state. These data imply that CC unfavorably affects glucose homeostasis, particularly in diabetic patients (Lane *et al.*, 2008), subjecting patients with co-morbidities to higher cardiovascular risk.

Despite the nature of our study design, we acknowledge the limitations of this pilot study. The decaffeinated group serves as a placebo group in the present study but it cannot entirely substitute a caffeine group; therefore, our results can only be generalized to caffeine-containing coffee consumers. This volunteer cohort of hospital employees may be healthier than others. It is unclear whether the washout period of 5 to 7 days would be adequate in accurately measuring FMD. However, due to the cross-over design, we would expect differences to be similar in both groups. We acknowledge that we were grossly underpowered but our results are meant to provide direction for future studies in examining the effect of caffeinated products on endothelial function. Whether or not acute effects indeed have an impact on cardiovascular events in the short or long-term is unknown; however, our results can provide some preliminary data on the understanding of such events. This was a homogenous population without known risk factors. In reality, patients with chronic diseases would be on medications, some of which have anti-inflammatory effects (Mäki-Petäjä et al.,

2007; Buus *et al.*, 2007). Further studies need to be performed on such subjects to observe any possible coffee-disease interaction on endothelial function. Finally, the study results are limited to the effects of espresso coffee and not of other preparations limiting its external validity to other coffee or populations.

We believe that coffee may demonstrate unfavorable acute cardiovascular and metabolic effects with regard to endothelial function. The "coffee paradox", though, remains unresolved. Further studies need to investigate whether antioxidants contained in coffee can overcome caffeine's harmful effects in order to further our understanding of the conflicting results of the protective effects of coffee consumption on diabetes and cardiovascular disease.

5

Acknowledgements

5

This study was supported in part by the Italian Ministry of Education (ex 60% funds, 2007) and by the Associazione Onlus Nutrizione e Salute, Italy

The authors are gratefully indebted with the voluntary subjects who participated in the study and with Giovanna Seddio and Giovanni De Canzio for their invaluable technical support in the laboratory work.

Statement of authorship

- S.B. contributed to the experimental design, performed the FMD measurements, interpreted data, drafted the manuscript, and performed the statistical analysis.
 - S.V. contributed to the experimental design, data interpretation and the writing of the manuscript.
- J.A.B. contributed to the interpretation of the data, critical revision of the manuscript, andfinal approval of the submitted manuscript.
 - M.D. supervised the hormonal and the other laboratory blood measurements and contributed to data interpretation.
 - M.R.T., S.B., A.M., and G.P. recruited participants and performed data collection and analysis.
- 20 G.C. contributed to the experimental design, data interpretation, writing of the manuscript, and trial coordination and had overall responsibility for the study.

The authors declare no conflict of interest.

References

Alexopoulos N, Vlachopoulos C, Aznaouridis K, et al (2008): The acute effect of green tea consumption on endothelial function in healthy individuals. Eur. J. Cardiovasc. Prev.

5 *Rehabil.* **15**, 300-305.

Barac A, Campia U and Panza JA (2007): Methods for evaluating endothelial function in humans. *Hypertension* **49**, 748-760.

Bonita JS, Mandarano M, Shuta D and Vinson J (2007): Coffee and cardiovascular disease: in vitro, cellular, animal, and human studies. *Pharmacol. Res.* **55**, 187-198.

Buscemi S, Verga S, Tranchina MR, Cottone S and Cerasola G (2009): Effects of hypocaloric very-low-carbohydrate diet vs. Mediterranean diet on endothelial function in obese women.

15 Eur. J. Clin. Invest. **39**, 339-347.

Buscemi S, Verga S, Batsis JA, Tranchina MR, Belmonte S, Mattina A, Re A, Rizzo R and Cerasola G (2009): Dose-dependent effects of decaffeinated coffee on endothelial function in healthy subjects. *Eur. J. Clin. Nutr.* **63**, 1200-1205.

20

Buus NH, Jørgensen CG, Mulvany MJ and Sørensen KE (2007): Large and small artery endothelial function in patients with essential hypertension – effect of ACE inhibition and beta-blockade. *Blood Press.* **16**, 106-113.

Casiglia E, Bongiovi S, Paleari CD, *et al* (1991): Haemodynamic effects of coffee and caffeine in normal volunteers: a placebo-controlled clinical study. *J. Intern. Med.* **229**, 501-504.

5 Cornelis MC, El-Sohemy A, Kabagambe EK and Campos H (2006): Coffee, CYP1A2 genotype, and risk of myocardial infarction. *J. A. M. A.* **295**, 1135-1141.

Corretti MC, Anderson TJ, Benjamin EJ, *et al* (2002): Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery. *J. Am. Coll. Cardiol.* **39**, 257-265.

Corti R, Binggeli C, Sudano I, *et al* (2002): Coffee acutely increases sympathetic nerve activity and blood pressare independently of caffeine content. Role of habitual versus nonhabitual drinking. Circulation **106**, 2935-2940.

15

10

Daglia M, Papetti A, Gregotti C, Berte F and Gazzani G (2000): In vitro antioxidant and ex vivo protective activities of green and roasted coffee. *J. Agric. Food Chem.* **48**, 1449-1454.

Deanfield JE, Halcox JP and Rabelink TJ (2007): Endothelial function and dysfunction.

Testing and clinical relevance. *Circulation* **115**, 1285-1295.

Duffy SJ, Keaney JF, Holbrook M, Gokce N, Swerdloff PL, Frei B and Vita JA (2001): Short- and long-term black tea consumption reverses endothelial dysfunction in patients with coronary artery disease. *Circulation* **104**, 151-156.

Esposito K, Nappo F, Giugliano F, Giugliano G, Marfella R and Giugliano D (2003): Effect of diaetary antioxidants on postprandial endothelial dysfunction induced by a high-fat meal in healthy subjects. *Am. J. Clin. Nutr.* **77**, 139-143.

5 Frary CD, Johnson RK and Wang MQ (2005): Food sources and intakes of caffeine in the diets of persons in the United States. *J. Am. Diet. Assoc.* **105**, 110-113.

Friedewald WT (1972): Estimation of the concentration of low density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. *Clin. Chem.* **18**, 499-502.

10

Fuchgott RF and Zawadzki JV (1980): The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. *Nature* **288**, 373-376.

Fujioka K and Shibamoto T (2008): Chlorogenic acid and caffeine contents in various commercial brewed coffees. *Food Chemistry* **106**, 217-221.

Gokce N, Keaney JF, Hunter LM, Watkins MT, Menzoian JO and Vita JA (2002): Risk stratification for postoperative cardiovascular events via noninvasive assessment of endothelial function. *Circulation* **105**, 1567-1572.

20

Grassi D, Desideri G, Necozione S, Lippi C, Casale R, Properzi G, Blumberg JB and Ferri C (2008): Blood pressure is reduced and insulin sensitivity increased in glucose-intolerant, hypertensive subjects after 15 days of consuming high-polyphenol dark chocolate. *J. Nutr.* **138**, 1671-1676.

Greenberg JA, Boozer CN and Geliebter A (2006): Coffee, diabetes, and weight control. *Am. J. Clin. Nutr.* **84**, 682-693.

Hamdy O, Ledbury S, Mullooly C, et al (2003): Lifestyle modification improves endothelial
function in obese subjects with the insulin resistance syndrome. Diabetes Care 26, 2119-2125.

Juonala M, Kähönen M, Laitinen T, et al (2008): Effect of age and sex on carotid intimamedia thickness, elasticity and brachial endothelial function in healthy adults: the cardiovascular risk in Young Finns Study. Eur. Heart. J. 29, 1198-1206.

Keogh JB, Grieger JA, Noakes M and Clifton PM (2005): Flow-mediated dilation is impaired by a high-saturated fat diet but not by a high-carbohydrate diet. *Arterioscler. Thromb. Vasc. Biol.* **25**, 1274-1279.

15

<u>Kitta Y, Obata JE, Nakamura T</u>, et al (2008): Persistent impairment of endothelial vasomotor function has a negative impact on outcome in patients with coronary artery disease. *J. Am. Coll. Cardiol.* **53**, 323-330.

20 Klatsky AL, Koplik S, Kipp H and Friedman GD (2008): The confounded relation of coffee drinking to coronary artery disease. Am. J. Cardiol. 101, 825-827.

Lane JD, Feinglos MN and Surwit RS (2008): Caffeine increases ambulatory glucose and postprandial responses in coffee drinkers with type 2 diabetes. *Diabetes Care* **31**, 221-222.

Larsson SC, Männistö S, Virtanen MJ, Kontto J, Albanes D and Virtamo J (2008): Coffee and tea consumption and risk of stroke subtypes in male smokers. *Stroke* **39**, 1681-1687.

Libby P, Ridker PM and Maseri A (2002): Inflammation and atherosclerosis. *Circulation* **105**, 5 1135-1143.

Lopez-Garcia E, van Dam RM, Qi L and Hu FB (2006): Coffee consumption and markers of inflammation and endothelial dysfunction in healthy and diabetic women. *Am. J. Clin. Nutr.* **84**, 888-893.

10

20

Mahmud A and Feely J (2001): Acute effect of caffeine on arterial stiffness and aortic pressure waveform. *Hypertension* **38**, 227-231.

Mäki-Petäjä KM, Booth AD, Hall FC, Wallace SML, Brown J, McEniery CM et al (2007):

Ezetimibe and Simvastatin reduce inflammation, disease activity, and aortic stiffness and improve endothelial function in rheumatoid arthritis. *J. A. C. C.* **50**, 852-858.

Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF and Turner RC (1985): Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. *Diabetologia* **28**, 412-419.

Moens AL, Goovaerts I, Claeys MJ and Vrints CJ (2005): Flow-mediated vasodilation. *Chest* **127**, 2254-2263.

Moisey LL, Kacker S, Bickerton AC, Robinson LE and Graham TE (2008): Caffeinated coffee consumption impairs blood glucose homeostasis in response to high and low glycemic index meals in healthy men. *Am. J. Clin. Nutr.* **87**, 1254-1261.

Nurminen ML, Nittynen L, Korpela R and Vapaatalo H (1999): Coffee, caffeine and blood pressure: a critical review. *Eur. J. Clin. Nutr.* **53**, 891-899.

Odegaard AO, Pereira MA, Koh WP, Arakawa K, Lee HP and Yu MC (2008): Coffee, tea and incident type 2 diabetes: the Singapore Chinese Health Study. *Am. J. Clin. Nutr.* **88**, 979-985.

Papamichael CM, Aznaouridis KA, Karatzis EN, Karatzi KN, Stamatelopoulos KS, Vamvakou G *et al* (2005): Effect of coffee on endothelial function in healthy subjects: the role of caffeine. *Clin. Sci.* **109**, 55-60.

15

10

Riksen NP, Rongen GA, Smits P (2009): Acute and long-term cardiovascular effects of coffee: implications for coronary heart disease. *Pharmacol. Ter.* **121**, 185-191.

Rossi R, Nuzzo a, Origliani G and Modena MG (2008): Prognostic role of flow-mediated and cardiac risk factors in post-menopausal women. *J. Am. Coll. Cardiol.* **51**, 997-1002.

Shimabukuro M, Chinen I, Higa N, Takasu N, Yamakawa K and Ueda S (2007): Effects of dietary composition on postprandial endothelial function and adiponectin concentrations in healthy humans: a crossover controlled study. *Am. J. Clin. Nutr.* **86**, 923-928.

Silletta MG, Marfisi RM, Levantesi G, *et al* (2007): Coffee consumption and risk of cardiovascular events after acute myocardial infarction. *Circulation* **116**, 2944-2951.

Suzuki A, Yamamoto N, Jokura H, Yamamoto M, Fujii A, Tokimitsu I et al (2006):

5 Chlorogenic acid attenuates hypertension and improves endothelial function in spontaneously hypertensive rats. *J. Hypertens.* **24**, 1065-1073.

Van Dam RM and Hu FB (2008): Coffee consumption and risk of type 2 diabetes. A systematic review. *J.A.M.A.* **294**, 97-104.

10

van Woundenbergh GJ, Vliegenthart R, van Rooij FJ, *et al* (2008): Coffee consumption and coronary calcification: the Rotterdam Coronary Calcification Study. *Arterioscler. Thromb. Vasc. Biol.* **28**, 1018-1023.

Verga S, Buscemi S and Caimi G (1994): Resting energy expenditure and body composition in morbidly obese, obese and control subjects. *Acta Diabetol.* **31**, 47-51.

Vogel RA, Corretti MC and Plotnick GD (2000): The postprandial effect of component of the Mediterranean diet on endothelial function. *J. Am. Coll. Cardiol.* **36**, 1455-1460.

20

Whitsett TL, Manion CV, Christensen HD (1984):. Cardiovascular effects of coffee and caffeine. *Am. J. Cardiol.* **53**, :918-922.

Widlansky ME, Gokce N, Keaney JF and Vita JF (2003): The clinical implications of endothelial function. *J. Am. Coll. Cardiol.* **42**, 1149-1160.

Wu G and Meininger CJ (2002): Regulation of nitric oxide synthesis by dietary factors. *Ann. Rev. Nutr.* **22**, 61-86.

- Yeboah J, Crouse JR, Hsu FC, Burke GL and Herrington DM (2007): Brachial flow-mediated dilation predicts incident cardiovascular events in older adults: the Cardiovascular Health Study. *Circulation* **115**, 2390-2397.
 - Zampelas A, Panagiotakos DB, Pitsavos C, Chrysohoou C and Stefanadis C (2004):
- Associations between coffee consumption and inflammatory markers in healthy persons: the ATTICA study. *Am. J. Clin. Nutr.* **80**, 862-867.

Figure legend

Figure 1

Brachial artery flow mediated dilation (FMD) before (0 min) and after (30 min, 60 min)

- ingestion of one cup of caffeinated (dotted line) or decaffeinated (solid line) espresso coffee. Data are expressed as mean \pm SEM represented by vertical bars (n= 20). All data were analyzed by using a one-way ANOVA for repeated measures. The effect was significant (P< 0,05) for caffeinated coffee with a significant difference observed at 60 min compared with 0 min (P< 0.05; Bonferroni's t-test).
- * P< 0.05 significant difference between caffeinated coffee and decaffeinated coffee.

TABLE 1. Characteristics of study participants

	$mean \pm SEM$	range
Sex (male/female)	10/10	
Age (y)	31 ± 2	25-49
Body weight (kg)	68.7 ± 3.0	51.3-92.6
BMI (kg/m ²)	23.9 ± 0.7	20.1-28.0
Waist circumference (cm)	83.1 ± 2.6	66-98
Hip circumference (cm)	91.6 ± 1.4	80-102
Blood glucose (mg/dL)		
basal	88 ± 2	74-107
2 h post-glucose oral load	82 ± 4	59-119
Blood insulin (μ U/mL)		
basal	14.9 ± 1.4	8.0-20.0
2 h post-glucose oral load	50.0 ± 8.4	22.0-86.0
Total cholesterol (mg/dL)	179 ± 7	121-237
HDL-cholesterol (mg/dL)	64 ± 6	22-103
Triglycerides (mg/dL)	72 ± 5	38-132
Uric acid (mg/dL)	4.8 ± 0.3	2.9-8.1
Blood pressure (mmHg)		
systolic	114 ± 3	90-130
diastolic	73 ± 2	55-90
Heart rate (beats/min)	73 ± 3	55-92

Table 2. Changes in vital signs and in brachial artery flow mediated dilation following ingestion of caffeinated or decaffeinated espresso coffee¹.

		Coffee		P-value ²	
		Caffeinated	Decaffeinated		
		N=20	N=20	Time	Time x Treatment
Systolic blood pressur	re (mmHg)				
basal		113 ± 2	112 ± 2		
30 min		$116 \pm 2^*$	111 ± 2	0.75	0.22
60 min		$116 \pm 2^*$	111 ± 2		
	P-value ³	0.003	0.22		
Diastolic blood pressu	ire (mmHg)				
basal		68 ± 2	66 ± 2		
30 min		$72\pm2^*$	68 ± 2	0.30	0.27
60 min		$72 \pm 2^*$	67 ± 2		
	P-value ³	0.001	0.07		
Heart rate (beats/min)					
basal		68 ± 2	69 ± 2		
30 min		69 ± 2	69 ± 1	< 0.01	0.63
60 min		67 ± 2	68 ± 2		
	P-value ³	0.27	0.08		
Flow Mediated Dilation	on (%)				
basal		7.7 ± 0.6	6.9 ± 0.6		
30 min		6.3 ± 0.7	8.1 ± 0.9	0.98	< 0.005

60 min		$6.0 \pm 0.8^*$	8.5 ± 0.9	
	P-value ³	0.04	0.12	

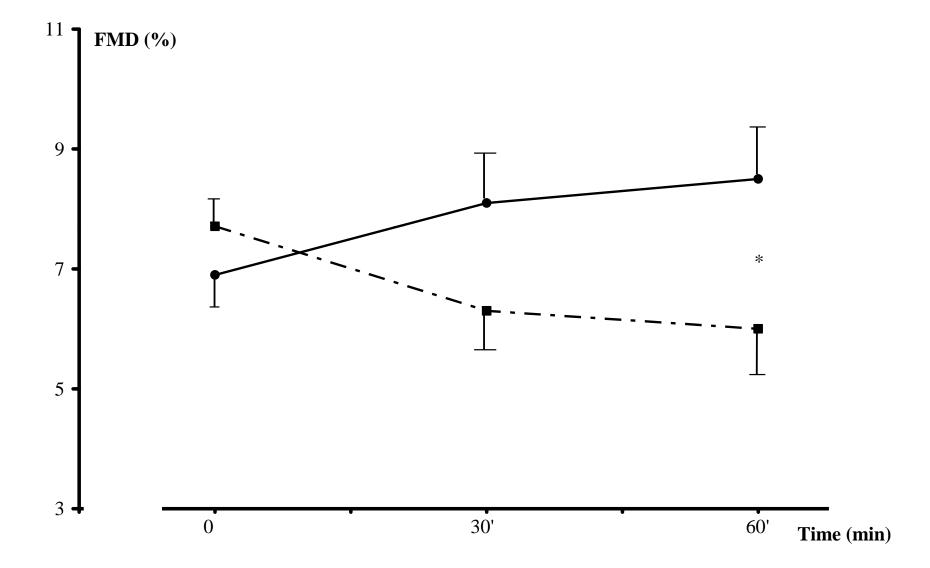
 $[\]frac{1}{1}$ All values are mean \pm SEM.

Paired t-test: * P< 0.05 vs. both decaffeinated coffee and basal value.

² 3 x 2 ANOVA for repeated measures.

³ – P-value compares within group values between basal, 30min, and 60min for each variable within each group.

Table 3. Changes in metabolic variables Following Ingestion of Espresso Coffee ¹.


		Co	offee	
		Caffeinated	Decaffeinated	P-value ²
Glucose (mg/dL)				
basal		85.5 ± 2.2	83.1 ± 1.3	0.30
60 min		82.2 ± 1.8	83.2 ± 1.4	0.56
	P-value ³	0.12	0.94	
Insulin (µU/mL)				
basal		15.8 ± 0.9	14.4 ± 0.7	0.08
60 min		15.0 ± 0.8	15.2 ± 1.1	0.82
	P- value ³	0.047	0.41	
C-peptide (ng/mL)				
basal		1.25 ± 0.09	1.21 ± 0.09	0.07
60 min		1.18 ± 0.09	1.13 ± 0.09	0.27
	P- value ³	0.007	0.12	
HOMA-IR ⁴				
basal		3.37 ± 0.23	2.95 ± 0.16	0.47
60 min		3.06 ± 0.19	3.14 ± 0.25	0.80
	P- value ³	0.019	0.36	

 $^{^{-1}}$ All values are mean \pm SEM.

² Paired t-test: caffeinated vs. decaffeinated.

³ Paired t-test: basal vs. 60 min.

⁴ Homeostasis model assessment of insulin resistance.

