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Abstract
This paper investigates whether structural breaks and long memory are relevant features in modeling and 
forecasting the conditional volatility of oil spot and futures prices using three GARCH-type models, i.e., linear 
GARCH, GARCH with structural breaks and FIGARCH. By relying on a modified version of Inclan and Tiao 
(1994)’s iterated cumulative sum of squares (ICSS) algorithm, our results can be summarized as follows. First, 
we provide evidence of parameter instability in five out of twelve GARCH-based conditional volatility processes 
for energy prices. Second, long memory is effectively present in all the series considered and a FIGARCH model 
seems to better fit the data, but the degree of volatility persistence diminishes significantly after adjusting for 
structural breaks. Finally, the out-of-sample analysis shows that forecasting models accommodating for 
structural break characteristics of the data often outperform the commonly used short-memory linear volatility 
models. It is however worth noting that the long memory evidence found in the in-sample period is not strongly 
supported by the out-of-sample forecasting exercise.
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1. Introduction

There is now extensive evidence to suggest that oil price fluctuations influence economic 

activity and financial sector (e.g., Jones and Kaul, 1996; Hamilton, 1983; Basher and 

Sadorsky, 2006; Driesprong et al., 2008). At the aggregate level, it is generally accepted that 

the rise in oil prices leads to reduce economic growth, non-oil industry performance and stock 

market activities in almost net oil-importing countries, while some positive effects are found 

for oil companies and net oil-exporting countries. Moreover, some recent studies have 

consistently documented that oil price changes affect economic activity and stock market 

returns in a nonlinear fashion (Ciner, 2001; Maghyereh and Al-Kandari, 2007; Zhang, 2008; 

Lardic and Mignon, 2008; Cologni and Manera, 2009). From a sectorial perspective, the 

sensitivity to oil price movements differs across different industries depending on the nature 

of the sector activity and the capacity of the industry to absorb and transmit the oil risk to its 

consumers and other economic sectors (Hammoudeh and Li, 2004; Boyer and Filion, 2007; 

Nandha and Faff, 2008).

Understanding oil price volatility is thus of great interest for both investors and 

policymakers. One of the main motivations is that the world oil markets have experienced

over the last decades large price variations, and relatively higher price volatility. It is 

opportune to recall that after reaching a substantial decline to $19.33 per barrel in December 

2001 induced by the world economic downturns as a result of the September 11, 2001 

terrorist attack, the West Texas Intermediate (WTI) spot price at Cushing exhibited an upward 

trend reaching an unprecedented average level of $133.93 in June 2008. Obviously if oil price 

volatility persists, both producers and consumers may expose to substantial risk via the 

uncontrolled increases in inventory, transportation and production costs (Pindyck, 2004).

Aggregate output dynamics and corporate earnings can be also severely affected, and 

policymakers should consider the volatility impacts of oil price shocks when conducting 
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economic policies. Moreover, to the extent that oil price volatility provides information about 

risk levels and how financial asset returns should behave in response to oil shocks, accurately

modeling and forecasting oil price volatility are crucial for financial decisions involving oil 

investments and portfolio risk management particularly with regard to the valuation issues of 

oil-related products and energy derivative instruments. That is, an investor with efficient oil-

volatility forecast can exploit this information to better manage its portfolio (Kroner et al., 

1995). Finally, some studies suggest crude-oil price volatility is substantially higher than that 

of other energy products since the mid-1980s (Plourde and Watkins, 1998; Regnier, 2007). 

This motivates future research on the behavior of crude-oil spot and futures price volatility 

because of its macroeconomic and microeconomic effects. 

In the energy literature, several works have focused on the modeling and forecasting issues 

of both crude-oil spot and futures price volatility (e.g., Sadorsky, 2006; Narayan and Narayan, 

2007; Kang et al., 2009; Agnolucci, 2009). Of the commonly used volatility models in 

financial economics, GARCH-type approach has received a particular interest from almost all 

previous papers. For instance, Narayan and Narayan (2007) use an ARCH/GARCH 

framework to examine the conditional volatility of crude oil price using daily data for the 

period 1991-2006 and find that price shocks have asymmetric and permanent effects on 

volatility. Kang et al. (2009) address the forecasting power of different competitive GARCH-

volatility models including the standard GARCH, Fractionally Integrated GARCH

(FIGARCH), Component-GARCH (CGARCH), and Integrated GARCH (IGARCH) for three 

crude-oil price benchmarks - WTI (USA), Brent (North Sea) and Dubai (Middle East). They 

show that the FIGARCH and CGARCH perform better than GARCH and IGARCH in 

modeling and forecasting oil-volatility persistence. Based on different GARCH specifications 

allowing for both normal and Student-t distributions of WTI and Brent daily oil returns, 

Cheong (2009) finds some evidence of asymmetric effects, heavy-tail innovation impacts and 
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leverage effects1. As far as we know, two studies are concerned by the modeling and 

forecasting of the volatility in crude-oil futures using GARCH-family models (Sadorsky, 

2006; Agnolucci, 2009). Their main findings indicate that GARCH models outperform a 

random walk process and forecasts based on implied volatility. Differently, Fong and See 

(2002) employ a Markov regime-switching approach allowing for GARCH-dynamics, and 

sudden changes in both mean and variance in order to model the conditional volatility of daily 

returns on crude-oil futures prices. They document that the regime-switching model performs 

better non-switching models, regardless of evaluation criteria in out-of-sample forecast 

analysis. 

Albeit they have substantially contributed to the understanding of the behavior of crude-oil 

price volatility, it should be noted that previous works often assume a stable structure of 

parameters in the oil-return volatility process. This assumption means that the unconditional 

variance of crude-oil returns is constant, and leads to ignore the fact that crude-oil markets 

can expose to periods of large price changes commonly observed since the liberalization of 

these markets in the mid-1980s. Examples of such periods may include the episodes of world 

geo-political tensions, Gulf wars, Asian crisis, worries over Iranian nuclear plans, and US and 

global recessions. Obviously these shocks can cause breaks in the unconditional variance of 

oil price changes and thus the presence of structural breaks in the parameters of the GARCH 

dynamics used to model and forecast crude-oil volatility, which ultimately biases both 

empirical results and their implications. According to Mikosch and Stărică (2004), and 

Hillebrand (2004), neglecting structural breaks in the GARCH parameters induces upward 

biases in estimates of the persistence of GARCH-type conditional volatility. Thus, in case of 
                                                
1 Cheong (2009) employs some variants of GARCH-type models including in particular the GARCH model 
developed by Bollerslev (1986), the asymmetric power GARCH (APGARCH) model proposed by Ding et al. 
(1993), the fractionally integrated GARCH (FIGARCH) proposed by Baillie et al. (1996), the FIEGARCH 
(Bollerslev and Mikkelsen, 1996), and the FIAPARCH (Tse, 1998). The use of all these models aims at 
capturing the stylized facts of crude-oil conditional volatility, i.e., asymmetry, persistence, leverage and 
leptokurtic behavior.
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commodities markets, previous works may overstate the degree of crude-oil volatility 

persistence without accounting for the possibility of structural breaks.

For the above reasons, in this paper we extend the existing literature by investigating the 

relevance of structural breaks and long memory in modeling and forecasting the conditional 

volatility of oil spot and futures prices. At the empirical stage, we build our test for structural 

breaks in the conditional volatility of daily oil spot and futures returns on the application of a 

modified version of Inclan and Tiao (1994)’s iterated cumulative sum of squares (ICSS) 

algorithm that allows for dependent processes. By inspecting the parameters of GARCH 

processes which are estimated over different subsamples separated by structural break dates, 

we provide clear evidence of parameter instability. In line with previous works (Kang et al., 

2009, and references therein), we find that long memory is significantly present in the data 

and a FIGARCH model seems to better describe the behavior of time-varying oil-return 

volatility in several cases. More importantly, in the out-of-sample evaluation we show that 

forecasting models accommodating for the structural break characteristics of the data 

outperform the GARCH(1,1) and RiskMetrics in most of cases. In contrast, the long memory 

model outperforms the GARCH and RiskMetrics models only in few cases. At this stage we 

are questioning the evidence of long memory shown by the long memory tests and suspecting 

a spurious long memory. 

As far as it is concerned by the behavior of oil volatility, our paper can be viewed as 

widely related to the contribution of Fong and See (2002) in the sense that we also consider 

the potential of instability in energy prices, but we are more general by firstly dating the 

structural breaks in the series studied, and secondly allowing our GARCH dynamics to 

accommodate for any detected breaks and long memory patterns. Further, the performance of 

our empirical GARCH with structural breaks and long memory is also compared to that of 
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three commonly used forecasting models in the out-of-sample tests, which is not the case in 

Fong and See (2002).  

The remainder of the paper is organized as follows. Section 2 describes the empirical 

framework that permits to examine the relevance of both structural breaks and long memory 

characteristics in the oil price data. Section 3 presents the data used and reports the results 

obtained from the empirical analysis. Section 4 concludes and discusses the main implications 

of the results.

2. Empirical method

We first compute the daily continuously compounded returns of all spot and futures price 

series by taking the difference between the logarithms of two successive prices as follows:

)ln()ln( 1 ttt PP     (1)

where tP is the spot or futures price of oil at time t. 

Second, as we are interested in modeling and forecasting the unconditional variance of the 

returns series, we follow previous works and treat the unconditional and conditional mean of 

t as zero (Rapach and Strauss, 2008 and references therein). We consider different 

competing models. If there is no break in the unconditional variance, a stable GARCH 

process can be used to characterize the conditional volatility of oil prices. However, the 

instability of the unconditional variance implies the introduction of structural breaks in the 

GARCH process. In line with most previous works of the existing literature on GARCH 

models, information criteria select the standard GARCH(1,1) model and we consider the latter 

as the benchmark model for comparison purpose. 

We then proceed to estimate different specifications of the GARCH(1,1) model, namely 

the GARCH with structural breaks (SB-GARCH), the Fractionally Integrated GARCH 
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(FIGARCH), the 0.50 rolling window GARCH, the 0.25 rolling window GARCH, and the 

RiskMetrics, and to compare their predictive performance relative to the benchmark model. In 

what follows, we briefly present the models we use as well as tests of structural breaks and

long memory.

2.1 Modeling oil price volatility

The standard GARCH(1,1) model developed by Bollerslev (1986) for conditional volatility 

is given by:

1
2

1

1-t )1,0(,

 



ttt

tttt

hh

NIzzh




                                                                                        (2)

In Equation (2), tz represents the white noise process which follows a normal distribution 

with a mean of zero and variance of one. 1tI stands for the information set at time (t-1); 

refers to the deterministic term of the conditional volatility equation and is assumed to be 

positive.  and  are referred to as the ARCH and GARCH parameters which must satisfy 

the following constraints to preserve the stationarity condition: 0 , 0 and 1  . 

Note that 1  implies that an integrated GARCH (IGARCH) specification is more 

appropriate for modeling the conditional volatility of the return series considered.

The FIGARCH(1,d,1) model, which nests a GARCH(1,1) model with no persistence in the 

volatility process (d = 0) and an IGARCH model with complete persistence (d = 1), takes the 

following form:

  21 )1)(1()1(1 t
d

t LLLh                                                                            (3)

where L is a lag polynomial so that 1 ttL  and d is the long memory parameter

measuring directly the long-term persistence of a shock on conditional variance. The main 
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advantage of the FIGARCH model is that it allows a finite persistence of volatility shocks, 

i.e., long memory behavior of oil return series and a slow rate of decay after a shock affecting 

the volatility.

The SB-GARCH(1,1) model is written as follows:

1
2

1

1-t )1,0(,

 



ttst

tttt

hh

NIzzh




                                                                                             (4)

where ksws ,1,0,  , refer to deterministic coefficients of (k+1) segments in the conditional 

volatility process with k being the optimal number of structural breaks indentified by the ICSS 

algorithm. Thus, the unconditional variance, )1(  sw , can change from one regime to 

another. 

The RiskMetrics model based on an expanding window is a restricted version of the simple 

GARCH(1,1) model with 0 , 94.0 and 1  . It has advantage of 

accommodating for potential structural breaks present in the data, but neglected in the model

specification.

     Finally, the 0.50 and the 0.25 rolling window GARCH models are one other than the 

standard GARCH(1,1) model estimated using a rolling window with sizes equal to one half 

and one quarter of the length of the estimation period respectively. 

2.2 Structural break test

Examining whether energy prices and volatilities are subject to structural breaks over time is 

of great interest as individual and firms naturally wish to better manage the risks associated 

with frequent changes in energy markets (see, e.g., Lee and Lee, 2009; Lee et al., 2010). It is 

commonly accepted that variations in the price of oil and other energy assets reflects, in 

addition to changes in socio-political and economic instability as well as sudden changes in 
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both world’s energy demand and offer, several typical events such as market regulation, oil 

crises, technological changes in the renewable energy sector, and modifications in the storage 

and logistic infrastructure of international oil markets (see, e.g., Horsnell and Mabro, 1993; 

Charles and Darné, 2009). The observed substantial fluctuations in the oil spot and futures 

prices over the last decade, with most of the extreme movements occurred between 2006 and 

2008 seem to suggest that oil price, returns, and volatility as measured by squared returns are 

usually subject to multiple breaks (see, Figures 1 to 3). Thus, ignoring the potential of 

structural instability in the oil-return volatility generating process would result in unreliable 

estimates of oil volatility, and in turn lead to inaccurate actions in energy risk management 

since oil price serves as underlying benchmark for pricing of many oil-related products and 

derivatives. More importantly, recent research shows that the presence of structural breaks or 

regime switches can generate “spurious long memory process” in the observed data series 

(see, e.g., Granger and Hyung, 2004; Choi and Zivot, 2007; Choi et al., 2010). That is, the 

evidence of high oil-price volatility persistence reported in previous studies (see, e.g., Elder 

and Serletis, 2008) may be overstated without appropriately taking structural change behavior 

into account. For instance, Choi and Hammoudeh (2009) find evidence that the long memory 

parameter for all the return series on oil and refined products is lower after adjusting for the 

presence of structural breaks.     

As in this paper we are interested in testing the null hypothesis of a constant unconditional 

variance of the oil return series, modeled by the simple stable GARCH(1,1) model, against 

the alternative of structural breaks in the unconditional variance implying structural breaks in 

the GARCH process, the adjusted cumulative sum of squares statistics of Inclan and Tiao 

(1994) can be used and it is given by:

kka FTICSS 5.0sup 
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where  Tkk CTkCF )/(ˆ 5.0   , and   k
t tkC

1
 for k = 1,…,T (total number of 

observations.   i
m
i

mi  ˆ)1(12ˆˆ
1

1
0  

 ,   22
11

221 ˆˆˆ   
  t

k
t ti T , and 

TCT 12ˆ  . m is a lag truncation parameter selected using the procedure in Newey and West 

(1994). The estimate of the break date is the value of k that maximizes kFT 5.0 . Under 

normality assumption of tr , the asymptotic distribution of the ICSSa statistics is given by 

)(sup * cW
c

, where )1()()(* cWcWcW  is a Brownian bridge and )(cW is the standard 

Brownian motion.

2.3 Tests of long memory

Long memory is an important empirical feature of any financial variables because its presence 

reveals the existence of nonlinear forms of dependence between the first and the second 

moments, and thus the potential of time-series predictability. As pointed out by Elder and 

Serletis (2008), the evidence of predictability in oil markets would imply the invalidity of 

weak-form informational efficiency and offer market operators the possibility to exploit any 

deviations of oil prices from their fundamental value in order to consistently earn abnormal 

profits.

In this paper we also test for the long memory property of the oil-return data. This is an 

essential task permitting the determination of the value for the long memory parameter d in 

the FIGARCH model. Concretely, the potential long memory component in the oil returns is 

examined by using the Geweke and Porter-Hudak (1983)’s GPH, the Robinson and Hendry 
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(1999)’s Gaussian Semiparametric (GSP), and the Sowell (1992)’s Exact Maximum 

Likelihood (EML) test statistics2.

i) GPH estimator

The GPH estimate of the long memory parameter, d, is based on the following periodogram:

     jjj ewwI  2/sin4ln)(ln 10 

where njTjw j ,...2,1,/2   . je is the residual term. jw represents the Tn  Fourier 

frequencies and )( jwI denotes the sample periodogram defined as follows:

2

12

1
)( 




T

t

tw
tj

je
T

wI 


The estimate of d, say GPHd̂ , is 1̂ .

ii) GSP Estimator

Robinson and Hendry (1999) investigate the long memory in a covariance stationary series 

by using a semiparametric approach as:

  0)( 21 wasGwwf H

where 1
2

1
 H and  G0 , )(wf being the spectral density of t . As in the GPH 

estimation procedure, we define the periodogram with respect to the observations t , 

Tt ,...,1 such as:

2

12

1
)( 




T

t

it
teT

I 




Accordingly, the estimate of the long memory parameter H is given by:

)(minarg
21

hRH
h 



                                                
2 Interested readers are invited to see the corresponding papers for more details on the asymptotic properties and 
sensitivities of the test statistics.
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It is important to note that under several assumptions presented in Robinson and Hendry 

(1999), the semiparametric estimator of the long memory parameter is consistent and 

asymptotically normal.

iii) EML estimator

Sowell (1992) proposes to estimate the long memory parameter d in the ARFIMA(p,d,q)

model using the exact maximum likelihood method according to which the log-likelihood 

function is given by:

   1

2

1
)(ln

2

1
2ln

2
),(log  t

T
T

L

where  is the vector of t ,  its covariance-variance matrix, and the EML estimator of 

the unknown parameter vector  is such as:

 


,maxargˆ
TL .

2.4 Predictive model selection

In the out-of-sample analysis, volatility forecasts are generated for 1-day, 20-day and 60-day 

ahead horizons, which correspond to 1-day, 1-month and 3-month ahead predictions when 

daily data are examined. The estimation of the above GARCH volatility models is carried out 

using quasi-maximum likelihood. More precisely, each sample of T observations is split in 

two parts. The first one is reserved to estimate the model parameters to be used to generate the 

forecasts. The second part is left for the out-of-sample comparisons. When using the rolling 

forecasts the parameters are updated before each new prediction. These predictions are then 

used to select the best model based on out-of-sample forecast error comparison. We assess the 
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predictive accuracy of the forecasts given by the competing models relative to those of the 

simple GARCH(1,1) model on the basis of two loss functions3.

Following Stărică et al. (2005), we consider the aggregate mean square forecast error 

(MSFE) criterion as follows:

 
2

,/
21

~
ˆ~)1( 




 




 

T

sRt
isttt hsPMSFE 
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


s

j
jtt

1

2
1

2~  and 


 
T

sRt
istjtistt hh ,/)1(,/

ˆ
~
ˆ . ith ,

ˆ is the volatility prediction 

generated by model i at time t. s and P are the forecast horizon and the number of out-of-

sample forecasts, respectively.

The second metrics we use to evaluate forecasting models is the VaR (Value at Risk) mean 

loss function (Gonzalo-Riviera et al., 2004). It is given by:

       05.0
,

05.0
,

1 ~05.0)1( ittit VaRdsPMVaR 

where  05.0
,

05.0
,

~1 ittit VaRd   and (.)1 is an indicator function equaling 1 when its 

argument is satisfied. 05.0
,itVaR is empirically determined by simulating the cumulative returns

tr
~ using the corresponding GARCH(1,1) process 5000 times and picking up the 250th element 

of the simulated ordered empirical distribution of the cumulative returns. The use of the above 

loss functions is motivated by the fact that aggregating helps to reduce idiosyncratic noise in 

squared returns (Rapach and Strauss, 2008). In particular, the second loss function does not 

require the computation of latent volatility th , and VaR is one of the most often used risk 

management tools in finance. 

                                                
3 Forecasts based on the SB-GARCH model are generated only if at least one structural break is detected in the 
GARCH parameters once the adjusted ICSS test is applied.
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3. Data and results

3.1 Data

The data we use in this paper consist of time series of daily spot and futures prices for 

maturities of one, two, and three months of WTI crude, gasoline, and heating oil, which are 

obtained from Datastream database. All prices are expressed in US dollars and collected over 

the period from January 2, 1986 to October 20, 2009. The in-sample period ranges from 

January 2, 1986 to December 31, 2008, while the period from January 1, 2009 to October 20, 

2009.

Table 1 presents the descriptive statistics for the return series of spot and futures oil prices 

as well as their stochastic properties. The results indicate that the daily average return of all 

the series, ranging from 0.015% (1-month and 3-month gasoline futures contracts) to 0.042% 

(2-month gasoline futures contracts), is positive and almost quite similar. The unconditional 

volatility of the return series on the daily basis is substantial as indicated by their standard 

deviations with values ranging from 1.965% (3-month gasoline) to 2.719% (spot gasoline). 

All the series are negatively skewed, and display significant excess kurtosis, except for 2-

month heating oil and gasoline. These findings suggest that our oil return series have fatter 

tails and longer left tail (extreme negative returns) than a normal distribution, which confirms 

the results of the Jacque-Bera test for normality, not reported here to conserve spaces.

We plot in Figures from 1 to 3 the synchronous time-paths followed by the different oil 

price series, oil returns and oil volatility as measured by squared returns in order to apprehend 

their joint dynamics. As it can be observed, we visualize some signs of volatility clustering 

(i.e., alternatives between periods of high return instability and periods of stability) and 

persistence (i.e., return volatility tends to remain in the same regime for a long time span). 

Further, the presence of several sudden changes in the time series may indicate the occurrence 

of structural breaks.
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Figure 1
Dynamics of crude oil, gasoline and heating oil spot and futures prices

Figure 2
Dynamics of crude oil, gasoline and heating oil spot and futures returns
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Figure 3
Dynamics of crude oil, gasoline and heating oil spot and futures squared returns

We also perform the Ljung-Box and Engle (1982) LM ARCH tests to further analyze the 

distributional characteristics of oil return series and report the results in Table 1. These tests 

provide clear indication of autocorrelation and ARCH effects in the series considered. In

contrast, the West and Cho (1995) modified Ljung-Box test which is robust to conditional 

heteroscedasticity shows that there is significant autocorrelation at conventional levels, except 

for heating oil spot returns, 2-month crude-oil returns, 2-month gasoline and heating oil 

returns. Overall, the stylized facts of oil returns reported in Table 1 justify our choice of using 

GARCH processes to model their conditional volatility.  
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Table 1
Descriptive statistics of sample data

Spot
Crude

Spot 
Gasoline

Spot
Heating

1m
Crude

1m
Gasoline

1m
Heating

2m
Crude

2m
Gasoline

2m
Heating

3m
Crude

3m
Gasoline

3m
Heating

Mean (%) 0.019 
(0.034)

0.024
(0.035)

0.028
(0.034)

0.018
(0.033)

0.015
(0.034)

0.016
(0.032)

0.019
(0.029)

0.042
(0.038)

0.360
(0.035)

0.020
(0.027)

0.015
(0.027)

0.019
(0.026)

Std. Dev. (%) 2.651
(0.069)

2.719
(0.051)

2.643
(0.077)

2.586
(0.067)

2.527
(0.060)

2.541
(0.072)

2.250
(0.063)

2.194
(0.045)

2.198
(0.036)

2.090
(0.052)

1.965
(0.044)

2.058
(0.046)

Skewness -0.787
(0.571)

-0.172
(0.278)

-0.988
(0.657)

-0.823
(0.582)

-0.647
(0.393)

-1.424
(0.570)

-0.948
(0.764)

-0.052
(0.191)

-0.193
(0.114)

-0.800
(0.600)

-0.472
(0.435)

-0.742
(0.521)

Kurtosis 14.500
(7.870)

6.441
(2.370)

18.100
(8.457)

14.321
(8.273)

9.963
(3.900)

17.432
(7.981)

17.162
(12.289)

3.543
(0.900)

2.224
(0.505)

12.987
(8.888)

8.679
(5.197)

10.324
(7.486)

Minimum (%) -40.640 -30.139 -40.463 -40.047 -30.986 -39.094 -38.407 -15.151 -14.348 -32.820 -26.094 -30.864

Maximum (%) 19.151 23.529 25.392 16.409 19.486 13.994 13.788 14.861 10.297 12.115 14.246 9.387

Modified 
Ljung-Box

32.312
[0.040]

47.090
[0.000]

20.451
[0.430]

32.794
[0.035]

30.060
[0.068]

33.848
[0.027]

25.372
[0.187]

18.996
[0.522]

22.221
[0.328]

28.650
[0.094]

31.587
[0.047]

29.654
[0.075]

Ljung-Box 680.224
[0.000]

1062.00
[0.000]

505.089
[0.000]

366.465
[0.000]

235.812
[0.000]

393.536
[0.000]

447.031
[0.000]

77.412
[0.000]

513.755
[0.000]

562.712
[0.000]

192.156
[0.000]

434.421
[0.000]

LM ARCH
(q=2)

106.430
[0.000]

369.112
[0.000]

215.955
[0.000]

159.163 
[0.000]

43.714
[0.000]

45.529
[0.000]

66.477
[0.000]

10.060
[0.006]

41.057
[0.000]

90.846
[0.000]

41.896
[0.000]

40.162
[0.000]

LM ARCH
(q=10)

299.235
[0.000]

579.520
[0.000]

324.890
[0.000]

366.465
[0.000]

125.961
[0.000]

162.433
[0.000]

233.647
[0.000]

36.214
[0.000]

171.141
[0.000]

213.648
[0.000]

107.903
[0.000]

120.192
[0.000]

Notes: This table reports the basic statistics of sample data and their stochastic properties over the period from January 2, 1986 to October 20, 2009. Data contain the spot and futures prices of the 
West Texas Intermediate crude oil benchmark, Gasoline and Heating oil. For futures prices, we gather data on one-month, two-month and three-month NYMEX futures contracts. Daily returns 
are computed as the difference between the logarithms of two successive prices. Numbers in parenthesis are the standard deviations. Modified Ljung-Box and Ljung-Box refer to the empirical 
statistics of modified and Ljung-Box tests for serial correlation with k lags, while LM ARCH refers to the empirical statistics of the Lagrange Multiplier test for conditional heteroscedasticity 
applied to residuals. The associated probabilities are reported in brackets.
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3.2 In-sample analysis

We first investigate whether structural breaks are present in the temporal dynamics of the 

twelve oil squared return series over the period considered by applying the modified ICSS 

algorithm4. The test results regarding the number and the exact dates of breaks, reported in 

Table 2, indicate that five out of the twelve series exhibit structural breaks in their 

unconditional variance dynamics. Indeed, the ICSS algorithm selects one break for gasoline 

spot price, 1-month heating oil futures price, and 2-month gasoline futures price; three breaks 

for 1-month gasoline futures price; and four breaks for 2-month heating oil futures price. We 

thus observe that structural breaks often occur in the volatility process of gasoline and heating 

oil price data, whereas crude oil prices are not exposed to such abrupt behavior. These 

indentified breaks are a priori associated with some significant economic events in the world 

oil markets as shown in Table 2.      

We then proceed to estimate the conditional volatility of the twelve oil squared return 

series considered using a standard GARCH(1,1) model both over the full sample period and 

subsample periods defined by the previously identified structural break dates. The obtained 

results for GARCH parameters are fully reported in Table 3. A careful inspection of the Panel 

A indicates that GARCH(1,1) model successfully captures the time-varying patterns of 

conditional volatility well-documented in the finance literature, since the estimates are all 

significant at the conventional levels. It is shown in particular that conditional volatility of all 

the oil returns are quite persistent over time in view of the sum )(   which ranges from 

0.981 for heating oil spot returns to 0.996 for crude oil spot returns and 2-month gasoline 

returns. This finding implies that periods of high volatility tend to be followed by those of 

high volatility, and periods of low volatility by those of low volatility. It is also indicative of 

the presence of a long memory component in the volatility dynamics.

                                                
4 Very similar results were obtained using absolute returns. 
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Table 2
Structural break tests

Oil return series Number of breaks Breakpoint dates Main corresponding events

Spot Crude 0

Spot Gasoline 1 04/03/1997 Asian economic and financial crisis

Spot Heating 0

1m Crude 0

1m Gasoline 3
08/04/1986
08/11/1993
08/13/1997

First Gulf war between Iran and Iraq
OPEC overproduction and weak demand

Asian economic and financial crisis

1m Heating 1 07/28/1986 First Gulf war between Iran and Iraq

2m Crude 0

2m Gasoline 1 11/27/1997 Asian economic and financial crisis

2m Heating 4

11/21/1994
12/12/1995
02/19/2008
08/18/2008

Oil workers’ strike in Nigeria
Latin American crisis

Subprime and international financial crisis
Subprime and international financial crisis

3m Crude 0

3m Gasoline 0

3m Heating 0

Notes: this table reports the results of the structural break tests based on the application of the modified ICSS algorithm to the 
twelve returns series on oil spot and futures prices for the period from January 2, 1986 to December 31, 2008. 

By comparing the estimation results in Panel B to those in Panel A, one should note at least 

the two following stylized facts for the series exposed to structural breaks. First, both the size 

and significance of the estimated parameters are not stable over time and display significant 

differences across subsamples. These differences can be merely learnt from the changes in the 

unconditional variance measure )1/(  s and signify that conditional volatility of 

interested series is effectively characterized by different dynamic processes depending on 

subsample periods. In particular, there is evidence to suggest that several subsamples are 

characterized by conditional homoscedasticity in variance because the estimates of both 

and  are equal to zero: first subsample of 1-month gasoline, as well as the first, second, 

fourth and fifth subsamples of the second subsample of 2-month heating oil. 
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Table 3
Estimation results of GARCH(1,1) models

Spot 
Crude

Spot 
Gasoline

Spot 
Heating

1m Crude
1m 
Gasoline

1m 
Heating

2m 
Crude

2m 
Gasoline

2m 
Heating

3m 
Crude

3m 
Gasoline

3m 
Heating

Panel A. GARCH(1,1) estimation results over the full sample

 0.064***
(0.014)

0.117***
(0.024)

0.149***
(0.025)

0.060***
(0.012)

0.098***
(0.021)

0.085***
(0.014)

0.047***
(0.010)

0.015**
(0.007)

0.031***
(0.011)

0.030***
(0.006)

0.039***
(0.010)

0.036***
(0.007)

 0.098***
(0.008)

0.090***
(0.008)

0.112***
(0.008)

0.085***
(0.008)

0.081***
(0.009)

0.090***
(0.006)

0.079***
(0.007)

0.016***
(0.004)

0.036***
(0.005)

0.069***
(0.006)

0.054***
(0.007)

0.053***
(0.005)

 0.898***
(0.009)

0.896***
(0.009)

0.869***
(0.010)

0.908***
(0.008)

0.908***
(0.010)

0.900***
(0.007)

0.913***
(0.008)

0.980***
(0.004)

0.957***
(0.006)

0.925***
(0.006)

0.937***
(0.008)

0.938***
(0.006)

  0.996 0.986 0.981 0.993 0.989 0.990 0.992 0.996 0.993 0.994 0.991 0.991

)1/(   20.794
(20.415)

9.163***
(1.784)

8.235***
(1.448)

10.145***
(4.004)

9.197***
(2.189)

8.864***
(2.330)

6.602***
(1.959)

5.158***
(0.939)

5.251***
(0.976)

6.228***
(2.334)

4.669***
(0.855)

4.577***
(0.784)

Panel B. GARCH(1,1) estimation results over the subsamples defined by structural breakpoint dates reported in Table 2

Subsample 1

 0.162***
(0.036)

16.951***
(2.033)

1.267
(1.044)

0.075**
(0.038)

2.671***
(0.353)

 0.109***
(0.012)

0.000
(0.000)

0.066
(0.043)

0.027**
(0.011)

0.000
(0.000)

 0.861***
(0.015)

0.000
(0.000)

0.892***
(0.051)

0.944***
(0.019)

0.000
(0.000)

  0.970 0.000 0.968 0.971 0.000

)1/(   5.601***
(0.854)

16.951***
(2.033)

30.944***
(13.690)

2.717***
(0.256)

2.671***
(0.353)

Subsample 2

 0.609***
(0.161)

0.114***
(0.034)

0.090***
(0.016)

0.194
(0.183)

1.366***
(0.139)

 0.076***
(0.012)

0.115***
(0.020)

0.088***
(0.007)

0.015*
(0.009)

0.000
(0.000)

 0.856***
(0.025)

0.867***
(0.022)

0.900***
(0.007)

0.950***
(0.039)

0.000
(0.000)

  0.932 0.982 0.988 0.965 0.000

)1/(   9.154***
(0.542)

7.010***
(2.651)

7.700***
(1.653)

5.747***
(0.254)

1.366***
(0.139)

Subsample 3
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 0.721*
(0.345)

0.104**
(0.042)

 0.081***
(0.031)

0.037***
(0.008)

 0.733***
(0.107)

0.940***
(0.015)

  0.814 0.977

)1/(   3.879***
(0.255)

4.823***
(0.350)

Subsample 4

 1.153***
(0.507)

16.417***
(1.834)

 0.060***
(0.021)

0.000
(0.000)

 0.791***
(0.080)

0.000
(0.000)

  0.851 0.000

)1/(   7.795***
(0.344)

16.417***
(1.834)

Subsample 5

 5.751***
(0.752)

 0.000
(0.000)

 0.000
(0.000)

  0.000

)1/(   5.751***
(0.752)

Notes: this table reports the estimation results of GARCH(1,1) models for all the squared return series we study over the full sample as well as those of GARCH(1,1) models over different 
subsamples defined by the structural breakpoints. Standard deviations are in parenthesis. *, ** and *** denote significance at the 10%, 5% and 1% respectively. 
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Second, it is observed that none of the sum )(   has the value above the lowest degree 

of persistence we find in Panel A (i.e., 0.981 for heating oil spot returns), which clearly 

evidences that GARCH estimates without controlling for structural change issues overstate 

the persistence degree in the conditional volatility. However, the volatility persistence still 

remains high across subsamples, apart some regimes where 0)(   . According to these 

signs of long memory, shocks to conditional volatility tend to disappear at a hyperbolic rate 

which is slower than the exponential rate of decay of shocks in the GARCH model setting 

(Baillie, 1996).

Before moving to the out-of-sample forecast evaluation, it is convenient to further examine 

the long memory property in the volatility of oil return series. In the literature, some studies 

have analyzed the persistence of long memory in crude oil and refined products markets 

(Tabak and Cajueiro, 2007; Choi and Hammoudeh, 2009; Kang et al., 2009) using 

econometric techniques such as modified R/S statistics, and GARCH-type models suitable for 

capturing long memory. Following these studies, we also perform several long memory tests.       

Table 4
Diagnostic tests for long memory

Spot 
Crude

Spot 
Gasoline

Spot 
Heating

1m 
Crude

1m 
Gasoline

1m 
Heating

2m 
Crude

2m 
Gasoline

2m 
Heating

3m 
Crude

3m 
Gasoline

3m 
Heating

GPH 0.112
(0.000)

0.174
(0.000)

0.145
(0.000)

0.131
(0.000)

0.127
(0.000)

0.112
(0.000)

0.089
(0.000)

0.057
(0.001)

0.082
(0.000)

0.082
(0.000)

0.088
(0.000)

0.070
(0.000)

GSP 0.134
(0.000)

0.184
(0.000)

(0.142)
(0.000)

0.143
(0.000)

0.126
(0.000)

0.106
(0.000)

0.117
(0.000)

0.097
(0.000)

(0.100)
(0.000)

0.129
(0.000)

0.125
(0.000)

0.112
(0.000)

EML 0.122
(0.000)

0.194
(0.000)

0.155
(0.000)

0.140
(0.000)

0.093
(0 .000)

0.092
(0.000)

0.107
(0.000)

0.064
(0.000)

0.102
(0.000)

0.115
(0.000)

0.093
(0.000)

0.090
(0.000)

Notes: this table reports the results from three long memory tests applied to squared return series: GPH, GSP and EML. The 
p-values are given in parenthesis. 

Table 4 provides the results of three long memory tests applied to squared oil return series 

(GPH, GSP, and EML). Obviously, these tests show that all the oil spot and futures squared 

returns exhibit strong evidence of long memory patterns as the null hypothesis of no 

persistence is always rejected at the 1% level. This implies that oil price volatility would tend 

to be range-dependent, persist and decay slowly. As suggested by Baillie (1996), a FIGARCH 
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model seems to be better equipped to reproduce the volatility persistence of the oil return 

series under consideration. We then fit a FIGARCH(1,d,1) to the twelve oil returns series and 

report the results in Table 5. All the estimates of the long memory parameters, d, are 

statistically significant at the 1% level, and they are also very different from unity, which thus 

confirm effectively the findings of the long memory tests on squared returns. It is also worth 

noting that the conditional volatility of crude oil spot and futures returns have generally 

stronger long memory than gasoline and heating oil. Without loss of generality, these results 

have important implications for derivatives trading relying on the persistence of oil price 

tendencies (increasing or decreasing).   

Table 5
Estimates of FIGARCH(1,d,1) model for daily oil spot and futures return volatility 

Spot 
Crude

Spot 
Gasoline

Spot 
Heating

1m 
Crude

1m 
Gasoline

1m 
Heating

2m 
Crude

2m 
Gasoline

2m 
Heating

3m 
Crude

3m 
Gasoline

3m 
Heating

 0.198***
(0.038)

0.256***
(0.060)

0.216***
(0.044)

0.140***
(0.025)

0.307***
(0.068)

28.210***
(7.373)

0.123***
(0.024)

0.461***
(0.104)

0.309***
(0.092)

0.126***
(0.027) 

0.135***
(0.031)

0.128***
(0.033)

 0.133***
(0.037)

0.182***
(0.037)

0.120***
(0.035)

0.149***
(0.037)

0.213***
(0.053)

-0.447***
(0.066)

0.099***
(0.031)

0.377***
(0.018)

0.200***
(0.053)

0.096***
(0.042)

0.222***
(0.040)

0.234***
(0.037)

 0.617***
(0.056)

0.552***
(0.061)

0.649***
(0.075)

0.723***
(0.046)

0.536***
(0.067)

-
0.663***
(0.051)

0.572***
(0.025)

0.511***
(0.072)

0.594***
(0.061)

0.631***
(0.054)

0.622***
(0.059)

d 0.620***
(0.053)

0.463***
(0.054)

0.649***
(0.087)

0.700***
(0.074)

0.449***
(0.050)

0.609***
(0.044)

0.632***
(0.060)

0.245***
(0.036)

0.329***
(0.042)

0.578***
(0.054)

0.470***
(0.055)

0.448***
(0.053)

Notes: this table reports the results of the QML (quasi-maximum likelihood) estimation of FIGARCH model for daily oil 
return series.  , )(   , and d refer to the long-term unconditional variance, the measure of volatility persistence and the 
long memory parameter. Robust standard errors are given in parenthesis. *, ** and *** denote significance at the 10%, 5% 
and 1% respectively. 

Summarizing all, our in-sample analysis shows that structural breaks are indeed present in 

the dynamics of several oil price volatility series. The variation in the standard GARCH(1,1) 

estimates across different subsamples separated by the breakpoint dates identified by the ICSS 

further suggests that structural breaks are a relevant empirical feature of the volatility of 

several oil-return series and accounting for them in ex-post volatility estimation permits to 

avoid spurious persistence level. Finally, long memory also appears to be an important 

property characterizing the volatility process of oil returns as indicated by the results of the 

FIGARCH estimates.
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3.3 Out-of-sample analysis and forecasting performance

This subsection examines the forecasting performance of five competing models for oil spot 

and futures return volatility: RiskMetrtics, GARCH 0.5 rolling window, GARCH 0.25 rolling 

window, FIGARCH and SB-GARCH. The predictive performance of these competing models 

is compared to the most used volatility model: the GARCH(1,1) expanding window model

which is a standard GARCH(1,1) model estimated on an expanding window as compared to 

the in-sample period. To evaluate and compare the out-of-sample forecasting performance 

across models, we consider our two loss functions: the mean square forecast error (MSFE) 

and the mean Value-at-Risk (MVaR). A model with lowest loss function is said to provide 

best volatility forecasts.

The out-of-sample period, which is used for forecasting purpose, covers the period from 

January 1, 2009 to October 20, 2009 with a total of 202 daily observations. To generate 

volatility forecasts, we use recursive forecasting technique that consists of fixing the initial 

date and adding each new observation one at a time to the out-of-sample period. The results 

for horizons of 1-, 20-, and 60-day ahead forecasting over the expanding window of data are 

reported in Tables 6, 7 and 8.      

When looking at the results of the 1-day ahead forecast horizon in Table 6, we observe that 

the GARCH(1,1) expanding window model has the smallest mean loss only for gasoline 2-

month futures returns, and for spot crude oil returns and heating oil 2-month futures returns, 

according to the MSFE and MVaR loss functions, respectively. Thus in most cases it provides 

less accurate forecasts than RiskMetrics and other volatility models. The RiskMetrics model 

has the lowest mean loss in five out of twelve cases (spot crude oil, spot gasoline, and 1-

month, 2-month and 3-month crude oil) according to the MSFE criterion, but only two out of 

twelve cases according to the MVaR criterion. As for the other competing models, they 

generally lead to improve the predictive ability relative to the benchmark model for gasoline 
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and heating oil return series. The evidence of superior forecasting performance of competing 

models is clearly significant with respect to the MVaR criterion. 

Table 6
Out-of-sample predictive accuracy of competing models: 1-day horizon

Spot 
Crude

Spot 
Gasoline

Spot 
Heating

1m 
Crude

1m 
Gasoline

1m 
Heating

2m 
Crude

2m 
Gasoline

2m 
Heating

3m 
Crude

3m 
Gasoline

3m 
Heating

MSFE criterion

GARCH(1,1)
Ex. window

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

RiskMetrics 0.985 0.992 1.009 0.997 0.982 0.993 0.992 1.026 1.019 0.999 1.009 1.005

FIGARCH 1.008 1.028 1.031 1.019 1.007 1.005 1.006 1.006 1.001 1.006 0.997 1.009

GARCH(1,1) 
0.5 RW

0.998 0.992 0.973 1.015 0.991 0.973 1.018 1.009 0.999 1.021 0.986 1.002

GARCH(1,1) 
0.25 RW

1.014 1.007 0.986 1.006 0.978 0.955 0.996 1.012 1.011 1.000 0.979 0.998

SB-
GARCH(1,1)

No 
break 0.992

No 
break

No 
break

0.998 0.956
No 
break

1.001 1.068
No 
break

No 
break

No 
break

5% MVaR criterion

GARCH(1,1)
Ex. window

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

RiskMetrics 1.007 0.992 0.943 0.994 0.964 1.008 0.968 1.010 1.022 0.996 1.009 0.989

FIGARCH 1.024 0.997 0.998 1.010 0.996 1.026 0.971 0.983 1.035 0.985 0.984 1.004

GARCH(1,1) 
0.5 RW

1.019 0.994 0.963 1.014 0.985 0.986 1.024 0.965 1.012 1.026 0.988 0.977

GARCH(1,1) 
0.25 RW

1.048 0.989 0.948 1.005 0.955 0.902 0.977 0.966 1.013 0.996 0.973 0.972

SB-
GARCH(1,1)

No 
break 0.983

No 
break

No 
break

1.001 0.947
No 
break

0.987 1.023
No 
break

No 
break

No 
break

Notes: this table reports the results of 1-day forecasting horizon for competing volatility models: GARCH(1,1) expanding 
window, RiskMetrics, FIGARCH(1,d,1), GARCH(1,1) 0.50 rolling window, GARCH(1,1) 0.25 rolling window, and 
GARCH(1,1) with breaks. We compute the ratio of the mean loss to the mean loss of the GARCH(1,1) expanding window 
model is given. The GARCH(1,1) with breaks is estimated for the return series for which we detect structural changes by 
using the ICSS algorithm. A bold entry denotes the model with the lowest mean loss among the competing models.      

One should however note that the models accommodating explicitly for long memory and 

structural breaks, FIGARCH(1,d,1) and GARCH(1,1) with breaks, outperform other models 

in only few cases over the out-of-sample forecasting period, namely 1-month gasoline 

(MSFE) and 1-month gasoline and 2-month crude and 3-month crude (MVaR). Indeed, the 

MSFE does not select the FIGARCH model, while it is chosen only twice for the 2-month and 

3-month crude oil futures returns by the MVaR. The GARCH(1,1) with breaks shows superior 

predictive ability relative to the remaining models only for gasoline spot returns. 

Nevertheless, on the one hand, when structural breaks are found, SB-GARCH outperforms 

the standard GARCH(1,1) in most cases, on the other hand, the FIGARCH model gives better 
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forecasts than the benchmark in seven cases according the MVaR criterion. Finally, the 

competing models that allow for instabilities and accommodate for changes in the estimates 

lead to significant reduction of the loss function compared to the benchmark.   

Table 7
Out-of-sample predictive accuracy of competing models: 20-day horizon

Spot 
Crude

Spot 
Gasoline

Spot 
Heating

1m 
Crude

1m 
Gasoline

1m 
Heating

2m 
Crude

2m 
Gasoline

2m 
Heating

3m 
Crude

3m 
Gasoline

3m 
Heating

MSFE criterion

GARCH(1,1)
Ex. window

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

RiskMetrics 0.915 1.350 1.842 1.056 0.976 0.970 1.183 1.885 1.266 1.180 1.164 1.136

FIGARCH 0.977 2.176 2.125 1.102 1.276 0.936 1.359 0.979 0.998 1.275 0.992 1.113

GARCH(1,1) 
0.5 RW

1.147 0.903 0.782 1.196 1.050 0.591 1.524 1.051 0.935 1.354 0.775 1.191

GARCH(1,1) 
0.25 RW

1.548 1.026 1.167 1.103 1.025 0.342 1.194 1.080 1.231 1.083 0.754 1.129

SB-
GARCH(1,1)

No 
break

0.904
No 
break

No 
break

0.980 0.357
No 
break 0.870 2.302

No 
break

No 
break

No 
break

5% MVaR criterion

GARCH(1,1)
Ex. window

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

RiskMetrics 1.027 1.008 1.020 1.026 1.021 1.176 1.053 1.298 1.017 1.030 1.052 1.018

FIGARCH 1.049 0.967 1.048 1.039 1.046 0.845 1.043 0.963 0.963 1.033 0.956 1.027

GARCH(1,1) 
0.5 RW

1.150 0.946 0.983 0.964 0.996 0.926 0.907 0.655 0.972 0.873 0.957 0.997

GARCH(1,1) 
0.25 RW

1.625 0.944 1.006 1.021 1.052 0.571 0.999 0.647 1.032 0.985 0.864 1.036

SB-
GARCH(1,1)

No 
break 0.940

No 
break

No 
break

1.004 0.782
No 
break

0.806 1.030
No 
break

No 
break

No 
break

Notes: this table reports the results of 20-day forecasting horizon for competing volatility models: GARCH(1,1) expanding 
window, RiskMetrics, FIGARCH(1,d,1), GARCH(1,1) 0.50 rolling window, GARCH(1,1) 0.25 rolling window, and 
GARCH(1,1) with breaks. We compute the ratio of the mean loss to the mean loss of the GARCH(1,1) expanding window 
model is given. The GARCH(1,1) with breaks is estimated for the return series for which we detect structural changes by 
using the ICSS algorithm. A bold entry denotes the model with the lowest mean loss among the competing models.       

For the 20-day ahead forecast horizon in Table 7, it is shown that the benchmark model has

the highest mean loss in all cases according to MVaR and in eight cases according to MSFE

criterion. The GARCH(1,1) 0.5 and 0.25 rolling window models outperform the GARCH(1,1) 

expanding window model and RiskMetrics model for five cases according to the MSFE loss 

function. The GARCH(1,1) with structural breaks gives better forecast than the GARCH(1,1) 

expanding window model for four cases while it is the best model for only one case. With 

respect to the MVaR loss function, the models accommodating for instabilities in the volatility 

process give better forecasts than the benchmark in eleven (seven) cases according the MVaR 
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(MSFE). The FIGARCH forecasts are better than those of other models in only one case (2-

month heating) according to the MVaR criterion but it gives better forecasts than the 

benchmark GARCH(1,1) model in five cases according to both criteria. We also remark that 

the mean losses of the competing models selected by evaluation criteria are substantially 

reduced in comparison to those reported in Table 6.         

Table 8
Out-of-sample predictive accuracy of competing models: 60-day horizon

Spot 
Crude

Spot 
Gasoline

Spot 
Heating

1m 
Crude

1m 
Gasoline

1m 
Heating

2m 
Crude

2m 
Gasoline

2m 
Heating

3m 
Crude

3m 
Gasoline

3m 
Heating

MSFE criterion

GARCH(1,1)
Ex. window

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

RiskMetrics 1.021 2.286 3.203 1.481 1.352 0.301 2.214 0.972 1.948 1.806 1.638 1.790

FIGARCH 0.988 5.222 5.571 1.430 2.585 0.936 2.710 0.907 0.724 2.202 1.102 1.300

GARCH(1,1) 
0.5 RW

1.254 1.126 0.637 0.964 1.100 0.001 1.608 7.829 0.716 1.083 0.628 1.485

GARCH(1,1) 
0.25 RW

1.967 1.371 1.392 1.074 1.287 2.761 1.451 7.286 1.878 0.937 0.693 1.607

SB-
GARCH(1,1)

No 
break

1.151
No 
break

No 
break 0.909 0.880

No 
break

2.468 3.146
No 
break

No 
break

No 
break

5% MVaR criterion

GARCH(1,1)
Ex. window

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

RiskMetrics 1.074 1.024 1.051 1.073 1.054 0.736 1.091 1.445 1.037 1.060 1.102 1.084

FIGARCH 1.150 1.147 1.108 1.042 1.095 0.516 1.083 0.916 0.951 1.062 0.879 1.045

GARCH(1,1) 
0.5 RW

1.375 1.056 0.996 0.852 0.928 0.605 0.852 0.617 0.960 0.822 0.903 0.983

GARCH(1,1) 
0.25 RW

1.847 1.054 1.013 0.976 1.013 0.094 1.012 0.615 1.039 0.984 0.732 1.064

SB-
GARCH(1,1)

No 
break

1.051
No 
break

No 
break

1.173 0.007
No 
break

0.776 1.024
No 
break

No 
break

No 
break

Notes: this table reports the results of 60-day forecasting horizon for competing volatility models: GARCH(1,1) expanding 
window, RiskMetrics, FIGARCH(1,d,1), GARCH(1,1) 0.50 rolling window, GARCH(1,1) 0.25 rolling window, and 
GARCH(1,1) with breaks. We compute the ratio of the mean loss to the mean loss of the GARCH(1,1) expanding window 
model is given. The GARCH(1,1) with breaks is estimated for the return series for which we detect structural changes by 
using the ICSS algorithm. A bold entry denotes the model with the lowest mean loss among the competing models.

Results of the 60-day ahead forecasting horizon (Table 8) almost confirm those we 

reported in Table 7. First, there are only four (two) cases where the GARCH(1,1) expanding 

window model has the lowest mean loss with respect to the MSFE (MVaR) criterion, thus 

gives the superiority of out-of-sample volatility forecasts relative to the other models. Second,

GARCH models incorporating instable structures continue to generate lower mean losses than 

the benchmark model in ten (seven) cases according to the MSFE (MVaR). Similarly, the 
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results provide little evidence of superior predictive power of the FIGARCH(1,d,1) compared 

to other competing models. However it outperforms the benchmark in four cases according to 

the two criteria. It should be finally noted that RiskMetrics model is no longer relevant for 

out-of-sample volatility forecasts according to neither MSFE nor MVaR loss functions. The 

best performing model in case of 1-month heating oil futures returns (GARCH with structural 

breaks) attains a mean loss reduction of 99.993%.

Table 9
Out-of-sample predictive accuracy: loss function based on the MSFE and MVaR

Spot 
Crude

Spot 
Gasoline

Spot 
Heating

1m 
Crude

1m 
Gasoline

1m 
Heating

2m 
Crude

2m 
Gasoline

2m 
Heating

3m 
Crude

3m 
Gasoline

3m 
Heating

MSFE loss function

H=1 Mean 1.001 1.038 1.002 1.010 0.985 0.960 1.000 1.003 1.095 1.002 0.986 1.000

T mean 0.994 1.001 0.989 1.002 0.989 0.966 0.999 1.005 1.013 1.000 0.987 0.999

H=20 Mean 1.052 1.953 1.394 1.079 0.966 0.500 1.093 0.966 1.274 1.005 0.804 1.066

T mean 1.015 1.129 1.078 1.025 0.984 0.478 1.057 0.989 1.210 0.999 0.804 1.065

H=60 Mean 1.209 3.308 1.964 2.202 1.039 0.811 1.155 4.711 1.659 0.943 0.716 1.252

T mean 1.077 1.832 1.243 1.142 1.025 0.694 1.047 4.655 1.392 0.790 0.714 1.242

5% MVaR loss function

H=1 mean 1.042 0.981 0.964 1.016 0.968 0.945 0.992 0.978 1.003 1.005 0.986 0.977

T mean 1.022 0.989 0.964 0.998 0.980 0.953 0.987 0.978 1.009 0.999 0.986 0.986

H=20 mean 1.158 0.975 1.016 1.025 1.030 0.716 1.007 0.730 1.031 1.029 0.916 1.031

T Mean 1.122 0.963 1.005 0.998 1.018 0.744 0.985 0.733 1.011 0.971 0.923 1.014

H=60 Mean 1.302 1.110 1.049 1.000 1.009 0.367 1.016 0.718 1.028 0.999 0.850 1.041

T mean 1.287 1.070 1.021 0.971 0.991 0.335 0.987 0.715 1.009 0.976 0.854 1.023

Notes: this table reports the ratio of the mean loss for the mean and the trimmed mean combination forecasts to the mean loss
for the GARCH(1,1) model.   

Table 9 reports the ratio of the mean loss for the mean and the trimmed mean combinations

forecasts to those of the benchmark, i.e. the GARCH(1,1) model. The upper part shows that,

based on the MSFE loss function, the mean and trimmed mean are lower than those of the 

GARCH(1,1) model for the 1-month gasoline, 1-month heating, and 3-month gasoline. Better 

forecasting ability of the competing models can be seen in the lower part of Table 9 in view of 

numerous ratios with values lower than unity. In addition, all the series are concerned with the 
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improvement of their forecast accuracy since the associated ratios reveal a decreasing trend, 

even those remaining above unity.

Overall, the results of our out-of-sample analysis from Table 6 to Table 9 indicate that 

accommodating for instabilities and structural breaks often leads to improve the quality of 

volatility forecasts of oil spot and futures returns, regardless of the evaluation criteria having 

been used to select the best performing models. We find that GARCH(1,1) rolling window 

models and GARCH with breaks have the lowest loss function for the majority of the cases, 

whereas the benchmark model, GARCH(1,1) expanding window, tends to have inferior 

predictive power relative to competing models at the longer forecast horizons. As for 

FIGARCH model that explicitly allows for the persistence of long memory in oil return 

volatility, it is relevant at most in two cases (60-day horizon), which is not consistent with the 

strong evidence of long memory revealed by the GPH, GSP, and EML tests. These findings 

lead us to conclude that structural breaks are a relevant feature of oil return volatility, and that 

long memory evidence may be spurious. For future research, it is therefore important to 

discriminate between long memory and nonlinearity.    

4. Conclusion

In this paper we examined competing GARCH-type models in order to model and forecast oil 

price volatility over the last turbulent decades. We particularly extended the previous works 

by investigating the relevance of structural breaks and long memory in modeling and 

forecasting the conditional volatility of oil spot and futures prices. Empirical findings from in-

sample analysis suggests that structural breaks are indeed present in the dynamics of several 

oil price volatility series and that SB-GARCH models appear to be relevant to better describe

the behavior of time-varying oil-return volatility. Long memory equally seems to characterize 

the volatility process of oil returns as indicated by the results of the FIGARCH estimates. 
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Results of the out-of-sample analysis indicate that taking into account the instabilities and 

structural breaks in the volatility dynamics of oil spot and futures returns often leads to 

improve the quality of volatility forecasts. Accommodating for long memory in oil return 

volatility also helps to improve forecasting results in some cases. In particular, we provide 

evidence that long-horizon forecasts of spot and futures oil price volatility generated by short 

memory stable volatility models, namely RiskMetrics and GARCH(1,1), are often inferior to 

forecasts obtained from GARCH(1,1) rolling windows, BS-GARCH and FIGARCH models 

allowing respectively for instabilities and long memory in the unconditional variance.

There are several avenues for future research. First, the evidence of long memory in the in-

sample period is not strongly supported by the out-of-sample forecasting exercise. The 

persistence detected in the returns dynamic may be spurious and due to other forms of 

nonlinearities. Further investigation of this point would be informative. Second, in this paper 

we considered as a benchmark a standard linear GARCH(1,1) model. However, recent works 

on stock returns suggest that taking into account asymmetric effects helps to improve in-

sample and out-of-sample model performances. Thus, it would be interesting in future 

empirical investigations to consider asymmetric volatility models such as exponential 

GARCH and GJR-GARCH models. Finally, further research could examine shock 

transmission and the links of causality between oil and oil-related products using multivariate 

volatility models. 
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