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Higher dimensional matrix Airy functions and equivariant cohomology.

Serguei Barannikov

July 31, 2010

Abstract. I consider the simplest example of my equivariantly closed matrix
integral from [B06], starting from super associative algebra with an odd trace.

1. Equivariantly closed matrix De Rham differential form from
associative algebras with odd trace.

Let A = A0 � A1 denotes a Z=2Z�graded associative algebra, dimk A = r < 1 , with
multiplication denoted by m2 : A


2 ! A and odd invariant scalar product h�; �i : A
2 !
�k. The multiplication tensor can be written as the Z=3Z - cyclically invariant linear
function on (�A)
3 which I denote by mA

mA : (�a1; �a2; �a3)! (�1)a2+1 hm2(a1; a2); a3i ; mA 2 (Hom(�A; k)
3)Z=3Z:

The odd scalar product on A corresponds to the odd anti-symmetric product h�; �i� on
�A:

h�a1; �a2i� = (�1)a1+1 ha1; a2i
The cyclic tensormA extends to theGL(N)-invariant cubique polynomial on Z=2Z�graded
vector space gl(N)
�A

Tr(mA) : Z ! Tr
�
mA(Z


3)
�
; Z 2 gl(N)
�A

where Tr denotes the trace on tensor powers

gl(N)
r ! k; Z1 
 : : :
 Zr ! Tr(Z1 � : : : � Zr)

The associativity of the algebra A translates into the equation

fTr(mA); T r(mA)g = 0 (1)

where f�; �g is the odd Poisson bracket corresponding to the odd anti-symmetric product
Trjgl(N)
2
h�; �i�. The space of polynomial, respectfully analytic, functions on gl(N)
�A
is identi�ed naturally, preserving the odd Poisson bracket, with polyvectors on gl(N) 

�A1 with polynomial, respectfully analytic, coe¢ cients. If I denote by X� 2 gl(N),
P� 2 �gl(N) the coordinates on gl(N) 
 �A corresponding to a choice of a dual pair
of bases fe�g, f��g on A0 and A1, so that Z =

P
�X

� 
 ��� + P� 
 �e�, then (P�)ij
corresponds to the vector �eld @

@(X�)ji
on gl(N) 
 �A1. The cyclic polynomial Tr(mA)

corresponds to the sum of the function and the bivector,

1

3!

X
�;�;

(mA)��Tr(X
�X�X) +

1

2

X
�;�;

(mA)
�
� Tr(X

�P�P) (2)

which I�ll denote by the same symbol Tr(mA) when it does not seem to lead to a confusion.

1
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The odd Poisson bracket is generated by the odd second order Batalin-Vilkovisky
di¤erential acting on functions on gl(N)
�A

ff1; f2g = (�1)f1(�(f1f2)��(f1)f2 + (�1)f1f1�(f2)) (3)

� =
P
�;i;j

@2

@X�;j
i @P i�;j

1.1. Divergence-free (unimodularity) condition.. I�ll assume from now on that

the Lie algebra A0 is unimodular.

Condition 1. (unimodularity of A0) For any a 2 A0

tr([a; �]jA0
) = 0 (4)

Proposition 2. The unimodularity of A0 (4) is equivalent to

�Tr(mA) = 0 (5)

where N > 2. �

Next proposition is a standard corollary of the equations (1), (5) and the relation (3).

Proposition 3. The exponent of the sum (2) is closed under the Batalin-Vilkovisky
di¤erential

�(expTr(mA)) = 0:

�

1.2. Closed De Rham di¤erential form.. The a¢ ne space gl(N) 
 �A1 has a

holomorphic volume element, de�ned canonically up to a multiplication by a constant

$ = �
Q
�;i;j

dX�;j
i :

It identi�es the polyvector�elds on gl(N)
�A1 with de Rham di¤erential forms 
gl(N)
�A1
on

the same a¢ ne space via
 !  ` $

The Batalin-Vilkovisky di¤erential � corresponds then to the De Rham di¤erential dDR.
By proposition 3 the polyvector expTr(mA) de�nes the closed di¤erential form

	(X) = exp
1
~ (

1
3!

P
�;�;(mA)��Tr(X

�X�X)+ 1
2

P
�;�;(mA)

�
� Tr(X� @

@X� ^ @
@X )) ` �

Q
�;i;j

dX�;j
i

(6)

dDR	(X) = 0

which is a sum of closed forms of degrees rN2, rN2 � 2,. . . .
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1.3. Equivariantly closed di¤erential form.. The unimodularity (4) implies the
invariance of $ under adjoint action of the Lie algebra gl(N)
A0

X ! [Y;X]

and it is equivalent to the invariance of $ if N > 2.
Consider the gl(N)
A0-equivariant di¤erential forms on gl(N)
�A1:



gl(N)
A0

gl(N)
�A1
= (
gl(N)
�A1


Ogl(N)
A0
)gl(N)
A0 :

The gl(N)
A0-equivariant di¤erential

dgl(N)
A0
� = dDR�+

X
�;l;j

Y la;j(i[Ej
l
ea;�]

�)

� 2 
gl(N)
A0

gl(N)
�A1
, where i denotes the contraction operator, corresponds when passing

back to gl(N)
�A to the sum

�gl(N)
A0
: f(Z; Y )! �f +

1

2
Tr h[Y; Z]; Zi� f ;

f(Z; Y ) 2 (Ogl(N)
�A 
Ogl(N)
A0
)gl(N)
A0

of Batalin-Vilkovisky di¤erential and the operator of multiplication by the odd quadratic
function 1

2Tr h[Y;Z]; Zi
�
= Tr(mA)(Y 
Z
Z). The function depends on the equivariant

parameters Y 2 gl(N) 
 A0. Notice that the odd product h�; �i� : (�A)
2 ! �k can be
viewed as the even pairing

h�; �i� : A0 
�A1 ! k

Theorem 4. The product of the de Rham closed di¤erential form 	(X) (6) with the
function expTr hY;Xi�, Y 2 gl(N) 
 A0 is gl(N) 
 A0-equivariantly closed di¤erential
form:

dgl(N)
A0
exp(Tr hY;Xi� + 1

3!
Tr(mA)(X;

@

@X
)) ` �

Q
�;i;j

dX�;j
i = 0

Proof. Denote by iTr(X @
@X

@
@X )

the operator of contraction with the bivector �eld
1
2

P
�;�;(mA)

�
� Tr(X

� @
@X� ^ @

@X ) and by RTr(Y dX) the operator of exterior multiplica-
tion by the 1-form Tr hY; dXi�. Then

[iTr(X @
@X

@
@X )
; RTr(Y dX)] = i[�;Y ]

This is simply a particular case of the standard relation

[i1 ; Lie2 ] = i[1;2]

for the action of polyvector�elds. Therefore

dDR(e
TrhY;Xi�	(X)) = i[�;Y ]e

1
~TrhY;Xi

�

	(X)
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2. The integral

My closed di¤erential form	(X) can now be integrated over the cycles, which are standard
in the theory of exponential integrals

R
�
exp f , see ([AVG] and references therein): � 2

H�(M;Re(f)! �1). Here f is the �rst term in (2) which is the restriction of the cyclic
polynomial Tr(mA) to gl(N)
�A1 =M ,

F0 =
Z
�

exp(
1

3!
Tr(mA)(X;

@

@X
)) ` �

Q
�;i;j

dX�;j
i

In generic situation the cohomology of such f and f + Tr hY;Xi� are the same, since
linear term is dominated when jXj ! +1. Choosing a real form of gl(N) 
 A0 and
taking the cycles in H�(M;Re(f)! �1) invariant under it, this gives the natural cycles
for integration of the equivariantly closed di¤erential form eTrhY;Xi

�

	(X)

F(Y ) =
Z
�

exp(Tr hY;Xi� + 1

3!
Tr(mA)(X;

@

@X
)) ` �

Q
�;i;j

dX�;j
i

For example if the algebra is de�ned over R, then I can take the real slice, i.e. the cycle
of antihermition matrices as such a cycle. Localizing the integral then leads to some
generalisation of Vandermond determinants and ��functions.
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