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Abstract. In the context of an asset paying affine-type discrete dividends,

we present closed analytical approximations for the pricing of European

vanilla options in the Black-Scholes model with time-dependent parameters.

They are obtained using a stochastic Taylor expansion around a shifted log-

normal proxy model. The final formulae are respectively first, second and

third order approximations w.r.t. the fixed part of the dividends. Using

Cameron-Martin transformations, we provide explicit representations of the

correction terms as Greeks in the Black-Scholes model. The use of Malliavin

calculus enables us to provide tight error estimates for our approximations.

Numerical experiments show that the current approach yields very accurate

results, in particular compared to known approximations of [BGS03, VW09],

and quicker than the iterated integration procedure of [HHL03] or than the

binomial tree method of [VN06].
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Introduction

Usually, stocks pay dividends, which modelling is a non-trivial issue. This has

also some implications regarding the computational point of view, that is to

efficiently price vanilla options written on the stock and to quickly calibrate

the stock model. If we use a deterministic continuously paid dividend yield

and we assume that the asset dynamics is lognormal, then we can extend the

classical pricing Black-Scholes formula by minor modifications (see equation

(1.6)). Assuming continuous dividends is an approximation that can be jus-

tified if one considers a large portfolio of stocks paying individually discrete

dividends. However, for a single stock, considering discrete dividends is more

realistic and this is our framework. Actually, our aim is to provide efficient

approximation formulae for Call options written on a single asset paying

discrete dividends. For this, we follow an approach based on stochastic ex-

pansions, using stochastic analysis tools, approach that has been similarly

developed in a series of papers [BGM09, BGM10a, BGM10c, BGM10b].

In the literature, several works handle the issues of numerical computation

of the call price when dividends are discrete. Of course, a Monte Carlo ap-

proach is still possible, whatever the asset model and the dividend model are,

but usually it is not competitive comparing to analytical approximations or

one-dimensional tree methods. Several works [HHL03, VN06, VW09] rely on

the dynamic programming equation between two successive dividend dates,

say ti and ti+1. Namely, denote by C(t, S) the option price function at time t

for an asset equal to S, write di(S) for the (known) dividend policy modelling

the dividend paid at time ti (it depends on the asset): then, for a Markovian

price process (St)0≤t≤T and deterministic interest rates (rt)0≤t≤T we have

C(ti, Sti) = E(e−
R ti+1

ti
rsdsC(ti+1, St−i+1

− di+1(St−i+1
))|Sti), (0.1)

the expectation being computed under the risk-neutral pricing measure. In

[HHL03], the authors discuss in details the proper choice of dividend policy.

In addition, they compute the price function C(., .) using integration methods
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to compute the expectation in (0.1), for tractable dynamics of S (lognormal

for instance). This numerical approach is exact (up to integration error) but

it is computationally intensive. In [VN06], for a piecewise lognormal asset,

the authors design a binomial tree method to solve (0.1). The main difficulty

in using a tree method is the a priori non-recombination of the nodes at the

dividend dates. The authors overcome this problem by using interpolation

techniques between nodes. They also prove the convergence of their approxi-

mation, as the number of steps in the tree method goes to infinity. Finally, in

[VW09], still for a piecewise lognormal model and for a fixed dividend policy

di+1(S) = δi+1, the authors expand the equality (0.1) w.r.t. (δi)i and pro-

vide an approximation formula involving the Black-Scholes formula and its

Greeks w.r.t. the spot. For n dividend dates, the number of BS price/greeks

to compute grows exponentially like 3n, as the number of dividend dates in-

crease (in their tests, the authors take n = 7, giving 2187 terms to evaluate);

it may be very costly. Another approach is developed by Bos, Gairat and

Shepeleva in [BGS03]: they give an approximative formula for the equivalent

implied Black-Scholes volatility, in order to take into account the dividends.

It is obtained by a suitable average of the instantaneous volatility of the asset

paying dividends.

In this work, we derive an alternative expansion of the price function w.r.t.

the dividends. The resulting approximation also writes as a combination of

BS formulae and Greeks w.r.t. the strike (and not the spot). Compared

to [VW09], our second order approximation formula requires the evaluation

of only 45 BS price/greeks for 7 dividend dates. Thus, at least regarding

the computational cost, it improves [VW09] and it is similar to [BGS03].

Moreover, our assumption on the dividend policy is less restrictive, see below.

In addition, the numerical results show an excellent accuracy of our formulae.

In the current work, the model for S is a piecewise lognormal model

(with time-dependent parameters) and the dividend policy is affine in S, i.e.

including a fixed and a proportional part:

di(S) = δi + yiS.

One drawback of this model is that after a dividend payment, the asset price

may become negative because the relation di(S) ≤ S may be violated for

small S. However, in most of our numerical tests, the probability of such

event is very small (see Tables 5 and 6); presumably, it has a very small

impact on the call price. Although this model of dividend policy is quite
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simple, it is often used by practitioners. In future research, we intend to

improve it, by leveraging the works by [KR05, Bue10].

To obtain our approximations, we choose a model proxy obtained by av-

eraging the future dividends. Then we use stochastic expansion techniques in

the spirit of the work [BGM09, BGM10a, BGM10c, BGM10b]. A significa-

tive part of effort is made to derive non asymptotic error estimates, justifying

the first order, second or third order approximation. This approach is quite

flexible and we believe that this work paves the way for future research in or-

der to obtain analytical approximations of call price with discrete dividends

including Heston or local volatilities, or stochastic interest rate as well.

The organization of the paper is the following. In the next section, we

define the model and notations used throughout the work. In Section 2, we

state our main approximation results about first, second and third order ap-

proximation formulae for the call price. Extensions to the computation of the

Delta are given as well. Section 3 is devoted to the proof of technical results

involving Malliavin calculus. Numerical tests are presented in Section 4.

1 Model and notations

1.1 Financial framework

We consider a standard complete financial market, with a traded risky asset

on which an European vanilla option with maturity T is written. In our study,

specifically the asset pays dividends at known dates 0 < t1 < . . . < tn ≤ T <

+∞ (n ≥ 1). We assume that the second date t2 (whenever existing when

n > 1) is larger than one year (t2 ≥ 1): this is not a practical restriction since

usually dividends are paid once a year. At time ti, the amount of dividends

is splitted into a proportional part yi ∈ [0, 1[ and a fixed part δi ≥ 0. To

make clear the asset dependency w.r.t. the dividends, we denote by (S
(y,δ)
t )t

the asset price process. Then, the amount of dividend at time ti equals to

δi + yiS
(y,δ)
ti− ,

which implies that the asset price jumps downwards to

S
(y,δ)
ti = S

(y,δ)
ti− − [δi + yiS

(y,δ)
ti− ] = S

(y,δ)
ti− (1 − yi) − δi (1.1)

just after the dividend payment.
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Moreover, we assume that between two dividend dates, the asset follows

an Ito dynamics with a time-dependent volatility (σt)t. Since we focus only

pricing/hedging issues, we write the dynamics of S(y,δ) under the (unique)

risk-neutral measure Q: between two dividend dates it writes

dS
(y,δ)
t = σtS

(y,δ)
t dWt + (rt − qt)S

(y,δ)
t dt

where W is a standard Q-Brownian motion. In the above equation, (qt)t

should be interpreted as a (deterministic) repo rate. The interest rate (rt)t

is assumed to be deterministic. The functions (rt)t and (qt)t are bounded.

1.2 Assumptions and notations

Assumptions. It is not a practical restriction to assume that the ratio

between fixed dividends and the current asset S0 remains bounded by a

constant cδ (likely smaller than 1 in practice): supi δi/S0 ≤ cδ.

• In addition, for some of our results we may assume that for the first

dividend date, the ratio is small enough in the sense

δ1

S0(1 − y1)
< 1. (D)

• For some results, we impose a non-degenaracy condition on the model

(ellipticity condition):

∀t ∈ [0, T ], 0 < σ ≤ σt ≤ σ. (E)

Notations. For convenience, we repeatedly use the following notations.

• We write Dt for the discount factor: Dt = exp(−
∫ t

0
(rs − qs)ds).

• We write Mt = exp(
∫ t

0
σsdWs− 1

2

∫ t

0
σ2

sds) for the log-normal martingale

with volatility (σs)0≤s≤T .

• We write S for the (fictitious) asset without dividends:

dSt = σtStdWt + (rt − qt)Stdt,

and its initial value is S0 = S
(y,δ)
0 . Thus,

St = S0
Mt

Dt

. (1.2)
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• We set πi,n :=
n
∏

j=i+1

(1 − yj) = (1 − yn) · · · (1 − yi+1) for 0 ≤ i ≤ n with

the convention that
∏n

j=n+1(1 − yj) = 1 (so that πn,n = 1).

• For the sake of conciseness, we may use the simplified notation

δ̂i = δiπi,n
Dti

DT

. (1.3)

For a given strike K > 0, the shifted strike K(y,δ) will play an important

role in our approximation formulae:

K(y,δ) = K +
n
∑

i=1

δiπi,n
Dti

DT

= K +
n
∑

i=1

δ̂i. (1.4)

• We write A ≤c B when A ≤ cB for some constant c which depends

smoothly on the model parameters. The constant c remains bounded

as the maturity T or the parameters r, q, σ, y, cδ go to 0. The constant

c may depend on the ratio σ/σ ≥ 1 and on the number n of dividend

dates. The dependency w.r.t. S0 is systematically written. When

relevant, explicit dependencies w.r.t. parameters are indicated.

• In the error analysis, we use repeatedly the standard estimates E(sups≤T Sk
s ) ≤c

Sk
0 for any k ∈ R.

1.3 Preliminary relations

With the previous notations, we easily deduce

S
(y,δ)
t =















St if t < t1,

S
(y,δ)
ti

St

Sti

= (1 − yi)S
(y,δ)
ti−

St

Sti

− δi
St

Sti

if ti ≤ t < ti+1 for i < n

or ti ≤ t ≤ T for i = n.

(1.5)

Then, an easy induction (detailed in Appendix) leads to the following

Lemma 1.1. We have S
(y,δ)
T = π0,nST −

n
∑

i=1

δiπi,n
ST

Sti

.
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A case of special interest corresponds to proportional dividends only (δi ≡
0) for which we have S

(y,0)
T := π0,nST . This is a lognormal random variable

and an explicit formula for the related call price is available via the Black-

Scholes formula:

E(e−
R T

0 rsds(S
(y,0)
T − K)+) = CallBS (π0,nS0, K) (1.6)

with

CallBS(x, k) = xe−
R T

0 qsdsN [d+ (x, k)] − ke−
R T

0 rsdsN [d− (x, k)] ,

d±(x, k) =
1

√

∫ T

0
σ2

sds
log
(x

k

)

+
1

√

∫ T

0
σ2

sds

∫ T

0

(rs − qs ±
1

2
σ2

s)ds,

N being the cumulative distribution function of a standard Gaussian vari-

able. Note that the price depends of course of (rt)t, (qt)t and (σt)t, but we

choose in our notations to highlight the dependency w.r.t. the initial value

and the strike. Indeed this plays a crucial role in our calculations.

The case δi ≡ 0 is important for our study since it serves to find a proxy

for the case with fixed dividends. The proxy will not be directly given by the

model with δ ≡ 0, but by this model shifted by the expectation of the fixed

dividends. In other words, in view of Lemma 1.1, the proxy is defined by

S̄
(y,δ)
T := π0,nST −E

(

n
∑

i=1

δiπi,n
ST

Sti

)

= π0,nST −
n
∑

i=1

δiπi,n
Dti

DT

= π0,nST −
n
∑

i=1

δ̂i,

(1.7)

recalling the definition δ̂i = δiπi,n
Dti

DT
. This is a shifted lognormal random

variable, thus the computation of E(e−
R T

0 rsds(S̄
(y,δ)
T − K)+) is still explicit,

by taking the shifted strike variable K(y,δ) (defined in (1.4)) in the Black-

Scholes formula:

E(e−
R T

0 rsds(S̄
(y,δ)
T − K)+) = CallBS

(

π0,nS0, K
(y,δ)
)

. (1.8)

The above quantity stands for the main term of our expansion formula of

E(e−
R T

0 rsds(S
(y,δ)
T − K)+) (see Theorems 2.3 and 2.4). The asymptotics un-

derlying the expansion is supi δi/S0 → 0 (small fixed dividends).

Our next purpose is now twofold: first, to provide correction terms, that

will enable us to achieve a remarkable accuracy. Second, to give tight error

estimates w.r.t. the model parameters.
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2 Main results

Our analysis is based on Taylor expansions and smart computations of the

correction terms using the proxy S̄
(y,δ)
T . In order to study the distance to the

proxy, we use Lemma 1.1 and equality (1.7) to write

S
(y,δ)
T =S

(y,0)
T −

n
∑

i=1

δiπi,n
Dti

DT

(1 +
MT

Mti

− 1)

=S̄
(y,δ)
T −

n
∑

i=1

δ̂i(
MT

Mti

− 1). (2.1)

Our ultime purpose is to approximate E(e−
R T

0 rsdsh(S
(y,δ)
T −K)) for h(x) = x+

(that is the Call price). Actually, the derivation of the approximation and

the error estimation are simpler when the function h is smoother than for

Call/Put option. We start by this case in subsection 2.1, for the convenience

of the reader. Then, handling call payoffs h(x) = x+ requires more technical-

ities related to Malliavin calculus and we tackle this case later in subsection

2.2 and section 3.

2.1 Taylor expansion for smooth h

The degree k (≥ 1) of smoothness of h is defined as follows:

(Hk) The function h(.) is (k − 1)-times continuously differentiable and the

(k−1)-th derivative is almost everywhere differentiable. Moreover, the

derivatives are polynomially bounded: for some positive constants C

and p one has |h(x)| +∑k
j=1 |∂j

xh(x)| ≤ C(1 + |x|p) for any x ∈ R.

First order approximation. We aim at approximating E(e−
R T

0 rsdsh(S
(y,δ)
T −

K)) for functions h satisfying (H2) . Using a first order Taylor expansion we

have

E
[

e−
R T

0 rsdsh(S
(y,δ)
T − K)

]

= E
[

e−
R T

0 rsdsh(S̄
(y,δ)
T − K)

]

−
n
∑

i=1

δ̂iE

[

e−
R T

0 rsdsh′(S̄
(y,δ)
T − K)(

MT

Mti

− 1)

]

+ Error2(h) (2.2)

where |Error2(h)| ≤c (1+Sp
0) supi(δi‖MT

Mti

−1‖3)
2. By standard computations

(see also Lemma 3.3), we have

‖MT

Mti

− 1‖p ≤cp
σ
√

T − ti (2.3)
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for any p ≥ 1. It readily follows that |Error2(h)| ≤c (1+Sp
0) supi(δiσ

√
T − ti)

2.

It remains to simplify the terms in the summation of (2.2). For each

1 ≤ i ≤ n we write

E
[

e−
R T

0 rsdsh′(S̄
(y,δ)
T − K)(

MT

Mti

− 1)
]

=E
[

e−
R T

0 rsdsh′(S̄
(y,δ)
T − K)

MT

Mti

]

− E
[

e−
R T

0 rsdsh′(S̄
(y,δ)
T − K)]. (2.4)

The second term on the right hand side can be rewritten using a deriva-

tive w.r.t. K (the assumptions on h allow us to interchange derivation and

expectation):

E[e−
R T

0 rsdsh′(S̄
(y,δ)
T − K)] = −∂KE[e−

R T

0 rsdsh(S̄
(y,δ)
T − K)]

= −∂kE[e−
R T

0 rsdsh(π0,nST − k)]
∣

∣

k=K(y,δ) . (2.5)

This representation is useful for the call/put case to interpret expansion terms

as Greeks (and thus explicit terms).

Note that we have in general, for any multiplicative constant α > 0,

any strike k, and any derivative of order m ∈ N of any sufficiently smooth

function h,

E[e−
R T

0 rsdsh(m)(αST − k)] = (−1)m∂m
k E[e−

R T

0 rsdsh(αST − k)]. (2.6)

Regarding to the first term in the r.h.s. of (2.4), we interpret the factor
MT

Mti

as a change of measure on FT . Under the new induced measure Qi,

W̄t = Wt −
∫ t

0
σs1ti≤s≤T ds is a Brownian motion. Then, ST under Qi has the

same law as ST e
R T

ti
σ2

sds
under Q. Thus,

E
[

e−
R T

0 rsdsh′(S̄
(y,δ)
T − K)

MT

Mti

]

(2.7)

=E[e−
R T

0 rsdsh′(π0,ne
R T

ti
σ2

sds
ST −

n
∑

i=1

δ̂i − K)]

= − ∂kE[e−
R T

0 rsdsh(π0,ne
R T

ti
σ2

sds
ST − k)]

∣

∣

k=K(y,δ)

using (2.6) at the last line. Combining the above equality with (2.5) and

(2.4), and plugging this into (2.2), we obtain our first main result.
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Theorem 2.1. For a smooth function h satisfying (H2) , we have

E
[

e−
R T

0 rsdsh(S
(y,δ)
T − K)

]

=E
[

e−
R T

0 rsdsh(π0,nST − K(y,δ))
]

+
n
∑

i=1

δ̂i

(

∂kE
[

e−
R T

0 rsdsh(π0,ne
R T

ti
σ2

sST − k)
]∣

∣

k=K(y,δ)

−∂kE
[

e−
R T

0 rsdsh(π0,nST − k)
]∣

∣

k=K(y,δ)

)

+ Error2(h), (2.8)

with |Error2(h)| ≤ c(1 + Sp
0) supi(δiσ

√
T − ti)

2.

Note that in the terms on the r.h.s. of the above equality, the function

h is systematically evaluated at a shifted lognormal random variable. This

allows for simple and tractable one-dimensional numerical computations.

This approximation formula is a first-order expansion formula w.r.t. the

fixed dividends since the error is a O(supi δ
2
i ).

Second order approximation. Applying the same kind of arguments, we

can derive another formula, which residual terms are of order three w.r.t. the

fixed dividends.

Theorem 2.2. For a smooth function h satisfying (H3) , we have

E
[

e−
R T

0 rsdsh(S
(y,δ)
T − K)

]

=E
[

e−
R T

0 rsdsh(π0,nST − K(y,δ))
]

+
n
∑

i=1

δ̂i

(

∂kE
[

e−
R T

0 rsdsh(π0,ne
R T

ti
σ2

sST − k)
]∣

∣

k=K(y,δ)

− ∂kE
[

e−
R T

0 rsdsh(π0,nST − k)
]∣

∣

k=K(y,δ)

)

+
1

2

(

∑

1≤i,j≤n

δ̂iδ̂j∂
2
kE
[

e−
R T

0 rsdsh(π0,ne
R T

ti
σ2

sds+
R T

tj
σ2

sds
ST − k)

]∣

∣

k=K(y,δ)e
R T

ti∨tj
σ2

sds

− 2
(

n
∑

j=1

δ̂j

)

n
∑

i=1

δ̂i∂
2
kE
[

e−
R T

0 rsdsh(π0,ne
R T

ti
σ2

sds
ST − k)

]∣

∣

k=K(y,δ)

+
(

n
∑

j=1

δ̂j

)2
∂2

kE
[

e−
R T

0 rsdsh(π0,nST − k)
]∣

∣

k=K(y,δ)

)

+ Error3(h), (2.9)

with |Error3(h)| ≤ c(1 + Sp
0) supi(δiσ

√
T − ti)

3.
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Proof. The proof is similar to that of Theorem 2.1, except that the equality

(2.2) is replaced by a second order Taylor expansion. It gives

E
[

e−
R T

0 rsdsh(S
(y,δ)
T −K)

]

= E
[

e−
R T

0 rsdsh(S̄
(y,δ)
T − K)

]

−
n
∑

i=1

δ̂iE

[

e−
R T

0 rsdsh′(S̄
(y,δ)
T − K)(

MT

Mti

− 1)

]

+
1

2
E



e−
R T

0 rsdsh′′(S̄
(y,δ)
T − K)

(

n
∑

i=1

δ̂i

[MT

Mti

− 1
]

)2




+ Error3(h)

where Error3(h) ≤c (1 + Sp
0) supi(δi‖MT

Mti

− 1‖4)
3. Then, the announced esti-

mate on Error3(h) easily follows by using (2.3).

Comparing with the expansion in Theorem 2.1, it remains to transform

the new contribution with the factor 1
2
. This term is equal to

E



e−
R T

0 rsdsh′′(S̄
(y,δ)
T − K)

(

n
∑

i=1

δ̂i
MT

Mti

−
n
∑

i=1

δ̂i

)2




=
∑

1≤i,j≤n

δ̂iδ̂jE

[

e−
R T

0 rsdsh′′(S̄
(y,δ)
T − K)

MT

Mti

MT

Mtj

]

− 2

(

n
∑

j=1

δ̂j

)

n
∑

i=1

δ̂iE

[

e−
R T

0 rsdsh′′(S̄
(y,δ)
T − K)

MT

Mti

]

+

(

n
∑

j=1

δ̂j

)2

E

[

e−
R T

0 rsdsh′′(S̄
(y,δ)
T − K)

]

:=T1 + T2 + T3.

We handle separately each of the three terms above.

• Term T1. We proceed analogously to the equality (2.7) by transform-

ing this term via different changes of probability measure. Indeed, note

that MT

Mti

MT

Mtj

= exp(
∫ T

0
σs(1ti≤s≤T + 1tj≤s≤T )dWs − 1

2

∫ T

ti
[σs(1ti≤s≤T +

1tj≤s≤T )]2ds) exp(
∫ T

ti∨tj
σ2

sds) defines (up to the second exponential fac-

tor) a change of measure Qi,j under which (Wt−
∫ t

0
σs(1ti≤s≤T +1tj≤s≤T )ds)t≥0

is a Brownian motion. It means that S̄
(y,δ)
T under Qi,j has the same law

11



as π0,nST e
R T

ti
σ2

sds+
R T

tj
σ2

sds −∑n
l=1 δ̂l under Q. Thus, we obtain

T1 =
∑

1≤i,j≤n

δ̂iδ̂jE

[

e−
R T

0 rsdsh′′(π0,ne
R T

ti
σ2

sds+
R T

tj
σ2

sds
ST −

n
∑

l=1

δ̂l − K)

]

e
R T

ti∨tj
σ2

sds

=
∑

1≤i,j≤n

δ̂iδ̂j∂
2
kE
[

e−
R T

0 rsdsh(π0,ne
R T

ti
σ2

sds+
R T

tj
σ2

sds
ST − k)

]∣

∣

k=K(y,δ)e
R T

ti∨tj
σ2

sds
,

using (2.6) at the last line.

• Term T2. Similarly, we obtain

T2 = −2

(

n
∑

j=1

δ̂j

)

n
∑

i=1

δ̂i∂
2
kE
[

e−
R T

0 rsdsh(π0,ne
R T

ti
σ2

sds
ST − k)

]∣

∣

k=K(y,δ) .

• Term T3. Clearly, we have

T3 =

(

n
∑

j=1

δ̂j

)2

∂2
kE
[

e−
R T

0 rsdsh(π0,nST − k)
]∣

∣

k=K(y,δ) .

The theorem is proved.

2.2 Expansion results for call payoff

We now extend the previous results from smooth functions h to the call

option function h(x) = x+, using a regularization argument that is quite

standard. However one has to be carefull with the error estimates since they

depend on h′′ or h′′′ in the previous case of smooth functions. To safely pass

to the limit, we impose the non-degenaracy condition (E) on the model. The

assumption (D) enables us to get error estimates uniform in t1, as t1 goes to

0.

We first precise the derivatives of CallBS(x, k) with respect to the strike k.

We have

∂kCallBS(x, k) = −e−
R T

0 rsdsN (d−(x, k)), (2.10)

∂2
kCallBS(x, k) =

e−
R T

0 rsds

k
√

2π
∫ T

0
σ2

sds
e−

1
2
d2
−

(x,k), (2.11)

12



and

∂3
kCallBS(x, k) =

e−
R T

0 rsds

k2

√

2π
∫ T

0
σ2

sds
e−

1
2
d2
−

(x,k)
( d−(x, k)
√

∫ T

0
σ2

sds
− 1

)

.

We now state our main results, giving a first and second order formula

for the price of a Call option written on a multidividend asset (a third order

formula is given in Subsection 2.4).

Theorem 2.3. Assume (D) and (E). We have

E(e−
R T

0 rsds(S
(y,δ)
T − K)+)

=CallBS
(

π0,nS0, K
(y,δ)
)

+
n
∑

i=1

δ̂i

(

∂kCallBS(π0,nS0e
R T

ti
σ2

sds
, K(y,δ)) − ∂kCallBS(π0,nS0, K

(y,δ))
)

+ Error2(Call), (2.12)

with |Error2(Call)| ≤ c supi

(

δi

S0

√

1 − ti
T

)2

S0σ
√

T .

The result below states a second order approximation result.

Theorem 2.4. Assume (D) and (E). We have

E(e−
R T

0 rsds(S
(y,δ)
T − K)+)

=CallBS
(

π0,nS0, K
(y,δ)
)

+
n
∑

i=1

δ̂i

(

∂kCallBS(π0,nS0e
R T

ti
σ2

sds
, K(y,δ)) − ∂kCallBS(π0,nS0, K

(y,δ))
)

+
1

2

(

∑

1≤i,j≤n

δ̂iδ̂j e
R T

ti∨tj
σ2

sds
∂2

kCallBS(π0,nS0e
R T

ti
σ2

sds+
R T

tj
σ2

sds
, K(y,δ))

− 2
(

n
∑

j=1

δ̂j

)

n
∑

i=1

δ̂i ∂2
kCallBS(π0,nS0e

R T

ti
σ2

sds
, K(y,δ))

+
(

n
∑

j=1

δ̂j

)2
∂2

kCallBS(π0,nS0, K
(y,δ))

)

+ Error3(Call), (2.13)

with |Error3(Call)| ≤ c supi

(

δi

S0

√

1 − ti
T

)3

S0σ
√

T .
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To state the error estimates, we have taken a specific form which allows

to assert that our approximation error is of order one or two w.r.t. supi δi/S0.

This is especially clear for At-The-Money options, for which π0,nS0e
−

R T

0 qsds =

K(y,δ)e−
R T

0 rsds. In that case, using the Brenner-Subrahmanyam approxima-

tion [BS88] CallBS(x, k)
∣

∣

k=x
= 1√

2π
x(
√

v + o(v)) as v =
∫ T

0
σ2

sds goes to 0,

we obtain that the relative ATM error is bounded by c supi

(

δi

S0

√

1 − ti
T

)2

(in Theorem 2.3) or c supi

(

δi

S0

√

1 − ti
T

)3

(in Theorem 2.4). This indicates

that the relative accuracy of our approximation depends mainly of the ratio

supi δi/S0 and not much of the other parameters. This is confirmed by the

numerical results (see Section 4).

The results for put option are simply obtained by replacing the CallBS(.)

function by the PutBS(.) function. Then we observe that these approxima-

tions verify the Call-Put parity relation.

2.3 Proof of Theorems 2.3 and 2.4

The sketch of the proof is the following: we take a sequence of smooth

functions (hN)N converging to h(x) = x+ in a suitable sense. Then, the

proof is divided in two steps.

1. First, we prove that the expansion terms computed with hN converge

to those computed with h.

2. Second, we estimate the limsup of the error terms Error2(hN) and

Error3(hN) as N goes to infinity.

In this subsection, we only give details regarding Step 1. Step 2, involving

Malliavin calculus, is much more technical. We postpone it to the next

section.

The justification of the Step 1 relies on the following Lemma.

Lemma 2.1. Assume (E), take α > 0 and k > 0. Consider a sequence of

measurable functions (hN)N≥1 and h having a polynomial growth uniformly in

N , i.e. for some constants C > 0 and p > 0 we have supx∈R

|hN (x)|+|h(x)|
(1+|x|p)

≤ C.

i) Then, the functions k 7→ E
[

hN(αST − k)
]

and k 7→ E
[

h(αST − k)
]

are

infinitely continuously differentiable on ]0,∞[.
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ii) In addition, assume that hN converges almost everywhere to h as N

goes to infinity. Then, for any m ∈ N, we have

lim
N→∞

∂m
k E
[

hN(αST − k)
]

= ∂m
k E
[

h(αST − k)
]

. (2.14)

Proof. Under (E), the law of ST has an explicit density w.r.t. the Lebesgue

measure. It gives

E
[

h(αST − k)
]

=

∫

R

h(α
S0

DT

ex
√

R T

0 σ2
sds− 1

2

R T

0 σ2
sds − k)

exp(−x2/2)√
2π

dx

=

∫ ∞

−k

h(z)p(z + k)dz

where p(u) = 1u>0
exp(−[log(uDT /(αS0))+ 1

2

R T

0 σ2
sds]2/[2

R T

0 σ2
sds])

u
√

2π
R T

0 σ2
sds

. It is easy to check

that p is infinitely continuously differentiable on ]0,∞[ and that its derivatives

at u = 0 are equal to 0. In addition, for any m ∈ N, we have
∫∞

0
|∂m

u p(u)|(1+

|u|p)du < ∞. These properties easily imply that E
[

h(αST − k)
]

is smooth

w.r.t. k (i.e. statement i)) and that

∂m
k E
[

h(αST − k)
]

=

∫ ∞

−k

h(z)∂m
z p(z + k)dz.

From this representation and by an application of the dominated convergence

theorem, statement ii) readily follows.

A sequence of functions (hN)N≥1 satisfying (H3) and converging to

h(x) = x+. For N ∈ N∗, take hN defined by hN(x) =
∫ x

−∞
∫ u

−∞ N(1 −
N |v|)+dvdu: each function hN satisfies (H3) and it is easy to check the

following properties

i) hN(x) = h′
N(x) = 0 for x ≤ −1/N ,

ii) hN(x) = x and h′
N(x) = 1 for x ≥ 1/N ,

iii) 0 ≤ h′
N(x) ≤ 1,

iv) (hN)N converges uniformly to h as N → ∞.
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Owing to the above uniform convergence, we have

lim
N→∞

E(e−
R T

0 rsdshN(S
(y,δ)
T − K)) = E(e−

R T

0 rsds(S
(y,δ)
T − K)+),

lim
N→∞

E(e−
R T

0 rsdshN(π0,nST − K(y,δ))) = E(e−
R T

0 rsds(π0,nST − K(y,δ))+)

= CallBS
(

π0,nS0, K
(y,δ)
)

using the Black-Scholes formula (1.8) for the last equality. Moreover, using

Lemma 2.1, we obtain for any α > 0

lim
N→∞

∂kE(e−
R T

0 rsdshN(αST − k)) = ∂kE(e−
R T

0 rsds(αST − k)+)

= ∂kCallBS
(

αS0, k
)

.

Thus, we can apply Theorem 2.1 with hN and pass to the limit as N goes to

infinity. It gives the expansion of Theorem 2.3, with

lim
N→∞

Error2(hN) = Error2(Call).

However, the upper bounds on Error2(hN) given in Theorem 2.1 involve h′′
N

and it does not enable us to pass to the limit on the error estimates. In the

next section, we prove specific estimates using Malliavin calculus:

Proposition 2.1. Assume (D) and (E). Then, we have

|Error2(hN)| ≤ c sup
i

(

δi

S0

√

1 − ti
T

)2

S0σ
√

T ,

uniformly in N . Consequently, the same estimate applies to Error2(Call).

Using the above result, the proof of Theorem 2.3 is complete.

Similarly, for the second derivative, we have

lim
N→∞

∂2
kE(e−

R T

0 rsdshN(αST − k)) = ∂2
kCallBS

(

αS0, k
)

Analogously to Proposition 2.1, we have

Proposition 2.2. Assume (D) and (E). Then, we have

|Error3(hN)| ≤ c sup
i

(

δi

S0

√

1 − ti
T

)3

S0σ
√

T ,

uniformly in N . Consequently, the same estimate applies to Error3(Call).

Thus, we complete the proof of Theorem 2.4 as for Theorem 2.3.
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2.4 Extension to the third-order approximation price

formula

Using similar techniques we can state a third order formula. We leave the

details of the proof to the reader.

Theorem 2.5. Assume (D) and (E). We have

E(e−
R T

0 rsds(S
(y,δ)
T − K)+)

=CallBS
(

π0,nS0, K
(y,δ)
)

+
n
∑

i=1

δ̂i

(

∂kCallBS(π0,nS0e
R T

ti
σ2

sds
, K(y,δ)) − ∂kCallBS(π0,nS0, K

(y,δ))
)

+
1

2

(

∑

1≤i,j≤n

δ̂iδ̂j e
R T

ti∨tj
σ2

sds
∂2

kCallBS(π0,nS0e
R T

ti
σ2

sds+
R T

tj
σ2

sds
, K(y,δ))

− 2
(

n
∑

j=1

δ̂j

)

n
∑

i=1

δ̂i ∂2
kCallBS(π0,nS0e

R T

ti
σ2

sds
, K(y,δ))

+
(

n
∑

j=1

δ̂j

)2
∂2

kCallBS(π0,nS0, K
(y,δ))

)

+
1

6

(

∑

1≤i,j,l≤n

δ̂iδ̂j δ̂l e
R T

ti∨tj
σ2

sds+
R T

ti∨tl
σ2

sds+
R T

tj∨tl
σ2

sds×

∂3
kCallBS(π0,nS0e

R T

ti
σ2

sds+
R T

tj
σ2

sds+
R T

tl
σ2

sds
, K(y,δ))

− 3
(

n
∑

j=1

δ̂j

)

∑

1≤i,j≤n

δ̂iδ̂j e
R T

ti∨tj
σ2

sds
∂3

kCallBS(π0,nS0e
R T

ti
σ2

sds+
R T

tj
σ2

sds
, K(y,δ))

+ 3
(

n
∑

j=1

δ̂j

)2
n
∑

i=1

δ̂i ∂3
kCallBS(π0,nS0e

R T

ti
σ2

sds
, K(y,δ))

−
(

n
∑

j=1

δ̂j

)3
∂3

kCallBS(π0,nS0, K
(y,δ))

)

+ Error4(Call),

with |Error4(Call)| ≤ c supi

(

δi

S0

√

1 − ti
T

)4

S0σ
√

T .
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2.5 Extension to the approximation of the Delta

Adapting our methodology we can also derive several expansion formulas for

the delta of a Call option on a multidividend asset. We choose to present

only the second order approximation formula.

Let us first fix some extra notations. With the convention that t0 = 0 we

set

π∆
i,n := πi,ne

R T

ti
σ2

sds
, ∀0 ≤ i ≤ n,

δ̂∆
i := δiπ

∆
i,n

Dti

DT

, ∀1 ≤ i ≤ n and K(y,δ,∆) := K +
n
∑

i=1

δ̂∆
i .

Theorem 2.6. Assume (D) and (E). Let ∆ = ∂S0E(e−
R T

0 rsds(S
(y,δ)
T −K)+)

be the Delta of the Call option of strike K on the multidividend asset. We

have

∆ = π0,n

{

∂xCallBS(π0,nS0, K
(y,δ,∆))

+
n
∑

i=1

δ̂∆
i

(

∂2
k,xCallBS(π0,nS0e

R T

ti
σ2

sds
, K(y,δ,∆))

− ∂2
k,xCallBS(π0,nS0, K

(y,δ,∆))
)

+
1

2

(

∑

1≤i,j≤n

δ̂∆
i δ̂∆

j e
R T

ti∨tj
σ2

sds
∂3

k,k,xCallBS(π0,nS0e
R T

ti
σ2

sds+
R T

tj
σ2

sds
, K(y,δ,∆))

− 2
(

n
∑

j=1

δ̂∆
j

)

n
∑

i=1

δ̂∆
i ∂3

k,k,xCallBS(π0,nS0e
R T

ti
σ2

sds
, K(y,δ,∆))

+
(

n
∑

j=1

δ̂∆
j

)2
∂3

k,k,xCallBS(π0,nS0, K
(y,δ,∆))

)

}

+ Error3(Digital),

with |Error3(Digital)| ≤ c supi

(

δi

S0

√

1 − ti
T

)3

.

Remark 2.1. The third order error is denoted Error3(Digital) because, up to

multiplicative constants, the Delta is of the form, ∆ = E(e−
R T

0 rsds1
S

(y,δ,∆)
T

>K
),

that is the price of a Digital Call option with S(y,δ,∆) as an asset to be described

in the following sketch of proof.

Remark 2.2. We recall that ∂xCallBS(x, k) = e−
R T

0 qsdsN (d+(x, k)). The

other greeeks are easily computed from (2.10), (2.11). We skip details.
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Proof. We only give the main lines. Details can be treated adapting the

proofs of Theorems 2.2 and 2.4.

Step 1. Taking into account Lemma 1.1, the pathwise derivative of S
(y,δ)
T

w.r.t. S0 is π0,n
ST

S0
= π0,n

DT
MT . Thus, interchanging derivation and expecta-

tion,

∆ =
π0,n

DT

E(e−
R T

0 rsds1
S

(y,δ)
T

>K
MT ).

Again we interpret MT as a change of measure on FT . Under the new induced

measure Q0, W̄t = Wt −
∫ t

0
σsds is a brownian motion. Then S

(y,δ)
T under Q0

has the same law as

S
(y,δ,∆)
T := π0,nST e

R T

0 σ2
sds −

n
∑

i=1

δiπi,n
ST

Sti

e
R T

ti
σ2

sds
= π∆

0,nST −
n
∑

i=1

δiπ
∆
i,n

ST

Sti

,

(2.15)

under Q. Thus,

∆ =
π0,n

DT

E(e−
R T

0 rsdsh(S
(y,δ,∆)
T − K)), (2.16)

with h(x) = 1x>0.

Step 2. From (2.16), we see that the evaluation of the Delta is reduced

to that of the price of a digital Call written on an asset S(y,δ,∆) with new

dividend parameters (π∆
i,n)i (compare Lemma 1.1 and (2.15)). Then, the

derivation of an approximation formula is similar to what we have done

in Theorem 2.2 and 2.4. Briefly, we take a sequence of smooth functions

(hN := 1
2
(tanh(N .) + 1))N converging to h almost everywhere, and we apply
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Theorem 2.2 and Lemma 2.1. It gives

∆ =
π0,n

DT

[

E
[

e−
R T

0 rsdsh(π∆
0,nST − K(y,δ,∆))

]

+
n
∑

i=1

δ̂∆
i

(

∂kE
[

e−
R T

0 rsdsh(π∆
0,ne

R T

ti
σ2

sST − k)
]∣

∣

k=K(y,δ,∆)

− ∂kE
[

e−
R T

0 rsdsh(π∆
0,nST − k)

]∣

∣

k=K(y,δ,∆)

)

+
1

2

(

∑

1≤i,j≤n

δ̂∆
i δ̂∆

j ∂2
kE
[

e−
R T

0 rsdsh(π∆
0,ne

R T

ti
σ2

sds+
R T

tj
σ2

sds
ST − k)

]∣

∣

k=K(y,δ,∆)e
R T

ti∨tj
σ2

sds

− 2
(

n
∑

j=1

δ̂∆
j

)

n
∑

i=1

δ̂∆
i ∂2

kE
[

e−
R T

0 rsdsh(π∆
0,ne

R T

ti
σ2

sds
ST − k)

]∣

∣

k=K(y,δ,∆)

+
(

n
∑

j=1

δ̂∆
j

)2
∂2

kE
[

e−
R T

0 rsdsh(π∆
0,nST − k)

]∣

∣

k=K(y,δ,∆)

)]

+ lim
N→∞

Error3(hN).

Similarly to Proposition 2.2, it is possible to prove that

|Error3(hN)| ≤ c sup
i

(

δi

S0

√

1 − ti
T

)3

, (2.17)

uniformly in N , using |hN |∞ = 1 (see Remark 3.1). This gives the upper

bound for Error3(Digital).

Step 3. It remains to relate the correction terms to the Black-Scholes for-

mula. Actually, for any multiplicative constant α > 0 and any positive strike

k, we have

π0,n

DT

E
[

e−
R T

0 rsds1π∆
0,nαST >k

]

= π0,ne
−

R T

0 qsdsN (d−(π∆
0,nαS0, k))

= π0,ne
−

R T

0 qsdsN (d+(π0,nαS0, k))

= π0,n∂xCallBS(απ0,nS0, k).

Then, by successive differentiation w.r.t. k, we obtain the announced

formula.
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3 Proof of Propositions 2.1 and 2.2

In the proof of Theorems 2.1 and 2.2, we have obtained that

Error2(hN) = E

(

e−
R T

0 rsds
(

n
∑

i=1

δ̂i(
MT

Mti

− 1)
)2
∫ 1

0

(1 − λ)h′′
N(F λ

T − K)dλ

)

,

(3.1)

Error3(hN) = E

(

e−
R T

0 rsds
(

n
∑

i=1

δ̂i(
MT

Mti

− 1)
)3
∫ 1

0

(1 − λ)2

2
h′′′

N(F λ
T − K)dλ

)

(3.2)

where ∀0 ≤ λ ≤ 1 we define

F λ
T := S̄

(y,δ)
T − λ

n
∑

i=1

δiπi,n
Dti

DT

(
MT

Mti

− 1). (3.3)

3.1 Technical results from Malliavin calculus

Our aim is to provide tight error estimates on supN |Error2(hN)| and

supN |Error3(hN)|, using |h′
N |∞ = 1. For this, we use the Malliavin cal-

culus integration by parts to transform the above expectations. It requires

the use of several lemmas stated hereafter, that will be proved in the next

subsection. The results deal with the Malliavin estimates of the random vari-

able F λ
T and (MT

Mti

− 1). Regarding to Malliavin calculus related to the one-

dimensional Brownian motion W , we freely adopt the notation from [Nua06].

For instance, the first Malliavin derivative of a random variable F is the

H = L2([0, T ], dt)-valued process denoted by DF = (DtF )0≤t≤T . The second

derivative takes values in H⊗2 and is denoted by D2F = (D2
s,tF )0≤s,t≤T , and

so on. If the scalar product on H⊗k is denoted by 〈., .〉H⊗k , then the Malli-

avin covariance matrix of F is defined by γF = 〈DF,DF 〉H . We freely use

the notation Dk,p (k ≥ 1, p ≥ 1) for the space of k-times Malliavin differ-

entiable random variables (with derivatives in Lp) and related ‖.‖k,p-norms

(see [Nua06, Section 1.2]). We set Dk,∞ = ∩p≥1D
k,p and D∞ = ∩k≥1D

k,∞.

Lemma 3.1. For all p ≥ 1, all 0 ≤ λ ≤ 1, F λ
T is in D∞ and

sup
t≤T

‖Dt(F
λ
T )‖p ≤cp

S0σ, sup
t,r≤T

‖D2
t,r(F

λ
T )‖p ≤cp

S0σ
2,

sup
t,r,s≤T

‖D3
t,r,s(F

λ
T )‖p ≤cp

S0σ
3.
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Lemma 3.2. Assume (D) and (E). We have for all 0 ≤ λ ≤ 1, γ−1
F λ

T

∈
∩p≥1L

p(Ω). In addition,

∀p ≥ 1, ∀0 ≤ λ ≤ 1, ‖γ−1
F λ

T

‖2,p ≤cp

1

S2
0σ

2T
.

Lemma 3.3. Let (Nt)0≤t≤T be a Brownian martingale with a bounded bracket,

and assume that JT = NT − 1
2
〈N〉T is in D2,∞. Then for all r ≥ 1, one has

‖eJT − 1‖2,r ≤cr
‖JT‖2,2r

(

1 + ‖JT‖2,4r + ‖JT‖2
1,8r

)

e2r supω〈N〉T .

We are now in a position to complete the proof of Propositions 2.1 and

2.2. Let us start with Error2(hN): by Fubini’s theorem, it is equal to

∑

1≤i,j≤n

e−
R T

0 rsdsδ̂iδ̂j

∫ 1

0

(1 − λ)E
[

(
MT

Mti

− 1)(
MT

Mtj

− 1)h′′
N(F λ

T − K)
]

dλ. (3.4)

We now control (uniformly in λ and N) the above expectations. To remove

the singularity problem of h′′
N , we apply an integration by parts of Malliavin

calculus. Indeed, from [Nua06, Proposition 2.1.4], one knows that for 1 ≤
i, j ≤ n and 0 ≤ λ ≤ 1 there exists H1,λ

ij ∈ D∞, depending only on F λ
T and

(MT

Mti

− 1)( MT

Mtj

− 1), such that

E

[

(
MT

Mti

− 1)(
MT

Mtj

− 1)h′′
N(F λ

T − K)
]

= E

[

h′
N(F λ

T − K)H1,λ
ij

]

. (3.5)

This is justified by the fact that (MT

Mti

− 1)( MT

Mtj

− 1) ∈ D∞, F λ
T is in D∞ and

is non degenerate (Lemma 3.2) under the assumption (E). Our task then

becomes to find an upper bound, uniformly in λ, i, j, for ‖H1,λ
ij ‖p, for all p.

Using the discussion in [Nua06, p.102] we have

‖H1,λ
ij ‖p ≤cp

‖γ−1
F λ

T

‖1,4p ‖D.(F
λ
T )‖1,4p ‖(

MT

Mti

− 1)(
MT

Mtj

− 1)‖1,2p. (3.6)

Considering Lemma 3.2 it remains to estimate the two last terms of the r.h.s.

above. By definition, we have

‖D.(F
λ
T )‖q

1,q = E|(
∫ T

0

|Dr(F
λ
T )|2dr)1/2|q + E

(

∫ T

0

∫ T

0

|D2
s,r(F

λ
T )|2dr ds

)q/2

.

Then by standard inequalities combined with Lemma 3.1, we get for any q

‖D.(F
λ
T )‖1,q ≤cq

S0σ
√

T . (3.7)
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On the other hand, using Hölder type inequalities on ‖.‖k,p-norms (see [Nua06,

Proposition 1.5.6]), we have

‖(MT

Mti

− 1)(
MT

Mtj

− 1)‖1,q ≤c1,q
‖MT

Mti

− 1‖1,2q‖
MT

Mtj

− 1‖1,2q.

In order to apply Lemma 3.3, we define the Brownian martingale Nt =
∫ t

0
σs1ti≤s≤T dWs which bracket is bounded by σ2(T − ti). Using the notation

of Lemma 3.3, notice that eJT = eNT− 1
2
〈N〉T = MT

Mti

. Clearly ‖JT‖2,r ≤cr

σ
√

T − ti. Then from Lemma 3.3, it readily follows that

‖MT

Mti

− 1‖2,r ≤cr
σ
√

T − ti. (3.8)

In particular, it gives ‖(MT

Mti

− 1)( MT

Mtj

− 1)‖1,q ≤cq
σ2
√

T − ti
√

T − tj.

We combine the latter inequality with (3.6), (3.7), Lemma 3.2 and we

obtain for any i, j, p

‖H1,λ
ij ‖p ≤cp

σ

√
T − ti

√

T − tj

S0

√
T

,

uniformly in λ. Plugging this estimate into (3.5) (and using |h′
N |∞ = 1) leads

to
∣

∣

∣

∣

E

[

(
MT

Mti

− 1)(
MT

Mtj

− 1)h′′
N(F λ

T − K)
]

∣

∣

∣

∣

≤c σ

√
T − ti

√

T − tj

S0

√
T

.

In view of (3.4), we have proved that |Error2(hN)| ≤c
supi(δi

√
T−ti)

2

S0

√
T

σ. Propo-

sition 2.1 is proved.

The proof of Proposition 2.2 is very similar and we only give the main

intermediate estimates. Analogously to the identity (3.5), we have

Error3(h, N) =
∑

1≤i,j,l≤n

e−
R T

0 rsdsδ̂iδ̂j δ̂l

∫ 1

0

(1 − λ)2

2

× E
[

(
MT

Mti

− 1)(
MT

Mtj

− 1)(
MT

Mtl

− 1)h′′′
N(F λ

T − K)
]

dλ

=
∑

1≤i,j,l≤n

e−
R T

0 rsdsδ̂iδ̂j δ̂l

∫ 1

0

(1 − λ)2

2
E
[

h′
N(F λ

T − K)H2,λ
ijl

]

λ. (3.9)

23



Furthermore, applying the general estimates from [Nua06, p.102] combined

with (3.8), we obtain

|Error3(h, N)| ≤c

∑

1≤i,j,l≤n

δ̂iδ̂j δ̂l sup
λ∈[0,1]

‖H2,λ
ijk‖1

≤c

∑

1≤i,j,l≤n

δ̂iδ̂j δ̂l sup
λ∈[0,1]

(

‖γ−1
F λ

T

‖2
2,8 ‖D.(F

λ
T )‖2

2,8 ‖(
MT

Mti

− 1)(
MT

Mtj

− 1)(
MT

Mtl

− 1)‖2,2

)

≤c

∑

1≤i,j,l≤n

δ̂iδ̂j δ̂l
1

(S2
0σ

2T )2
(S0σ

√
T )2 σ3

√

T − ti
√

T − tj
√

T − tl

≤c sup
i

(δ̂i

√

T − ti)
3 σ

S2
0T

.

We are finished.

Remark 3.1. In the proof of Theorem 2.6 we have to control uniformly

in N , |Error3(hN)|, with (hN)N approximating h(x) = 1x>0, and satisfying

|hN |∞ = 1. Compared to the proof of Proposition 2.2, we have to use

E
[

(
MT

Mti

− 1)(
MT

Mtj

− 1)(
MT

Mtl

− 1)h′′′
N(F λ

T − K)
]

= E
[

hN(F λ
T − K)H3,λ

ijl

]

.

Indeed we cannot have a uniform control on h′
N here. Similarly to the proofs

above, we have

supλ∈[0,1] ‖H3,λ
ijk‖1 ≤c ‖γ−1

F λ
T

‖3
3,16 ‖D.(F

λ
T )‖3

3,16 ‖(MT

Mti

− 1)( MT

Mtj

− 1)(MT

Mtl

− 1)‖3,2

≤c
1

(S2
0σ

2T )3
(S0σ

√
T )3 σ3

√
T − ti

√

T − tj
√

T − tl

and thus the error estimate (2.17) stated in Theorem 2.6.
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3.2 Proof of technical lemmas

Proof of Lemma 3.1. Take a fixed λ. As F λ
T is an affine function of the

lognormal variables MT

Mti

’s (see (3.3)) it is clear that F λ
T ∈ D∞. We have

Dt(F
λ
T ) = S0π0,n

MT

DT

σt1t≤T − λ
n
∑

i=1

δiπi,n
Dti

DT

MT

Mti

σt1ti<t≤T ,

D2
t,r(F

λ
T ) = S0π0,n

MT

DT

σtσr1t,r≤T − λ

n
∑

i=1

δiπi,n
Dti

DT

MT

Mti

σtσr1ti<t,r≤T ,

D3
t,r,s(F

λ
T ) = S0π0,n

MT

DT

σtσrσs1t,r,s≤T − λ
n
∑

i=1

δiπi,n
Dti

DT

MT

Mti

σtσrσs1ti<t,r,s≤T .

Standard computations (using supi δi ≤ cδS0) lead easily to the announced

estimates.

Proof of Lemma 3.2. It is enough to consider the case p ≥ 2. Take λ ∈ [0, 1].

Step 1. We first estimate γ−1
F λ

T

in Lp. We have

γF λ
T

= ‖DF λ
T ‖2

H =

∫ T

0

|Ds(F
λ
T )|2ds (3.10)

≥ S2
T σ2

∫ T

0

∣

∣π0,n − λ
n
∑

i=1

πi,n
δi

Sti

1ti≤s≤T

∣

∣

2
ds

≥ S2
T σ2π2

0,n

(

t1 +

∣

∣

∣

∣

1 − λ
δ1

(1 − y1)St1

∣

∣

∣

∣

2

(T1n=1 + t21n>1 − t1)

)

. (3.11)

Thus, it is clear that

γF λ
T
≥ S2

T σ2π2
0,nt1

inducing that γF λ
T

is invertible and its inverse is in any Lp. Now, our aim is

to estimate the Lp-norm of γ−1
F λ

T

uniformly in t1 ≤ 1. For this, we define the

event

A1 =

{

1

1 + β
≥ δ1

(1 − y1)St1

}

where the parameter β will be set at a positive value close to 0. Then, on

this event, we have

1 − λ
δ1

(1 − y1)St1

≥ 1 − λ

1 + β
≥ β

1 + β
> 0.
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Thus, on A1, we obtain

γF λ
T

S2
T σ2π2

0,n

≥ t1 +
β2

(1 + β)2
(T1n=1 + t21n>1 − t1)

≥ β2

(1 + β)2
(T1n=1 + t21n>1) ≥

β2

(1 + β)2
(1 ∧ T )

using if n > 1 that t2 ≥ 1.

We now estimate P(Ac
1) by leveraging the assumption S0(1 − y1) < δ1.

Using that St1 has a lognormal distribution, we obtain

P(Ac
1) = P

(

Mt1 < Dt1

δ1(1 + β)

S0(1 − y1)

)

= N
(

1

(
∫ t1

0
σ2

sds)1/2

[

log(Dt1) +
1

2

∫ t1

0

σ2
sds + log(

δ1(1 + β)

S0(1 − y1)
)

]

)

.

Choose β close to 0 enough to ensure that log( δ1(1+β)
S0(1−y1)

) = Cβ < 0. Then,

using N (x) ≤ exp(−x2
−/2) for any x, we deduce

P(Ac
1) ≤ exp

(

− 1

2σ2t1

[(

|r − q|∞t1 +
1

2
σ2t1 + Cβ

)

−

]2
)

≤cp
1 ∧ (σ2t1)

p,

for any p > 0.

Finally, bringing together our different estimates, we deduce

0 ≤ γ−1
F λ

T

≤ S−2
T

π2
0,nσ

2(1 ∧ T )

(1 + β)2

β2
1A1 +

S−2
T

π2
0,nσ

2t1
1Ac

1
.

By Hölder inequalities, together with the fact that S−1
T ∈ ∩p≥1L

p, we obtain

‖γ−1
F λ

T

‖p ≤c
1

S2
0

( 1

σ2(1 ∧ T )
+

σ2

σ2

)

≤c
1

S2
0σ

2T
, (3.12)

possibly changing the value of the generic constant c at the last inequality.

This proves the first statement of the Lemma.

Step 2. We turn to estimate the Malliavin derivatives of γ−1
F λ

T

. By the

chain rule, we obtain

Ds(γ
−1
F λ

T

) = −
DsγF λ

T

γ2
F λ

T

and D2
s,t(γ

−1
F λ

T

) = −
D2

s,tγF λ
T

γ2
F λ

T

+ 2
DsγF λ

T
DtγF λ

T

γ3
F λ

T

.
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On the one hand, by definition of the ‖.‖2,2r-norms, we have

‖γ−1
F λ

T

‖p
2,p = E(γ−p

F λ
T

) + E‖D(γ−1
F λ

T

)‖p
H + E‖D2(γ−1

F λ
T

)‖p
H⊗2

≤c E(γ−p

F λ
T

) + E(γ−2p

F λ
T

‖DγF λ
T
‖p

H) + E(γ−2p

F λ
T

‖D2γF λ
T
‖p

H⊗2
) + E(γ−3p

F λ
T

‖DγF λ
T
‖2p

H ),

that is

‖γ−1
F λ

T

‖2,p ≤c ‖γ−1
F λ

T

‖p + ‖γ−1
F λ

T

‖2
4p

∥

∥‖DγF λ
T
‖H

∥

∥

2p

+ ‖γ−1
F λ

T

‖2
4p

∥

∥‖D2γF λ
T
‖H⊗2

∥

∥

2p
+ ‖γ−1

F λ
T

‖3
6p

∥

∥‖DγF λ
T
‖H

∥

∥

2

4p
. (3.13)

One the other hand, using Minkowski and Hölder inequalities combined with

Lemma 3.3, from (3.10) we derive

∥

∥‖DγF λ
T
‖H

∥

∥

2p
=
∥

∥

∫ T

0

|DtγF λ
T
|2dt
∥

∥

1/2

p
≤
(

∫ T

0

‖DtγF λ
T
‖2

2pdt
)1/2

≤
(

∫ T

0

‖
∫ T

0

2DsF
λ
TD2

t,sF
λ
T ds‖2

2pdt
)1/2

≤
(

∫ T

0

(

∫ T

0

2‖DsF
λ
T ‖4p‖D2

t,sF
λ
T ‖4pds)2dt

)1/2 ≤c S2
0σ

3T 3/2.

Similarly, we obtain

∥

∥‖D2γF λ
T
‖H⊗2

∥

∥

2p
≤
(

∫ T

0

∫ T

0

(

∫ T

0

‖D2
t,r[(DsF

λ
T )2]‖2pds)2dtdr

)1/2 ≤c S2
0σ

4T 2.

Plugging the above inequalities and the estimate (3.12) into (3.13) yields

‖γ−1
F λ

T

‖2,p ≤c ‖γ−1
F λ

T

‖p + ‖γ−1
F λ

T

‖2
4p

∥

∥‖DγF λ
T
‖H

∥

∥

2p

+ ‖γ−1
F λ

T

‖2
4p

∥

∥‖D2γF λ
T
‖H⊗2

∥

∥

2p
+ ‖γ−1

F λ
T

‖3
6p

∥

∥‖DγF λ
T
‖H

∥

∥

2

4p
.

≤c
1

S2
0σ

2T

(

1 +
1

S2
0σ

2T

(

S2
0σ

3T 3/2 + S2
0σ

4T 2
)

+
1

(S2
0σ

2T )2
(S2

0σ
4T 2)2

)

≤c
1

S2
0σ

2T
.

The proof is complete.

Proof of Lemma 3.3. The Taylor formula yields

eJT − 1 = JT

∫ 1

0

euJT du.
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Using Hölder and Minkowski inequalities, we obtain

‖eJT − 1‖2,r ≤c ‖JT‖2,2r

∫ 1

0

‖euJT ‖2,2rdu. (3.14)

For any 0 ≤ u ≤ 1, we have

Dse
uJT = ueuJTDsJT and D2

s,te
uJT = euJT (uD2

s,tJT + u2DsJT DtJT ).

Then, by definition of the ‖.‖2,2r-norms, we obtain

‖euJT ‖2r
2,2r = E([euJT ]2r) + E‖DeuJT ‖2r

H + E‖D2euJT ‖2r
H⊗2

≤ E(e2ruJT ) + E(e2ruJT ‖DJT‖2r
H ) + E(e2ruJT (‖D2JT‖H⊗2 + ‖DJT‖2

H)2r)

≤c ‖euJT ‖2r
4r(1 + ‖JT‖2r

2,4r + ‖JT‖4r
1,8r). (3.15)

Finally, since (epuNt− 1
2
〈puN〉t)t defines an exponential martingale (for any fixed

p), one has

‖euJT ‖p
p = E[epu(NT− 1

2
〈N〉T )] = E[epuNT− 1

2
〈puN〉T + 1

2
〈N〉T (−pu+(pu)2)] ≤ e

p2

2
supω〈N〉T .

Plugging this estimate into (3.15) and (3.14), we get the announced result.

4 Numerical experiments

In all our tests we use as benchmark a Monte Carlo price computed with

2.109 drawings, and control variates (column ”Monte Carlo” in the tables).

The control variates consist in European options with the same parameters

except that δ ≡ 0 (see the discussion after Lemma 1.1). In the tables the

numbers between parentheses in the Monte Carlo columns refer to the half

width of the 95% confidence intervall around the computed prices.

We wish first to compare our results with the ones of recent papers in

the literature (namely [BGS03, VN06, VW09]). In Table 1, the abbreva-

tions EG3, VNRE, VN1000, VW and BGS refer respectively to our method

with the order three formula, the method of Vellekoop and Nieuwenhuis with

Richardson Extrapolation, their method without extrapolation and 1000 time

steps (both in [VN06]), the method in [VW09] and the method in [BGS03].

The example is the one treated in these last three papers: till time maturity

T = 7.0 we have 7 dividend payment dates 0 < t1 < . . . < t7 < T with
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ti+1 − ti = 1 for all 1 ≤ i < 7. We test the cases t1 = 0.1, 0.5 and 0.9. The

successive δi’s are 6, 6.5, 7, 7.5, 8, 8 and 8. We have y ≡ 0. The coefficients

(rt)t, (qt)t and (σt)t are constant, with r = 6%, q = 0% and σ = 25%. We

take S0 = 100 and test the strikes K = 70, 100 and 130.

insert Table 1 about here

These tests show that the accuracy of our method is better than the one

of VN1000 and BGS and similar to the one of VW. However the VNRE

method seems to be the most accurate.

But note that, for n dividend payment dates, the number of terms to

compute in our order two and three formulae are respectively

(n + 2)(n + 3)

2
and

(n + 2)(n2 + 7n + 12)

6
.

Thus, the number of terms computed for EG3 in Table 1 is 165, which requires

a small computational time. Concerning the VNRE method the maximal

number of time steps is 64000, which is fairly demanding. See also the

discussion p13 in [VW09]: 2187 evaluations of the Black-Scholes formula and

any of its derivatives are computed to achieve the prices reported in Table 1.

In other words, from the computational point of view, our approach is very

competitive, compared to other existing methods.

We now test the sensitivity to the parameters of the precision of our

option pricers. As indicated by Theorems 2.3, 2.4 and 2.5, the error should

increase with volatility, time maturity and the amplitude of the δi’s.

In Table 2 we have r = 6%, q = 0% , S0 = 100, n = 3, and yi = 0.02 and

δi = 2 for all 1 ≤ i ≤ n. We have t1 = 0.5, ti+1 − ti = 1 for all 1 ≤ i < n

and T = 3.0. We successively test σ = 15%, 25%, 45%, and compute the

prices with the formulae at order one, two and three (respectively EG1, EG2

and EG3) for various strikes. Under each price we report the corresponding

implied volatility (expressed in %).

Insert Table 2 about here

As the volatility σ increases we observe a loss of accuracy on the prices

computed with EG1, while for EG2 and EG3 the accuracy remains nearly

the same. This suggests that our method is quite robust to variations of the

volatility.
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In Table 3 we set σ = 25%, the other parameters as in Table 2, and test

the influence of the amplitude of the δi’s. We take δi = δ for all 1 ≤ i ≤ n

and test the values δ = 2, 6, 10.

Insert Table 3 about here

With δ ≡ 2 the results of EG1, EG2 and EG3 are accurate up to one basis

point on implied volatilities (even if EG1 seems to be a bit less accurate on

the prices themselves). With δ ≡ 6 both EG2 and EG3 match the implied

volatities, but we observe a slightly difference of accuracy on the prices. With

δ ≡ 10 only EG3 still performs well to match prices and implied volatilities.

Note that, as expected the solvers are always more accurate at the money.

Finally, in Table 4 we investigate the influence of n, keeping σ = 25%

constant, and the other parameters as in Table 2, except δ ≡ 4. We choose

n = 3, 5 , 10, which is related to testing the influence of the maturity T = n.

Insert Table 4 about here

With n = 3 the solvers EG2 and EG3 perfectly match the implied volatil-

ities. The solver EG1 is accurate up to 2 bp on implied volatilities, which is

generally sufficient for calibration purposes. As expected, with n = 10 a loss

of accuracy can be observed (both on prices and implied volatilities). Even

with EG3 the implied volatilities can fail to match the ones corresponding

to Monte Carlo prices. Some computed prices are slightly outside the Monte

Carlo confidence interval (especially for in the money options).

Note that similar tests show no significative influence of the parameters

yi on the results: for σ = 0.25 and the other parameters as in Table 2 , EG2

and EG3 both match the implied volatility with 0 bp error, whatever the

value of the yi’s.

Note also that we have used our Monte Carlo simulations to estimate the

probabilities that S
(y,δ)
T < 0. Indeed, with the affine type dividend model

there is no guarantee that this never occurs. The numerical results show

that this probability increases with δ and n (see Tables 5 and 6). For n = 10

this probability is larger than 2% (in the results of Table 1 this estimated

probability is also about 2%: indeed the dividends are of high amplitude and

n = 7). This suggests that the dividend model itself has to be refined as

S(y,δ) is close to zero.
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Insert Tables 5 and 6 about here

5 Conclusion

In this work, we have derived approximation formulae for the vanilla op-

tion prices written on an asset paying discrete dividends, under lognormality

assumptions. Numerical tests show that the second order approximation

(Theorem 2.4) is accurate enough for usual values of the fixed part of divi-

dends (that is few % of the spot value) and for maturities smaller than five

years. For larger dividends or longer maturities, the third order approxima-

tion (Theorem 2.5) yields additional accuracy. Moreover, compared to other

methods, these expansions are quicker to evaluate (or as quick as [BGS03]).

Finally, we mention several possible extensions. Combining the stochastic

expansion approaches recently developed in [BGM09, BGM10a, BGM10c,

BGM10b] with the current work, we could generalize the closed formulae to

local or stochastic volatility models, including Gaussian stochastic interest

rates. This is left to further research.

A Proof of Lemma 1.1

This is proved by induction. The result is true for n = 1, considering (1.5).

Suppose it is true for any n(≥ 1) dates (ti)1≤i≤n and consider that an extra

dividend payment is made at time tn+1 ∈ (tn, T ]. Then, we have

S
(y,δ)
T =(1 − yn+1)S

(y,δ)
tn+1−

ST

Stn+1

− δn+1
ST

Stn+1

=(1 − yn+1)
ST

Stn+1

[

(

n
∏

i=1

(1 − yi)
)

Stn+1 −
n
∑

i=1

(

δi

n
∏

j=i+1

(1 − yj)
)Stn+1

Sti

]

− δn+1
ST

Stn+1

=
(

n+1
∏

i=1

(1 − yi)
)

ST −
n
∑

i=1

(

δi(1 − yn+1)
n
∏

j=i+1

(1 − yj)
)ST

Sti

− δn+1
ST

Stn+1

=
(

n+1
∏

i=1

(1 − yi)
)

ST −
n+1
∑

i=1

(

δi

n+1
∏

j=i+1

(1 − yj)
)ST

Sti

.
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Thus, it is proved for n + 1 dates.
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100 19.4817 (±11.10−4) 19.4784 19.48 19.5 19.4905 19.43

130 14.1296 (±10.10−4) 14.1293 14.13 14.16 14.1419 14.06

Table 1: European Call option prices, with σ = 25%, r = 6%, q = 0%,

S0 = 100.
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σ K Monte Carlo EG1 EG2 EG3

0.15 40 59.1167 (±10−4) 59.1167 59.1168 59.1167

15.54% 15.54% 15.54% 15.54%

60 42.4801 (±10−4) 42.4794 42.4801 42.4801

15.48% 15.46% 15.48% 15.48%

80 26.8353 (±10−4) 26.8341 26.8353 26.8353

15.43% 15.42% 15.43% 15.43%

100 14.5117 (±10−4) 14.5106 14.5117 14.5117

15.39% 15.39% 15.39% 15.39%

120 6.8080 (±10−4) 6.8071 6.8080 6.8080

15.37% 15.36% 15.37% 15.37%

180 0.4122 (±6.10−5) 0.4118 0.4122 0.4122

15.32% 15.31% 15.32% 15.32%

250 0.01073 (±10−5) 0.01069 0.01073 0.01073

15.28% 15.28% 15.28% 15.28%

0.25 40 59.2155 (±10−4) 59.2139 59.2156 59.2156

25.95% 25.89% 25.95% 25.95%

60 43.5785 (±10−4) 43.5761 43.5785 43.5785

25.81% 25.79% 25.81% 25.81%

80 30.3914 (±10−4) 30.3894 30.3914 30.3914

25.72% 25.72% 25.72% 25.72%

100 20.3863 (±10−4) 20.3848 20.3863 20.3863

25.66% 25.66% 25.66% 25.66%

120 13.3435 (±10−4) 13.3418 13.3434 13.3435

25.62% 25.62% 25.62% 25.62%

180 3.54295 (±6.10−5) 3.5417 3.54294 3.54294

25.54% 25.54% 25.54% 25.54%

250 0.76946 (±4.10−5) 0.768914 0.769468 0.769468

25.48% 25.48% 25.48% 25.48%

0.45 40 61.2419 (±3.10−4) 61.2357 61.2418 61.2419

46.79% 46.75% 46.79% 46.79%

60 49.1493 (±10−4) 49.1447 49.1492 49.1493

46.52% 46.50% 46.52% 46.52%

80 39.5939 (±10−4) 39.5902 39.5939 39.5939

46.35% 46.35% 46.35% 46.35%

100 32.1092 (±10−4) 32.1058 32.1092 32.1092

46.25% 46.25% 46.25% 46.25%

120 26.2372 (±10−4) 26.2341 26.2372 26.2372

46.17% 46.16% 46.17% 46.17%

180 14.9691 (±10−4) 14.9665 14.9691 14.9692

46.01% 46.01% 46.01% 46.01%

250 8.3702 (±7.10−5) 8.3683 8.3702 8.3702

45.91% 45.90% 45.91% 45.91%

Table 2: European Call option prices, with r = 6%, q = 0%, S0 = 100,

n = 3, y ≡ 0.02 and δ ≡ 2.
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δ K Monte Carlo EG1 EG2 EG3

2 40 59.2155 (±10−4) 59.2139 59.2156 59.2156

25.95% 25.89% 25.95% 25.95%

60 43.5785 (±10−4) 43.5761 43.5785 43.5785

25.81% 25.80% 25.81% 25.81%

80 30.3914 (±10−4) 30.3894 30.3914 30.3914

25.72% 25.72% 25.72% 25.72%

100 20.3863 (±10−4) 30.3846 20.3863 20.3863

25.66% 25.66% 25.66% 25.66%

120 13.3435 (±10−4) 13.3418 13.3434 13.3435

25.62% 25.62% 25.62% 25.62%

180 3.54295 (±6.10−5) 3.5417 3.54294 3.54294

25.54% 25.54% 25.54% 25.54%

250 0.76946 (±5.10−5) 0.76891 0.76946 0.76946

25.48% 25.48% 25.48% 25.48%

6 40 52.3496 (±10−4) 52.3301 52.35 52.3498

28.08% 27.72% 28.09% 28.08%

60 37.4215 (±2.10−4) 37.3999 37.4209 37.4215

27.60% 27.51% 27.59% 27.60%

80 25.4276 (±2.10−4) 25.4101 25.4269 25.4276

27.32% 27.28% 27.32% 27.32%

100 16.7041 (±3.10−4) 16.6888 16.7035 16.704

27.12% 27.10% 27.12% 27.12%

120 10.7590 (±2.10−4) 10.7445 10.7587 10.759

26.98% 26.96% 26.98% 26.98%

180 2.7773 (±2.10−4) 2.767 2.7774 2.7773

26.72% 26.69% 26.72% 26.72%

250 0.5954 (±2.10−4) 0.5912 0.5956 0.5955

26.54% 26.51% 26.54% 26.54%

10 40 45.6585 (±2.10−4) 45.5968 45.6577 45.6589

30.54% 29.85% 30.53% 30.54%

60 31.6875 (±3.10−4) 31.6308 31.684 31.6875

29.64% 29.44% 29.63% 29.64%

80 21.0058 (±3.10−4) 20.9594 21.0028 21.0058

29.12% 29.02% 29.12% 29.12%

100 13.5385 (±4.10−4) 13.4963 13.5363 13.5384

28.77% 28.69% 28.77% 28.77%

120 8.596 (±4.10−4) 8.55617 8.595 8.596

28.52% 28.44% 28.52% 28.52%

180 2.1656 (±2.10−4) 2.1395 2.1661 2.1656

28.03% 27.95% 28.04% 28.04%

250 0.4595 (±10−4) 0.4492 0.4601 0.4595

27.71% 27.61% 27.72% 27.71%

Table 3: European Call option prices, with σ = 25%, r = 6%, q = 0%,

S0 = 100, n = 3, y ≡ 0.02.
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n K Monte Carlo EG1 EG2 EG3

3 40 55.7665 (±10−4) 55.7589 55.7667 55.7666

26.98% 26.99% 26.98% 26.98%

60 40.453 (±10−4) 40.4433 40.4529 40.4531

26.67% 26.62% 26.67% 26.67%

80 27.8439 (±10−4) 27.8359 27.8437 27.8439

26.49% 26.47% 26.49% 26.49%

100 18.4796 (±2.10−4) 18.4727 18.4794 18.4795

26.49% 26.47% 26.49% 26.49%

120 11.996 (±2.10−4) 11.9896 11.9959 11.996

26.28% 26.27% 26.28% 26.28%

180 3.139 (±10−4) 3.1342 3.139 3.139

26.11% 26.10% 26.11% 26.11%

250 0.6771 (±10−4) 0.6751 0.6772 0.6771

26.00% 25.98% 26.00% 26.00%

5 40 50.4452 (±2.10−4) 50.3835 50.443 50.4454

28.74% 28.24% 28.72% 28.74%

60 38.3287 (±2.10−4) 38.2832 38.3259 38.3287

28.16% 28.02% 28.15% 28.16%

80 28.6548 (±3.10−4) 28.6226 28.6526 28.6547

27.82% 27.76% 27.82% 27.82%

100 21.2744 (±3.10−4) 21.2469 21.2727 21.2743

27.59% 27.55% 27.59% 27.59%

120 15.7763 (±3.10−4) 15.7489 15.7751 15.7763

27.42% 27.38% 27.42% 27.42%

180 6.5681 (±3.10−4) 6.5398 6.5678 6.5681

27.10% 27.06% 27.10% 27.10%

250 2.5235 (±2.10−4) 2.5028 2.5238 2.5236

26.89% 26.84% 26.89% 26.89%

10 40 40.8289 (±6.10−4) 40.5377 40.7745 40.8189

34.00% 32.85% 33.79% 33.96%

60 33.9169 (±7.10−4) 33.7164 33.8808 33.9108

32.51% 32.03% 32.43% 32.50%

80 28.3448 (±7.10−4) 28.1848 28.3187 28.3412

31.65% 31.36% 31.61% 31.65%

100 23.8454 (±7.10−4) 23.6978 23.8247 23.8434

31.08% 30.85% 31.05% 31.08%

120 20.1926 (±8.10−4) 20.0443 20.1753 20.1916

30.66% 30.45% 30.64% 30.66%

180 12.7129 (±7.10−4) 12.549 12.7027 12.7134

29.88% 29.66% 29.86% 29.88%

250 7.8484 (±7.10−4) 7.6860 7.8447 7.8495

29.35% 29.11% 29.35% 29.35%

Table 4: European Call option, with σ = 25%, r = 6%, q = 0%, S0 = 100,

y ≡ 0.02, δ ≡ 4.
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δ 2 6 10

P(S
(y,δ)
T < 0) 0 5.10−10 7.10−7

Table 5: P(S
(y,δ)
T < 0), with σ = 25%, r = 6%, q = 0%, S0 = 100, n = 3 and

y ≡ 0.02.

n 3 5 10

P(S
(y,δ)
T < 0) 0 3.10−6 0.023

Table 6: P(S
(y,δ)
T < 0), with σ = 25%, r = 6%, q = 0%, S0 = 100, δ ≡ 4 and

y ≡ 0.02.
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