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We study fine properties of Lévy trees that are random compact metric spaces introduced by Le Gall and Le Jan in 1998 as the genealogy of continuous state branching processes. Lévy trees are the scaling limits of Galton-Watson trees and they generalize Aldous's continuum random tree which corresponds to the Brownian case. In this paper we prove that Lévy trees have always an exact packing measure: We explicitely compute the packing gauge function and we prove that the corresponding packing measure coincides with the mass measure up to a multiplicative constant.

Introduction

Lévy trees are random compact metric spaces introduced by Le Gall and Le Jan in [START_REF] Gall | Branching processes in Lévy processes: the exploration process[END_REF] as the genealogy of Continuous State Branching Processes (CSBP for short). The class of Lévy trees comprehends Aldous's continuum random tree which corresponds to the Brownian case (see [START_REF] Aldous | The continuum random tree I[END_REF][START_REF] Aldous | The continuum random tree III[END_REF]). Lévy trees are the scaling limits of Galton-Watson trees (see [START_REF] Duquesne | Random Trees, Lévy Processes and Spatial Branching Processes[END_REF] Chapter 2 and [START_REF] Duquesne | A limit theorem for the contour process of conditioned Galton-Watson trees[END_REF]). Various geometric and distributional properties of Lévy trees have been studied in [START_REF] Duquesne | Probabilistic and fractal aspects of Lévy trees[END_REF], in Weill [START_REF] Weill | Regenerative real trees[END_REF] and in Abraham and Delmas [START_REF] Abraham | decomposition of the Lévy continuous random tree and simultaneous extinction probability for populations with neutral mutations[END_REF]. An alternative construction of Lévy trees is discussed in [START_REF] Duquesne | Growth of Lévy trees[END_REF]. Lévy trees have also been studied in connection with fragmentation processes: see Miermont [START_REF] Miermont | Self-similar fragmentations derived from the stable tree I: splitting at heights[END_REF][START_REF] Miermont | Self-similar fragmentations derived from the stable tree II: splitting at nodes[END_REF], Haas and Miermont [START_REF] Haas | The genealogy of self-similar fragmentations with negative index as a continuum random tree[END_REF], Goldschmidt and Haas [START_REF] Goldschmidt | Behavior near the extinction time in self-similar fragmentation I: the stable case[END_REF] for the stable cases; see Abraham and Delmas [START_REF] Abraham | Fragmentation associated to Lévy processes using snake[END_REF] for more general models.

Fractal properties of Lévy have been discussed in [START_REF] Duquesne | Probabilistic and fractal aspects of Lévy trees[END_REF] and [START_REF] Duquesne | The Hausdorff measure of stable trees[END_REF]: Hausdorff and packing dimensions of Lévy trees are computed in [START_REF] Duquesne | Probabilistic and fractal aspects of Lévy trees[END_REF] and the exact Hausdorff measure of the continuum random tree is given in [START_REF] Duquesne | The Hausdorff measure of stable trees[END_REF]. As shown in [START_REF] Duquesne | Hausdorff and packing measure of stable trees[END_REF] (see also [START_REF] Duquesne | The Hausdorff measure of stable trees[END_REF]), there is no exact Hausdorff measure in the non-Brownian stable cases. The goal of this paper is to prove that Lévy trees behave better with respect to packing measure. More precisely, we prove that Lévy trees have always an exact packing measure: We explicitely compute the packing gauge function and we prove that the corresponding packing measure coincides with the mass measure up to a multiplicative constant.

Before stating the main results of the paper, let us recall basic facts on continuous state branching processes (CSBP) and on Lévy trees. CSBPs are time-and spacecontinuous analogues of Galton-Watson Markov chains. They have been introduced by Jirina [START_REF] Jirina | Stochastic branching processes with continous state-space[END_REF] and Lamperti [START_REF] Lamperti | Continuous-state branching processes[END_REF] as the [0, ∞]-valued Feller processes that are absorbed in states 0 and ∞ and whose kernel semi-group (p t (x, dy); x ∈ [0, ∞], t ∈ [0, ∞)) enjoys the branching property: p t (x, •) * p t (x ′ , •) = p t (x + x ′ , •), for every x, x ′ ∈ [0, ∞] and every t ∈ [0, ∞) (here * stands for the convolution product). Let Z = (Z t , t ≥ 0) be a CSBP with initial state x ∈ (0, ∞) that is defined on a probability space (Ω, F , P). We shall restrict our attention to CSBPs that get almost surely extinct in finite time. Namely, P(∃t ≥ 0 :

Z t = 0) = 1 . (1) 
Then, Silverstein [START_REF] Silverstein | A new approach to local times[END_REF] proves that the kernel semigroup of Z is characterised by a function ψ : [0, ∞) → [0, ∞) as follows: For any λ, s, t ≥ 0, one has E[exp(-λZ t+s )|Z s ] = exp(-Z s u(t, λ)), where u(t, λ) is the unique nonnegative solution of ∂u(t, λ)/∂t = -ψ(u(t, λ)) with u(0, λ) = λ. This equation can be rewritten in the following integral form.

λ u(t,λ) du ψ(u) = t , t, λ ≥ 0. ( 2 
)
The function ψ is called the branching mechanism of the CSBP. Under Assumption [START_REF] Abraham | Fragmentation associated to Lévy processes using snake[END_REF], ψ is necessarily of the following Lévy-Khintchine form

ψ(λ) = αλ + βλ 2 + (0,∞)
(e -λr -1 + λr) π(dr) , λ ≥ 0,

where α ∈ [0, ∞) is the drift coefficient, β ∈ [0, ∞) is the Brownian coefficient and π is the Lévy measure that satisfies (0,∞) (r ∧ r 2 ) π(dr) < ∞. Moreover, ψ has to satisfy the following condition:

∞ du ψ(u) < ∞. (4) 
More precisely, the set of branching mechanisms of CSBPs that satisfy (1) is exactly the set of functions ψ of the form (3) that satisfy (4) (see Bingham [START_REF] Bingham | Continuous branching processes and spectral positivity[END_REF] for more details on CSBPs). Let us introduce the formalism developed in [START_REF] Duquesne | Probabilistic and fractal aspects of Lévy trees[END_REF] where Lévy trees are viewed as random variables taking their values in the space of compact rooted R-trees. Informally, a R-tree is a metric space (T , d) such that for any two points σ and σ ′ in T , there is a unique arc with endpoints σ and σ ′ and this arc is isometric to a compact interval of the real line. A rooted R-tree is a R-tree with a distinguished vertex ρ called the root. We say that two rooted R-trees are equivalent if there is a root-preserving isometry that maps one onto the other. Instead of considering all compact rooted Rtrees, we introduce the set T of equivalence classes of compact rooted R-trees. Evans, Pitman and Winter [START_REF] Evans | Rayleigh processes, real trees, and root growth with re-grafting[END_REF] prove that T equipped with the Gromov-Hausdorff distance [START_REF] Gromov | Metric Structures for Riemannian and non-Riemannian Spaces[END_REF] is a Polish space. As proved in [START_REF] Duquesne | Probabilistic and fractal aspects of Lévy trees[END_REF], with any branching mechanism ψ of the form (3) that satisfies [START_REF] Aldous | The continuum random tree III[END_REF], one can associate a sigma-finite measure Θ ψ on T that is called the "distribution" of the Lévy tree with branching mechanism ψ. Although Θ ψ is an infinite measure, the following holds true: Set Γ(T ) = sup σ∈T d(ρ, T ), that is the total height of T ; Then, for any a ∈ (0, ∞), one has

v(a) := Θ ψ (Γ(T ) > a) < ∞ , (5) 
where the function v : (0, ∞) → (0, ∞) is determined by ∞ v(a) ψ(u) -1 du = a. Lévy trees enjoy the so-called branching property, that obviously holds true for Galton-Watson trees: For every a > 0, under the probability measure Θ ψ ( • | Γ(T ) > a) and conditionally given the part of T below level a, the subtrees above level a are distributed as the atoms of a Poisson point measure whose intensity is a random multiple of Θ ψ . The random factor is the total mass of the a-local time measure that is defined below. Let us mention that Weill [START_REF] Weill | Regenerative real trees[END_REF] shows that the branching property characterizes Lévy trees.

Θ ψ is approximated by Galton-Watson trees as follows. Let (ξ p ) p≥0 be a sequence of probability distributions on the set of nonnegative integers N. We first assume that k∈N kξ p (k) ≤ 1, for any p and that the ξ p s are in the domain of attraction of an infinitely divisible distribution with Laplace exponent ψ. More precisely, let Y be a real valued random variable such that log E[exp(-λY )] = ψ(λ), for any λ ∈ [0, ∞). For any p, let (J (p) k ) k≥0 be an i.i.d. sequence of r.v. with law ξ p . We assume there exists an increasing sequence (b p ) p≥0 of positive integers such that p bp (J (p)

1 + • • • + J (p)
bpb p ) converges in distribution to Y . For every p, denote by τ p a Galton-Watson tree with offspring distribution ξ p that can be viewed as a random rooted R-tree (τ p , d p , ρ p ) by affecting unit length to each edge. Thus, (τ p , 1 p d p , ρ p ) is the tree τ p whose edges are rescaled by a factor 1/p and we simply denote it by 1 p τ p . We furthermore assume that for any a ∈ (0, ∞), one has lim inf p P(Γ(τ p ) ≤ p a) bp/p > 0. Roughly speaking, this assumption ensures that 1 p Γ(τ p ) has a non trivial limit in law. Under these assumptions, Theorem 4.1 [START_REF] Duquesne | Probabilistic and fractal aspects of Lévy trees[END_REF] asserts that for any a ∈ (0, ∞), the law of 1 p τ p under

P( • | 1 p Γ(τ p ) > a) converge weakly on T to Θ ψ ( • | Γ(T ) > a)
, when p goes to ∞. There are two important kinds of measures on ψ-Lévy trees. For every a > 0, let us set T (a) := {σ ∈ T : d(ρ, σ) = a} that is the a-level set of T . Then, we define a measure ℓ a on T (a) as follows: For every ε > 0, write T ε (a) for the finite subset of T (a) consisting of those vertices which have descendants at level a + ε. Then, Θ ψ -a.e. for every bounded continuous function f on T , we have

ℓ a , f = lim ε↓0 1 v(ε) σ∈Tε(a) f (σ), (6) 
where v is defined by [START_REF] Bertoin | Lévy Processes[END_REF]. The finite measure ℓ a on T (a) is called the a-local time measure of T . We refer to Section 4.2 [START_REF] Duquesne | Probabilistic and fractal aspects of Lévy trees[END_REF] for the construction and the main properties of local time measures. Theorem 4.3 [START_REF] Duquesne | Probabilistic and fractal aspects of Lévy trees[END_REF] ensures that one can choose a modification of (ℓ a , a ≥ 0) such that a → ℓ a is Θ ψ -a.e. cadlag with respect to the weak topology on finite measures on T . We also define the mass measure m on the tree T by

m = ∞ 0 da ℓ a . (7) 
The topological support of m is T and m is in some sense the most spread out measure on T . Note that the definitions of the local time measures and of the mass measure m only involve the metric properties of T . Let us recall from [START_REF] Duquesne | Probabilistic and fractal aspects of Lévy trees[END_REF] results concerning the Hausdorff and the packing dimensions of ψ-Lévy trees: Let γ (resp. η) be the lower (resp. upper) exponent of ψ at infinity. [START_REF] Duquesne | Probabilistic and fractal aspects of Lévy trees[END_REF] asserts that if γ > 1, then Θ ψ -a.e. T has Hausdorff dimension η/(η -1) and packing dimension γ/(γ -1). In this paper we discuss finer results concerning the exact packing measure of Lévy trees. Packing measures have been introduced by Taylor and Tricot in [START_REF] Taylor | Packing measure and its evaluation for a brownian path[END_REF]. Though their construction is done in Euclidian spaces, it extends to metric spaces, and more specifically to Lévy trees. More precisely, for any σ ∈ T and any r ∈ [0, ∞), we denote by B(σ, r) (resp. B(σ, r)) the closed (resp. open) ball of T with center σ and radius r. Let A ⊂ T and ε ∈ (0, ∞). A ε-packing of A is a countable collection of pairwise disjoint closed balls B(x n , r n ), n ≥ 0, such that x n ∈ A and r n ≤ ε. We restrict our attention to packing measures associated with regular gauge functions in the following sense: a function g : (0, r 0 ) → (0, ∞) is a regular gauge function if it is continuous, non decreasing, if lim 0+ g = 0 and if the following holds true

Namely, γ = sup{c ≥ 0 : lim ∞ ψ(λ)λ -c = ∞} and η = inf{c ≥ 0 : lim ∞ ψ(λ)λ -c = 0}. Since ψ is of the form (3), one clearly has 1 ≤ γ ≤ η ≤ 2. Theorem 5.5
∃ C > 1 : g(2r) ≤ Cg(r) , r ∈ (0, r 0 /2). (8) 
Such property shall be refered as to a C-doubling condition. The g-packing measure on (T , d) is then defined as follows. For any ε ∈ (0, ∞), we first set:

P (ε) g (A) = sup n≥0 g(r n ); ( B(x n , r n )) n≥0 is a ε-packing of A . (9) 
The g-packing pre-measure of A is then defined by

P * g (A) = lim ε↓0 P (ε) g (A) (10) 
and we define the g-packing outer measure of A as

P g (A) = inf n≥0 P * g (E n ); A ⊂ n≥0 E n . (11) 
As in Euclidian spaces, P g is a Borel regular metric outer measure (see Section 2.1 for more details). The original definition of packing measures [START_REF] Taylor | Packing measure and its evaluation for a brownian path[END_REF] makes use, as set function, of the diameter of open ball packing instead of the radius of closed ball packing. As pointed out by H. Haase [START_REF] Haase | The packing theorem and packing measure[END_REF], diameter-type packing measures may be not Borel regular: H. Joyce [START_REF] Joyce | A space on which diameter-type packing measure is not Borel regular[END_REF] provides an explicit example where this problem occurs.

In our setting, we don't face such problem and our results hold true for diameter-type and radius-type packing measures as well, thanks to specific properties of compact real trees (see [START_REF] Duquesne | Hausdorff and packing measure of stable trees[END_REF] for more details). We state below that the ψ-Lévy tree T has an exact packing measure with respect to a gauge function that is defined as follows: Denote by ψ ′ the derivative of ψ and note that ψ ′ (0) = α. We also denote by ψ -1 the reciprocal of ψ. Since ψ is of the form (3) and since it satisfies (4), ψ ′ and ψ -1 both tend to ∞ (see Section 2 for more details). We then set ϕ = ψ ′ • ψ -1 and we denote by ϕ -1 its reciprocal function that is defined from [α, ∞) to [0, ∞). We then define the ψ-gauge function g by

g(r) := log log 1 r ϕ -1 1 r log log 1 r , r ∈ (0, r 0 ) (12) 
where r 0 stands for min(α -1 , e -e ) (with the convention α -1 = ∞ if α = 0).

Theorem 1.1 Let ψ be a branching mechanism of the form [START_REF] Aldous | The continuum random tree I[END_REF]. We assume that the function g that is derived from ψ by ( 12) satisfies a doubling condition [START_REF] Dress | T-theory: an overview[END_REF]. Let (T , d, ρ) be the ψ-Lévy tree under its excursion measure Θ ψ . Then, there exists a constant c ψ ∈ (0, ∞), that only depends on ψ such that

Θ ψ -a.e. c ψ P g = m .
Although it is possible to define packing measures associated with gauge functions that don't satisfy a doubling condition (see Edgar [START_REF] Edgar | Centered densities and fractal measures[END_REF]), it obviously leads to technical complications. To assume that the gauge function g (given by ( 12)) satisfies a doubling condition [START_REF] Dress | T-theory: an overview[END_REF], is in some sense the minimal hypothesis on ψ that is required to stay in the standard framework of packing measure theory. Let us briefly discuss this assumption: Lemma 2.3 Section 2.3 asserts that g given by ( 12) satisfies a doubling condition [START_REF] Dress | T-theory: an overview[END_REF] iff δ > 1, where δ stands for the following exponent:

δ := sup{c ≥ 0 : ∃Q ∈ (0, ∞) s.t. Q.ψ(u)u -c ≤ ψ(v)v -c , 1 ≤ u ≤ v }. (13) 
We obviously have 1 ≤ δ ≤ γ ≤ η ≤ 2, where γ and η are the lower and the upper exponents of ψ at ∞. As already mentioned, if γ > 1, then the packing dimension of T is Θ ψ -a.e. equal to γ/(γ -1). So, γ > 1 may look as a more natural assumption for Theorem 1.1 to be true. However Lemma 2.4 Section 2.3 shows that for any c ∈ (1, 2], there exists a branching mechanism ψ that is of the form (3), that satisfies (4) and such that γ = η = c but δ = 1. Thus, δ > 1 is a more restrictive assumption than γ > 1. Let us first mention that δ > 1 implies (4), which is therefore not explicitly assumed in Theorem 1.1. Let us also mention that if ψ is regularly varying at ∞, then δ = γ = η.

One important argument of the proof of Theorem 1.1 is the following result that gives the lower density of m for typical points.

Theorem 1.2 Let ψ be a branching mechanism of the form [START_REF] Aldous | The continuum random tree I[END_REF]. We assume that the function g that is derived from ψ by [START_REF] Duquesne | Hausdorff and packing measure of stable trees[END_REF] satisfies a doubling condition [START_REF] Dress | T-theory: an overview[END_REF]. Let (T , d, ρ) be the ψ-Lévy tree under its excursion measure Θ ψ . Then, there exists a constant C ψ ∈ (0, ∞), that only depends on ψ such that Θ ψ -a.e. for m-almost all σ, one has

lim inf r→0 m B(σ, r) g(r) = C ψ .
Comment 1.1 (a) Let us consider the stable Lévy trees. Namely, the branching mechanism ψ is of the form ψ(λ) = λ γ , with γ ∈ [START_REF] Abraham | Fragmentation associated to Lévy processes using snake[END_REF][START_REF] Abraham | decomposition of the Lévy continuous random tree and simultaneous extinction probability for populations with neutral mutations[END_REF]. The packing gauge function can be taken as g(r) = r γ/(γ-1) /(log log 1/r) 1/(γ-1) and ( 8) is obviously satisfied. Let us mention that γ-stables trees enjoy the following scaling property: For any C ∈ (0, ∞), the law of (T , Cd, ρ) under Θ ψ is C 1/(γ-1) Θ ψ . The scaling property makes possible to condition T to have total mass equal to 1

(if γ = 2, then Θ ψ ( • | m(T ) = 1
) is the law of the continuum random tree). Easy arguments imply that Theorem 1.1 and Theorem 1.2 hold true under Θ ψ ( • | m(T ) = 1).

In the Brownian case γ = 2, the packing gauge function can be taken as g(r) = r 2 / log log 1/r. As shown in [START_REF] Duquesne | The Hausdorff measure of stable trees[END_REF], there exists a constant c ′ ψ such that Θ ψ -a.e. c ′ ψ H h = m, where H h stands for the h-Hausdorff measure with h(r) = r 2 log log 1/r. Note that g and h are resp. the packing and the Hausdorff gauge functions for Brownian motion in dimensions d ≥ 3. Theorem 1.10 [START_REF] Duquesne | Hausdorff and packing measure of stable trees[END_REF] asserts that non-Brownian γ-stable Lévy trees (i.e. γ ∈ (1, 2)) have no exact Hausdorff measure with regularly varying gauge function. Thus, Theorem 1.1 shows that Lévy trees behave better with respect to packing measures than with respect to Hausdorff measures.

(b) Although Theorem 1.1 asserts that whole stable Lévy trees have an exact packing measure, the level sets of stable Lévy trees have no exact packing measure, even in the Brownian case, as shown by Theorem 1.1 [START_REF] Duquesne | Hausdorff and packing measure of stable trees[END_REF].

(c) Since (T , d, ρ) is not Euclidian, the constant C ψ in Theorem 1.2 may be distinct from the constant c ψ in Theorem 1.1. This causes technicalities in the proof of Theorem 1.1. Let us mention that

C ψ = γ -1, when ψ(λ) = λ γ , γ ∈ (1, 2].
(d) Let (S r , r ≥ 0) be a subordinator with Laplace exponent ϕ = ψ ′ • ψ -1 . If g (given by ( 12)) satisfies a doubling condition (8), Fristedt and Pruitt in [START_REF] Fristedt | Lower functions for increasing random walks and subordinators[END_REF] prove that there exists a constant K ϕ ∈ (0, ∞) that only depends on ϕ and such that lim inf 0 S r /g(r) = K ϕ a.s. Let us mention that we rely on this result for the proof of the upper bound in Theorem 1.2.

The paper is organised as follows. In Section 2.1 we recall basic properties of packing measures in metric spaces and a comparison result. In Section 2.2, we introduce the height processes, the Lévy trees and a key decomposition of Lévy trees according to the ancestral line of a randomly chosen vertex. This decomposition plays an important role in the proof of Theorem 1.2. In Section 2.3, we prove Lemma 2.3 that shows that the gauge function g satisfies a doubling condition iff the exponent δ given by ( 13) is strictly larger that 1. In Section 2.4 we prove various estimates that are used in the proof sections. Section 3 and 4 are devoted to the proof of resp.Theorem 1.2 and Theorem 1.1.

2 Notation, definitions and preliminary results.

Packing measures on metric spaces.

As already mentioned, we restrict our attention to continuous increasing gauge functions that satisfy a doubling condition as defined by [START_REF] Dress | T-theory: an overview[END_REF]. Let (T , d) be an uncountable complete and separable metric space. Let us fix a regular gauge function g. Recall from [START_REF] Duquesne | A limit theorem for the contour process of conditioned Galton-Watson trees[END_REF] the definition of the g-packing pre-measure P * g . The g-packing pre-measure is non decreasing with respect to inclusion, it is sub-additive and it is a metric set function. Namely, if A and B are non-empty subsets of T and if inf σ∈A,σ ′ ∈B d(σ, σ ′ ) > 0, then P * g (A ∪ B) = P * g (A) + P * g (B). Moreover P * g has the following property. For any A ⊂ T , denote by Ā the closure of A. Then, we have

P * g (A) = P * g ( Ā) . (14) 
Recall from [START_REF] Duquesne | Asymptotics for the genealogy of Galton-Watson processes with immigration[END_REF] the definition of the g-packing outer measure P g . As proved in [START_REF] Edgar | Centered densities and fractal measures[END_REF] Section 5, P g is a metric Borel regular outer measure satisfying the following properties.

• Pack(1) For any A ⊂ T , P g (A) ≤ P * g (A). • Pack(2) If A is P g -measurable and such that 0 < P g (A) < ∞, then for any ε > 0, there exists a closed set F ⊂ A such that P g (A) ≤ P g (F ) + ε.

• Pack(3) P g (A) = inf sup n≥0 P * g (A n ); A n ⊂ A n+1 and n≥0 A n = A , for any A ⊂ T .

We shall also use the following comparison Lemma. Lemma 2.1 (Taylor and Tricot [36] Theorem 5.4, Edgar [START_REF] Edgar | Centered densities and fractal measures[END_REF] Theorem 5.9 ). Let g be a regular gauge function that satisfies a C-doubling condition. Then, for any finite Borel measure µ on T and for any Borel subset A of T , the following holds true.

(i) If lim inf r→0 µ(B(σ,r)) g(r)
≤ 1 for any σ ∈ A, then P g (A) ≥ C -2 µ(A).

(ii) If lim inf r→0 µ(B(σ,r)) g(r)
≥ 1 for any σ ∈ A, then P g (A) ≤ µ(A).

Height processes and Lévy trees.

In this section we recall (mostly from [START_REF] Duquesne | Random Trees, Lévy Processes and Spatial Branching Processes[END_REF] and [START_REF] Duquesne | Probabilistic and fractal aspects of Lévy trees[END_REF]) various results concerning height processes and Lévy trees for further use in Section 2.4, Section 3 and Section 4.

The height process. Recall that ψ stands for a branching mechanism of the form (3).

We always assume that ψ satisfies [START_REF] Aldous | The continuum random tree III[END_REF]. It is convenient to work on the canonical space D([0, ∞), R) of cadlag paths equipped with Skorohod topology and the corresponding Borel sigma-field. We denote by X = (X t , t ≥ 0) the canonical process and by P the distribution of the spectrally positive Lévy processes with Laplace exponent ψ.

Namely, E[exp(-λX t )] = exp(tψ(λ) ), λ, t ≥ 0. Note that the specific form of ψ implies that X t is integrable and that E[X t ] = -αt. This easily entails that X does not drift to ∞. Moreover (4) implies that either β > 0 or (0,1) rπ(dr) = ∞. It entails that P-a.s. X has unbounded variation sample paths (see Bertoin [START_REF] Bertoin | Lévy Processes[END_REF] Chapter VII Corollary 5 (iii)).

As shown by Le Gall and Le Jan [START_REF] Gall | Branching processes in Lévy processes: the exploration process[END_REF] (see also [START_REF] Duquesne | Random Trees, Lévy Processes and Spatial Branching Processes[END_REF] Chapter 1), there exists a continuous process H = (H t , t ≥ 0) such that for any t ∈ [0, ∞), the following limit holds true in P-probability

H t := lim ε→0 1 ε t 0 1 {I s t <Xs<I s t +ε} ds. (15) 
Here I s t stands for inf s≤r≤t X r . We shall use the notation I t = I 0 t = inf 0≤r≤t X r , for the infimum of X. The process H = (H t , t ≥ 0) is called the ψ-height process. As we see below, H provides a way to explore the genealogy of CSBPs. We refer to Le Gall and Le Jan [START_REF] Gall | Branching processes in Lévy processes: the exploration process[END_REF] for an explanation of [START_REF] Duquesne | The Hausdorff measure of stable trees[END_REF] in terms of discrete processes. Excursions of the height process. When ψ is of the form ψ(λ) = βλ 2 , X is distributed as a Brownian motion and ( 15) easily implies that H is proportional to X -I, which is distributed as a reflected Brownian motion. In the general cases, H is neither a Markov process nor a martingale. However it is possible to develop an excursion theory for H as follows. Recall that (4) entails that X has unbounded variation sample paths. Basic results on fluctuation theory (see Bertoin [START_REF] Bertoin | Lévy Processes[END_REF] Chapters VI.1 and VII.1) entail that X -I is a strong Markov process in [0, ∞) and that 0 is regular for (0, ∞) and recurrent with respect to this Markov process. Moreover, -I is a local time at 0 for X -I (see Bertoin [START_REF] Bertoin | Lévy Processes[END_REF] Theorem VII.1). We denote by N the corresponding excursion measure of X -I above 0. We denote by (a j , b j ), j ∈ I, the excursion intervals of X -I above 0, and by X j = X (aj +•)∧bj -I aj , j ∈ I, the corresponding excursions. Then, j∈I δ (-Ia j ,X j ) is a Poisson point measure on [0, ∞) × D([0, ∞), R) with intensity dx ⊗ N (dX). First observe that under P, the value of H t only depends on the excursion of X -I straddling t. Next note that j∈I (a j , b j ) = {t ≥ 0 : H t > 0}. This allows to define the height process under N as a certain measurable function H(X) of X. See [START_REF] Duquesne | Random Trees, Lévy Processes and Spatial Branching Processes[END_REF] Chapter 1, for more details. Notation 2.1 Let C 0 be the space of the continuous functions from [0, ∞) to R equipped with the topology of the uniform convergence on every compact subsets of [0, ∞) that makes it a Polish space. We shall denote by C the set of functions h ∈ C 0 with compact support. For any h ∈ C , we set

ζ(h) = sup{t ∈ [0, ∞) : h(t) = 0}, with the convention sup ∅ = 0. If h ∈ C 0 \C , then ζ(h) = ∞.
By convenience, we denote by H = (H t , ≥ 0) the canonical process on C 0 and we call ζ = ζ(H) the lifetime of H. We slightly abuse notation by denoting by N (dH) the "distribution" of the height process H(X) associated with X under the excursion measure N (dX).

Note that N -a.e. ζ < ∞, H 0 = H ζ = 0 and H t > 0 for any t ∈ (0, ζ). We now recall the Poisson decomposition of the height process H(X) associated with X under P. Recall that the intervals (a j , b j ), j ∈ I, are the open connected components of the set {t ≥ 0 : H t > 0}. For any j ∈ I, we set H j = H (aj +•)∧bj .Then, under P, the point measure

j∈I δ (-Ia j ,H j ) ( 16 
)
is distributed as a Poisson point measure on [0, ∞) × C 0 with intensity dx ⊗ N (dH). Note that under N , X and H have the same lifetime and recall that basic results of fluctuation theory entail

N 1 -e -λζ = ψ -1 (λ) , λ ≥ 0. ( 17 
)
Local times of the height process. We recall from [START_REF] Duquesne | Random Trees, Lévy Processes and Spatial Branching Processes[END_REF] Chapter 1 Section 1.3 the following result: There exists a jointly measurable process (L a s , a, s ≥ 0) such that P-a.s. for any a ≥ 0, s → L a s is continuous, non-decreasing and such that

∀ t, a ≥ 0, lim ε→0 E sup 0≤s≤t 1 ε s 0 dr1 {a<Hr ≤a+ε} -L a s = 0 . ( 18 
)
The process (L a s , s ≥ 0) is called the a-local time of H. Recall that I stands for the infinimum process of X. First, note that L 0 t = -I t , t ≥ 0. Next, observe that the support of the random Stieltjes measure dL a

• is contained in the closed set {t ≥ 0 : H t = a}. A general version of the Ray-Knight theorem for H asserts the following: For any x ≥ 0, set T x = inf{t ≥ 0 : X t = -x}. Then, the process (L a Tx ; a ≥ 0) is a distributed as a CSBP with branching mechanism ψ and initial state x (see Le Gall and Le Jan [START_REF] Gall | Branching processes in Lévy processes: the exploration process[END_REF] Theorem 4.2 and [13] Theorem 1.4.1). The CSBP (L a Tx ; a ≥ 0) admits a cadlag modification that is denoted in the same way to simplify notation. An easy argument deduced from the approximation (18) entails that a 0 L b Tx db = Tx 0 1 {Ht≤a} dt. This remark combined with an elementary formula on CSBPs (whose proof can be found in Le Gall [START_REF] Gall | Spatial Branching Processes, Random Snakes and Partial Differential Equations[END_REF]) entails that

E exp -µL a Tx -λ Tx 0 1 {Ht≤a} dt = exp -xκ a (λ, µ) , a, λ, µ ≥ 0, (19) 
where κ a (λ, µ) is the unique solution of the following differential equation

κ 0 (λ, µ) = µ and ∂κ a ∂a (λ, µ) = λ -ψ κ a (λ, µ) , a, λ, µ ≥ 0. (20) 
It is possible to define the local times of H under the excursion measure N as follows. For any b > 0, let us set v(b) = N (supt∈[0,ζ] H t > b). Since H is continuous, the Poisson decomposition [START_REF] Duquesne | On the re-rooting invariance property of Lévy trees[END_REF] implies that v(b) < ∞, for any b > 0. It is moreover clear that v is non-increasing and that lim ∞ v = 0. Then, for every a ∈ (0, ∞), we define a continuous increasing process (L a t , t ∈ [0, ζ]), such that for every b ∈ (0, ∞) and for any t ≥ 0, one has

lim ε→0 N 1 {sup H>b} sup 0≤s≤t∧ζ 1 ε s 0 dr1 {a-ε<Hr ≤a} -L a s = 0. ( 21 
)
We refer to [START_REF] Duquesne | Random Trees, Lévy Processes and Spatial Branching Processes[END_REF] Section 1.3 for more details. The process (L a t , t ∈ [0, ζ]) is the alocal time of the excursion of the height process. The Poisson decomposition [START_REF] Duquesne | On the re-rooting invariance property of Lévy trees[END_REF] then entails that

N 1 -e -µL a ζ -λ a 0 1 {H t ≤a} dt = κ a (λ, µ) , a, λ, µ, ≥ 0. ( 22 
)
By taking λ = 0 in the previous display, we get

N (1 -exp(-µL a ζ ) ) = u(a, µ)
, where u is the solution of the integral equation ( 2). This easily entails

∀a ≥ 0 , N (L a ζ ) = e -α a . ( 23 
)
Let us also recall from [START_REF] Duquesne | Random Trees, Lévy Processes and Spatial Branching Processes[END_REF] the following formula

∀a > 0 , v(a) = N sup H t ≥ a = N L a ζ = 0 and ∞ v(a) du ψ(u) = a. ( 24 
)
Lévy trees. We first define R-trees (or real trees) that are metric spaces generalising graph-trees.

Definition 2.1 Let (T, δ) be a metric space. It is a real tree iff the following holds true for any σ 1 , σ 1 ∈ T .

(a) There is a unique isometry

f σ1,σ2 from [0, δ(σ 1 , σ 2 )] into T such that f σ1,σ2 (0) = σ 1 and f σ1,σ2 (δ(σ 1 , σ 2 )) = σ 2 . We denote by [[σ 1 , σ 2 ]] the geodesic joining σ 1 to σ 2 . Namely, [[σ 1 , σ 2 ]] := f σ1,σ2 ([0, δ(σ 1 , σ 2 )]) (b) If j is a continuous injective map from [0, 1] into T , such that j(0) = σ 1 and j(1) = σ 2 , then we have j([0, 1]) = [[σ 1 , σ 2 ]].
A rooted R-tree is a R-tree (T, δ) with a distinguished point r called the root.

Among metric spaces, R-trees are characterized by the so-called four points inequality: (T, δ) is a R-tree iff it is connected and for any

σ 1 , σ 2 , σ 3 , σ 4 ∈ T , δ(σ 1 , σ 2 ) + δ(σ 3 , σ 4 ) ≤ δ(σ 1 , σ 3 ) + δ(σ 2 , σ 4 ) ∨ δ(σ 1 , σ 4 ) + δ(σ 2 , σ 3 ) . ( 25 
)
We refer to Evans [START_REF] Evans | Probability and real trees[END_REF] or to Dress, Moulton and Terhalle [START_REF] Dress | T-theory: an overview[END_REF] for a detailed account on this property. The set of all compact rooted R-trees can be equipped with the pointed Gromov-Hausdorff distance that is defined as follows.

Definition 2.2 (a) Let (E, ∆) be a metric space. For any x ∈ E and any subset

A ⊂ E, we set ∆(x, A) = inf y∈A ∆(x, y). Note that ∆(•, A) = ∆(•, Ā) and that ∆(•, A) is 1-Lipschitz. For any ε > 0, we set A (ε) = {x ∈ E : ∆(x, A) ≤ ε} that is a closed subset of E. Then for any compact sets K 1 , K 2 of E, we set ∆ H (K 1 , K 2 ) = inf{ε ∈ (0, ∞) : K 1 ⊂ K (ε) 2 and K 2 ⊂ K (ε) 1 } .
∆ H is a distance on the compacts sets of E and we recall Blaschke's Theorem that asserts that the set of compact subsets of E equipped with ∆ H is a compact metric space when (E, ∆) is compact.

(b) Let (T 1 , δ 1 , r 1 ) and (T 2 , δ 2 , r 1 ) be two compact pointed metric spaces. The pointed Gromov-Hausdorff distance is then given by

d GH (T 1 , T 2 ) = inf ∆ H j 1 (T 1 ), j 2 (T 2 ) ∨ ∆ j 1 (r 1 ), j 2 (r 2 ) .
where the infimum is taken over all the (j 1 , j 2 , (E, ∆)), where (E, ∆) is a metric space and where j 1 : T 1 → E and j 2 : T 2 → E are isometrical embeddings.

Obviously d GH (T 1 , T 2 ) only depends on the root-preserving isometry classes of T 1 and T 2 . In [START_REF] Gromov | Metric Structures for Riemannian and non-Riemannian Spaces[END_REF], Gromov proves that d GH is a metric on the set of the equivalence classes of pointed compact metric spaces that makes it complete and separable. Let us denote by T, the set of all equivalence classes of rooted compact real-trees. Evans, Pitman and Winter [START_REF] Evans | Rayleigh processes, real trees, and root growth with re-grafting[END_REF] prove that T is d GH -closed. Therefore, (T, d GH ) is a complete separable metric space (see Theorem 2 [START_REF] Evans | Rayleigh processes, real trees, and root growth with re-grafting[END_REF]). Let us briefly recall how R-trees can be obtained via continuous functions. Recall from Notation 2.1 that C stands for the set of the continuous functions from [0, ∞) to R with compact support. Let h ∈ C . To avoid trivialities, we also assume that h is not constant to zero. Then, for every s, t ≥ 0, we set

b h (s, t) = inf r∈[s∧t,s∨t] h(r) and d h (s, t) = h(s) + h(t) -2b h (s, t). ( 26 
)
Clearly Since h is continuous, so is p h . This implies that (T h , d h ) is a compact and connected metric space that satisfies the four points inequality. It is therefore a compact R-tree.

d h (s, t) = d h (t,
We then define the root ρ h of (T h , d h ) by ρ h = p h (0). We shall refer to the rooted compact R-tree (T h , d h , ρ h ) as to the R-tree coded by h.

It shall be sometimes convenient to extend the canonical projection: we define ph : [0, ∞) → T h by setting ph (t) = p h (t ∧ ζ(h)), t ∈ [0, ∞). We next introduce the mass measure on T h : We denote by ℓ the Lebesgue measure on [0, ∞) and we denote by m h the measure on the Borel sets of (T h , d h ) induced by the measure ℓ restricted to [0, ζ(h)] via p h . Namely, for any Borel subset B of T h ,

m h (B) = ℓ p -1 h (B) = ℓ [0, ζ(h)] ∩ p -1 h (B) . ( 27 
)
We next define the ψ-Lévy tree as the tree coded by the ψ-height process (H t , 0 ≤ t ≤ ζ) under the excursion measure N . To simplify notation, we set

(T H , d H , ρ H , m H ) = (T , d, ρ, m) .
We also set p = p H : [0, ζ] → T . Note that ρ = p(0). Since H ζ = 0 and since H t > 0, for any t ∈ (0, ζ), ζ is the only time t distinct from 0 such that p(t) = ρ.

A point σ ∈ T is called a leaf if it is distinct from the root and if the open set T \{σ} is connected. We denote by Lf (T ) the set of leaves of T . We also define the skeleton of T by Sk(T ) = T \Lf (T ). One can show that

N -a.e. Sk(T ) = T , m is diffuse and m Sk(T ) = 0. ( 28 
)
This easily implies the following characterisation of leaves in terms of the height process: N -a.e. for any t ∈ (0, ζ),

p(t) ∈ Lf (T ) ⇐⇒ ∀ε > 0 , inf s∈[t-ε,t] H s < H t and inf s∈[t,t+ε] H s < H t . (29) 
For any a ∈ (0, ∞), the a-local time measure ℓ a is the measure induced by dL a • via p. Namely,

ℓ a , f = ζ 0 dL a s f (p(s)) ,
for any positive measurable application f on T . Let us mention that the topological support of ℓ a is included in the a-level set T (a) = {σ ∈ T : d(ρ, σ) = a} and note that the total mass ℓ a of ℓ a is equal to L a ζ . Moreover, observe that T (a) is not empty iff sup H ≥ a. Then, (24) can be rewritten as follows.

∀ a > 0, v(a) = N T (a) = ∅ = N (ℓ a = 0) . ( 30 
)
As already mentioned, the a-local time measure ℓ a can be defined in a purely metric way by [START_REF] Bingham | Continuous branching processes and spectral positivity[END_REF] and there exists a modification of a → ℓ a that is N -a.e. cadlag for the weak topology on the space of finite measures on T . For any h ∈ C , denote by Th the root-preserving isometry class of (T h , d h , ρ h ) that belongs to T. Lemma 2.3 [START_REF] Duquesne | Probabilistic and fractal aspects of Lévy trees[END_REF] asserts that h ∈ C → Th ∈ T is Borel-measurable. We then define Θ ψ as the "distribution" of T when T is under N . We have stated the main results of the paper under Θ ψ because it is more natural and because Θ ψ has an intrinsic characterization as shown by Weill [START_REF] Weill | Regenerative real trees[END_REF]. However, each time we make explicit computations with Lévy trees, we have to work with random isometry classes of compact R-trees, which causes technical problems (mostly measurability problems). To avoid these unnecessary complications during the intermediate steps of the proofs, we prefer to work with the specific compact rooted R-tree (T , d, ρ) coded by the ψ-height process H under N rather than to directly work under Θ ψ . The branching property. We now describe the distribution of the subtrees above level b in the Lévy tree. More precisely, we consider the excursions above level b of the height process H under N . Let us fix b ∈ (0, ∞). We denote by (g b j , d b j ), j ∈ I b , the connected components of the open set {t ≥ 0 : H t > b}. For any j ∈ I b , we denote by H b,j the corresponding excursion of H defined by H b,j s = H 

b = N ( • | sup H > b) (31) 
and we introduce the following point measure on [0, ∞) × C 0 :

M b = j∈I b δ L b g b j , H b,j (32) 
The branching property at level b then asserts that under N b , conditionally given G b , M b is distributed as a Poisson point measure with intensity 1 [0,L b ζ ] (x)dx ⊗ N (dH) (see [START_REF] Duquesne | Random Trees, Lévy Processes and Spatial Branching Processes[END_REF] Proposition 1.3.1). Let us mention that it is possible to rewrite intrinsically the branching property under Θ ψ : see [START_REF] Duquesne | Probabilistic and fractal aspects of Lévy trees[END_REF] Theorem 4.2, for more details. As already mentioned Weill [START_REF] Weill | Regenerative real trees[END_REF] shows that the branching property characterizes Lévy trees. Spinal decomposition. Let us introduce an auxiliary probability space (Ω, F , P) that is rich enough to carry the various independent random variables we shall need. Let Y = (W t , V t ) t≥0 be a bivariate subordinator on (Ω, F , P) with initial value Y 0 = (0, 0). Namely, Y is a cadlag process with independent and homogeneous nonnegative increments. Its distribution is characterised by its Laplace exponent given by

- 1 t log E exp(-λW t -µV t ) = ψ * (λ) -ψ * (µ) λ -µ ,
where ψ * (λ) = ψ(λ)αλ. If λ = µ, the right member has to be interpreted as the derivative (ψ * ) ′ (λ). Denote by W and V the right-continuous inverses of W and V :

W (r) = inf{t ∈ [0, ∞); W t > r} and V (r) = inf{t ∈ [0, ∞); V t > r} .
Note that W and V are two subordinators with Laplace exponent ψ * (λ)/λ. Since (4) implies that β > 0 or (0,1) rπ(dr) = ∞, P-a.s. W and V are increasing. Thus W and V are P-a.s. continuous.

Let (X (1) t ) t≥0 and (X (2) t ) t≥0 be two independent real valued Lévy processes defined on (Ω, F , P) whose common distribution is P. Thus, their initial value is 0, their Laplace exponent is ψ. We moreover assume that (X (1) , X (2) ) is independent of Y . We denote by H (1) and H (2) the height processes obtained respectively from X (1) and from X (2) . Thus, H (1) and H (2) are two independent ψ-height processes and (H (1) , H (2) ) is independent from Y . From (H (1) , H (2) ) and Y , we derive two processes as follows. For any t ∈ [0, ∞), we set

H * (1) t = H (1) t -W (-I (1) 
t ) and

H * (2) t = H (2) t -V (-I (2) t ) , (33) 
where

I (1) t = infs∈[0,t] X (1)
s and I (2) t = infs∈[0,t] X (2) s .
Observe that H * (1) and H * (2) are continuous, possibly negative, that H * (1) 0

= H * (2) 0 = 0 and that

∀ t ∈ [0, ∞) , inf s∈[0,t] H * (1) s = -W (-I (1) 
t ) and inf

s∈[0,t] H * (2) s = -V (-I (2) t ) . ( 34 
)
Next, for any a ∈ [0, ∞), we set

T (1) a = inf{t ∈ [0, ∞) ; H * (1) t = -a} and T (2) a = inf{t ∈ [0, ∞) ; H * (2) t = -a}. Note that T (1) a = inf{t ≥ 0 ; X (1) t = -W a } and T (2) a = inf{t ≥ 0 ; X (2) t = -V a }. We next set H (a,1) = a + H * (1) t∧T (1) a , t ≥ 0 and H (a,2) = a + H * (2) t∧T (2) a , t ≥ 0 . (35) 
They are nonnegative continuous processes with compact support and with respective lifetimes T (1) a and T (2) a Let us now consider the height process H = (H t , t ≥ 0) under N . For any t ≥ 0, we set Ĥt := (H (t-s)+ , s ≥ 0) and Ȟt := (H t+s , s ≥ 0) ,

where, ( •) + stands for the positive part function. Then, for any bounded measurable function 1) , H (a,2) da .

F : C 0 × C 0 → [0, ∞), one has N ζ 0 F Ĥt , Ȟt dt = ∞ 0 e -αa E F H (a,
In the Brownian case, this decomposition is equivalent to Bismut decomposition. As already mentioned, this decomposition is a consequence of Lemma 3.4 [START_REF] Duquesne | Probabilistic and fractal aspects of Lévy trees[END_REF] (see also [START_REF] Duquesne | Random Trees, Lévy Processes and Spatial Branching Processes[END_REF] Chapter 1 or Lemma 3.2 [START_REF] Duquesne | Asymptotics for the genealogy of Galton-Watson processes with immigration[END_REF], and see [START_REF] Duquesne | On the re-rooting invariance property of Lévy trees[END_REF] for further applications). We first use [START_REF] Weill | Regenerative real trees[END_REF] to prove the following zero-one law that is needed in the proof of Lemma 4.4 in Appendix A. For any η ∈ (0, ∞), we define R η : C 0 → C 0 by setting R η H = (H s∧η -H η , s ≥ 0). Note that R η is continuous. We next fix a sequence η n ∈ (0, ∞), n ≥ 0, that decreases to 0. We also fix a sequence of Borel-measurable functions

G n : C 0 → [0, ∞], n ≥ 0. We then set G(H) = lim inf n→∞ G n (R ηn H) ∈ [0, ∞] that is measurable from C 0 to [0, ∞]. Lemma 2.2 There exists a constant C ∈ [0, ∞] such that N ζ 0 1 {G( Ȟt ) =C} dt = 0. Proof: (37) implies N ζ 0 1 {G( Ȟt ) =C} dt = ∞ 0 e -αa P(G(H (a,2) ) = C)da, for any C ∈ [0, ∞]. For any η, a ∈ (0, ∞), we set τ (η, a) = η ∧ T (2)
a . Then observe that for any s ≥ 0, we have R η H (a,2) (s) = H (2) s∧τ (η,a) -H (2) τ (η,a) -V (-I (2) s∧τ (η,a) )+V (-I (2) τ (η,a) ). Note that G(H (a,2) ) is P-a.s. equal to a random variable that does not depend on a and that is measurable with respect to the tail sigma-field at 0+ of the Feller process (X (1) , X (2) , W, V ). By Blumenthal's zero-one law, there exists a constant C ∈ [0, ∞] such that for any a, P(G(H (a,2) ) = C) = 0, which implies the desired result.

We now recall from [START_REF] Duquesne | Probabilistic and fractal aspects of Lévy trees[END_REF] a Poisson decomposition of H that is a consequence of (37). For any continuous function h ∈ C 0 , we define the point measure N (h) as follows. Set h(t) = inf [0,t] h and denote by (g i , d i ), i ∈ I(h) the excursion intervals of hh away from 0 that are the connected components of the open set {t ≥ 0 : h(t)h(t) > 0}. For any i ∈ I(h), set h i (s) = ((hh)((g i + s) ∧ d i ) , s ≥ 0) and define

N (h) = i∈I(h) δ h(0)-h(gi) , h i that is a point measure on [0, ∞) × C 0 .
Recall that H = (H t ) t≥0 stands for the excursion of the height process H. For any t ∈ [0, ζ], we set

N t = N ( Ĥt ) + N ( Ȟt ) := j∈Jt δ (r t j ,H • t,j ) . ( 38 
)
Recall from [START_REF] Miermont | Self-similar fragmentations derived from the stable tree I: splitting at heights[END_REF] the definition of H * (1) and H * (2) . Then, we also set,

N * = N (H * (1) ) + N (H * (2) ) := j∈I * δ (r * j , H * j ) (39) 
By definition of H (a,1) and H (a,2) , it is easy to check that

N * a := N (H (a,1) ) + N (H (a,2) ) := j∈I * 1 [0,a] (r * j ) δ (r * j , H * j ) .
Then, [START_REF] Weill | Regenerative real trees[END_REF] implies that

N ζ 0 F N t dt = ∞ 0 e -αa E [F (N * a )] da . (40) 
We shall refer to this identity as to the spinal decomposition of H at a random time (see [START_REF] Duquesne | Probabilistic and fractal aspects of Lévy trees[END_REF] Lemma 3.4). Let us briefly explain the distribution of N * under P: Recall that for any k ∈ {1, 2}, H (k) is the height process associated with X (k) . We denote by H (k),j , j ∈ J k , the excursions of H (k) above 0, and we denote by (g(k, j), d(k, j)) the corresponding excursion intervals. As a consequence of (34) and of the definition of H * (1) , the atoms of N (H * (1) ) are the points (W (-I (1) g(1,j) ) , H (1),j ), j ∈ J 1 . Similarly, the atoms of N (H * (2) ) are the points (V (-I (2) g(2,j) ) , H (2),j ), j ∈ J 2 . We then set U r = W r + V r , r ∈ [0, ∞). Then U = (U r ) r≥0 is a subordinator with Laplace exponent (ψ * ) ′ and it is easy to check that dU r = dW r + dV r . Since the measure induced by the Lebesgue measure on [0, ∞) via W (resp. via V ) is the random Stieltjes measure dW r (resp. dV r ), [START_REF] Duquesne | On the re-rooting invariance property of Lévy trees[END_REF] implies that for any measurable function

Φ : [0, ∞) × C 0 → [0, ∞], E exp -N * , Φ U = exp - ∞ 0 dU r N 1 -e Φ(r,H) . ( 41 
)
Thus, the law of N * conditionally given U is that of a Poisson point measure with intensity dU r ⊗ N (dH).

Let us briefly interpret this decomposition in terms of the ψ-Lévy tree T coded by H under N . Choose t ∈ (0, ζ) and set σ = p(t) ∈ T . Then the geodesic [[ρ, σ]] is interpreted as the ancestral line of σ. Let us denote by T o j , j ∈ J , the connected components of the open set T \[[ρ, σ]] and denote by T j the closure of T o j . Then, there exists a point σ j ∈ [[ρ, σ]] such that T j = {σ j } ∪ T o j . Recall that (r t j , H • t,j ), j ∈ J t are the atoms of N t as defined by (38). Then, for any j ∈ J , there exists a unique j ′ ∈ J t such that d(σ, σ j ) = r t j ′ and such that the rooted compact R-tree (T j , d, σ j ) is isometric to the tree coded by H • t,j ′ .

We now apply (40) to compute the mass measure of balls whose center is chosen according to the mass measure m. Let t ∈ (0, ζ). We first compute m( B(p(t), r)) in terms of N t as follows. Recall notation b(s, t) = min [s∧t,s∨t] H. By [START_REF] Lamperti | Continuous-state branching processes[END_REF], N -a.e. for all s, t ∈ (0, ζ) such that H s = b(s, t) with s = t, we have p(s) ∈ Sk(T ). By [START_REF] Joyce | A space on which diameter-type packing measure is not Borel regular[END_REF], N -a.e. m(Sk(T )) = 0. Consequently, N -a.e. for every r ∈ (0, ∞) and every t ∈ (0, ζ), we have

m B(p(t), r) = ζ 0 1 {d(s,t)≤r} ds = ζ 0 1 {0<Hs-b(s,t)≤r-Ht+b(s,t)} = j∈Jt 1 [0 , r] (r t j ) ζ t j 0 1 {H • t,j s ≤r-r t j } ds, (42) 
where ζ t j stands for the lifetime of the path H • t,j . For any a ∈ (0, ∞) and for any r ∈ [0, ∞), we next set

M * r (a) = j∈I * 1 [0 , r∧a] (r * j ) ζ * j 0 1 {H * j s ≤r-r * j } ds , (43) 
where ζ * j stands for the lifetime of the path H * j . Then, (M * r (a), r ≥ 0) is a cadlag increasing process defined on (Ω, F , P). The spinal decomposition (40) entails the following key formula that is used in the proof of Theorem 1.2: For any bounded measurable

F : D([0, ∞), R) → [0, ∞), we have N T F m B(σ, r) , r ≥ 0 m(dσ) = N ζ 0 F m B(p(t),r) , r ≥ 0 dt = ∞ 0 e -αa E F M * r (a), r ≥ 0 da . ( 44 
)
2.3 Exponents.

In this section we relate several power exponents associated with ψ to properties of the gauge function g that is derived from ψ by [START_REF] Duquesne | Hausdorff and packing measure of stable trees[END_REF]. Let us start with some notation. Let φ : [0, ∞) → [0, ∞) be a continuous increasing function. We agree on the following conventions: sup ∅ = 0 and inf ∅ = ∞, and we define the following exponents that compare φ with power functions at infinity.

(a) γ φ := sup{c ≥ 0 : lim λ→∞ φ(λ)λ -c = ∞} is the lower exponent of φ at ∞.

(b) η φ := inf{c ≥ 0 : lim λ→∞ φ(λ)λ -c = 0} is the upper exponent of φ at ∞. (c) δ φ := sup {c ≥ 0 : ∃ C ∈ (0, ∞) such that Cφ(µ)µ -c ≤ φ(λ)λ -c , 1 ≤ µ ≤ λ}.
Exponents for subordinators. Let us assume that φ is the Laplace exponent of a subordinator with drift d and Lévy measure ν:

φ(λ) = d λ + (0,∞)
(1e -λr ) ν(dr) , λ ≥ 0.

Then, we have 0

≤ δ φ ≤ γ φ ≤ η φ ≤ 1. Recall that lim λ→∞ φ(λ)/λ = d. If d > 0, then δ φ = γ φ = η φ = 1. If d = 0
, the exponents can be expressed in terms of the Lévy measure as follows: For any x ∈ [0, ∞), we set

J φ (x) = x 0 ν (u, ∞) du = (0,x] r ν(dr) + xν (x, ∞) . (45) 
By standard results (see Bertoin [START_REF] Bertoin | Lévy Processes[END_REF] Chapter III), if d = 0, there exist two universal constants k 1 , k 2 ∈ (0, ∞) such that

k 1 λJ φ (1/λ) ≤ φ(λ) ≤ k 2 λJ φ (1/λ) , λ > 0 . ( 46 
)
This easily implies that γ φ = sup{c ≥ 0 : lim

0+ x c-1 J φ (x) = ∞}, that η φ = inf{c ≥ 0 : lim 0+ x c-1 J φ (x) = 0} and that δ φ = sup{c ≥ 0 : ∃ C ∈ (0, ∞) s.t. Cy c-1 J φ (y) ≤ x c-1 J φ (x), 0 < x ≤ y ≤ 1}. ( 47 
)
Exponents for ψ. Let ψ be of the form (3). Set ψ(λ) = ψ(λ)/λ. It is easy to show that for any λ ∈ [0, ∞),

ψ ′ (λ) = α+2βλ+ (0,∞)
(1e λr ) rπ(dr) and ψ(λ) = α+βλ+

(0,∞) (1 -e λr ) π [r, ∞) dr.
Thus, ψ ′ and ψ are Laplace exponents of subordinators. Recall that the reciprocal ψ -1 of ψ is the Laplace exponent of a subordinator. Thus, ϕ = ψ ′ • ψ -1 is also the Laplace exponent of a subordinator. Note that 1/ϕ is the derivative of ψ -1 . Note that ψ is convex and that ψ ′ , ψ, ψ -1 and ϕ are concave. In particular, this implies ψ(2λ) ≤ 2 ψ(λ) and the following

ψ(2λ) ≤ 4ψ(λ) , ψ(λ) ≤ ψ ′ (λ) ≤ 4 ψ(λ) and λ ψ -1 (λ) ≤ ϕ(λ) ≤ 4λ ψ -1 (λ) . (48) 
To simplify notation we set γ := γ ψ , η := η ψ and δ := δ ψ .

We clearly have 1 ≤ δ ≤ γ ≤ η ≤ 2. In general, γ and η are distinct but they coincide if ψ is regularly varying at ∞. As a direct consequence of (48) we have

δ ψ = δ ψ ′ = δ -1, γ ψ = γ ψ ′ = γ -1 and η ψ = η ψ ′ = η-1.
Moreover, we get δ ϕ = (δ-1)/δ, γ ϕ = (γ -1)/γ and η ϕ = (η -1)/η. Recall the definition of the gauge function g : (0, r 0 ) → (0, ∞) that is derived from ψ by [START_REF] Duquesne | Hausdorff and packing measure of stable trees[END_REF]. The function g is clearly continuous. For any r ∈ (0, r 0 ), we set a r = ϕ -1 ( 1 r log log 1 r ). First, observe that a r increases to ∞ when r decreases to 0. Next, recall that since ϕ is the Laplace exponent of a subordinator, λ → ϕ(λ)/λ is decreases. Thus, r ∈ (0, r 0 ) → g(r) = rϕ(a r )/a r is continuous, increasing and it goes to 0 when r goes to 0. The following lemma relates the doubling condition (8) for g to the exponent δ of ψ.

Lemma 2.3 Assume that ψ is of the form [START_REF] Aldous | The continuum random tree I[END_REF] and that it satisfies (4). Then, the following assertions hold true.

(i) The gauge function g satisfies the doubling condition [START_REF] Dress | T-theory: an overview[END_REF] iff δ > 1.

(ii) If ψ is regularly varying at ∞ with exponent c > 1, then δ = γ = η = c and g satisfies the doubling condition [START_REF] Dress | T-theory: an overview[END_REF].

Proof: We first assume that δ > 1. Then, δ ϕ = (δ -1)/δ ∈ (0, 1). Let c ∈ (0, δ ϕ ). There exists C ∈ (0, ∞) such that Cϕ(a)a -c ≤ ϕ(b)b -c , for any 1 ≤ a ≤ b. If we take a = ϕ -1 (u) and b = ϕ -1 (v), with ϕ(1) ≤ u ≤ v, then we get

u 1/c ϕ -1 (u) ≤ C -1/c • v 1/c ϕ -1 (v) , ϕ(1) ≤ u ≤ v . ( 49 
)
Let r 1 ∈ (0, r 0 ) be such that ϕ(1) ≤ 1 2r log log 1 2r ≤ 1 r log log 1 r for any r ∈ (0, r 1 ). Apply (49) with u = 1 2r log log 1 2r and v = 1 r log log 1 r to get

g(2r) ≤ 2 C 1/c log log 1 r log log 1 2r 1 c -1 g(r) , r ∈ (0, r 1 ) ,
which easily entails the doubling property (8) for g since 1 c -1 > 0. Conversely, let us assume that g satisfies a doubling property: there exists

C ′ ∈ (1, ∞) such that log log 1 2r ϕ -1 1 2r log log 1 2r ≤ C ′ log log 1 r ϕ -1 1 r log log 1 r , r ∈ (0, r 0 /2) .
The previous inequality, combined with an easy argument, implies there exists C > 1 and u 0 > 0 such that ϕ -1 (u) ≤ Cϕ -1 (u/2), for any u ≥ u 0 . The previous inequality entails that 2ϕ(v) ≤ ϕ(Cv) for any v ≥ v 0 := max(1, ϕ -1 (u 0 /2)). We next set c = log(2)/ log(C) that is strictly positive since C > 1. For any λ ≥ v ≥ v 0 , we denote by n(v, λ), the integer part of log(λ/v)/ log(C). Namely,

C n(v,λ) v ≤ λ < C n(v,λ)+1 v.
This implies

1 2 • λ c v -c ϕ(v) ≤ 2 n(v,λ) ϕ(v) ≤ ϕ(C n(v,λ) v) ≤ ϕ(λ) ,
which implies δ ϕ > 0 and thus, (1δ ϕ ) -1 = δ > 1. This completes the proof of (i).

The second point of the lemma is a direct consequence of a theorem due to Matuszwska [START_REF] Matuszewska | Regularly increasing functions in connection with the theory of L * Φ -spaces[END_REF] (see also Bingham, Goldies and Teugel [START_REF] Bingham | Encyclopaedia of mathematics and its applications[END_REF] Chapter 1 Theorem 1.5.4 p 23) that asserts the following: A nonnegative measurable function L is slowly varying at ∞ iff for every c ∈ (0, ∞) there exists a non-decreasing function f 1 and a non-increasing function

f 2 such that u c L(u) ∼ ∞ f 1 (u) and u -c L(u) ∼ ∞ f 2 (u).
To complete this section, we show that δ ψ > 1 is a more restrictive assumption than γ ψ > 1 by providing examples of branching mechanisms ψ of the form (3), that satisfy (4) and 1 = δ ψ < γ ψ . Lemma 2.4 For any γ ∈ (1, 2], there exists a branching mechanism ψ of the form [START_REF] Aldous | The continuum random tree I[END_REF] and such that η ψ = γ ψ = γ and δ ψ = 1.

Proof: For any n ≥ 3, we set

θ n = n log n and ∆ n = θ n+1 -θ n . It is easy to prove that ∆ n = log n + 1 + O( 1 n ) ∼ ∞ log n.
We first suppose that γ ∈ (1, 2). For any n ≥ 3, we set r n = exp(-θ n ), a n = r -γ n and π(dr) = n≥3 a n δ rn (dr). It is easy to check that π((1, ∞)) = 0 and that (0,1) r 2 π(dr) = n≥3 r 2-γ n is finite. We next define ψ by

ψ(λ) = (0,∞) (e -λr -1 + λr) π(dr) , λ ≥ 0, ( 50 
)
that is clearly a branching mechanism of the form (3). We first prove that η ψ = γ ψ = γ, which is equivalent to

η ψ ′ = γ ψ ′ = γ -1. Let us first prove that γ ψ ′ ≥ γ -1. Note that ψ ′ (λ) = n≥3 r -(γ-1) n
(1e -λrn ) and observe that for any λ ≥ 1/r 3 , there exists

n λ ≥ 3 such that r -1 n λ ≤ λ < r -1 n λ +1
. This inequality easily entails n λ < log λ. For all sufficiently large λ, we then get

ψ ′ (λ) ≥ r -(γ-1) n λ (1 -e -λrn λ ) ≥ (1 -e -1 )e -(γ-1)∆n λ λ γ-1 ≥ (1 -e -1 )λ γ-1 (log λ) -2(γ-1) , which entails that γ ψ ′ ≥ γ -1.
Let us prove now that η ψ ′ ≤ γ -1. To that end, we introduce the following notation

R n = m≥n r 2-γ m and S n = 3≤m≤n r -(γ-1) m .
Elementary estimates entail that there exist two sequences (ε n , n ≥ 0) and (ε ′ n , n ≥ 0), both converging to 0, such that

R n = r 2-γ n (1 + ε n ) and S n = r -(γ-1) n (1 + ε ′ n ). ( 51 
) Since r -1 n λ ≤ λ < r -1 n λ +1 , we get ψ ′ (λ) ≤ 3≤n≤n λ r -(γ-1) n + n≥n λ +1 r -(γ-1) n λr n ≤ S n λ + λR n λ +1 ≤ r -(γ-1) n λ (1 + ε ′ n λ +1 ) + λr 2-γ n λ +1 (1 + ε n λ +1 ) ≤ λ γ-1 (2 + ε ′ n λ + ε n λ +1 ) , which shows that η ψ ′ ≤ γ -1. We thus have proved η ψ = γ ψ = γ.
Let us next prove that δ ψ = 1. We argue by contradiction and we suppose that δ ψ > 1. Then, δ ψ ′ = δ ψ -1 > 0, and by (47), there exist c ∈ (0, δ ψ ′ ) and C ∈ (0, ∞)

such that C y c-1 J ψ ′ (y) ≤ x c-1 J ψ ′ (x) , 0 < x ≤ y ≤ 1 . ( 52 
)
Recall (45) and observe that J ψ ′ (x) = R n+1 + xS n , for any x ∈ [r n+1 , r n ). We set

x n = exp -(2 -γ) θ n+1 -(γ -1) θ n = r 2-γ n+1 r γ-1 n ∈ [ r n+1 , r n ) .
Observe that

J ψ ′ (x n ) = r 2-γ n+1 (2 + ε n+1 + ε ′ n ) ∼ ∞ 2e -(2-γ)θn+1 . Note that J ψ ′ (r n ) = R n + r n S n-1 . This entails J ψ ′ (r n ) = e -(2-γ)θn (1 + ε n ) + e -θn e (γ-1)θn-1 (1 + ε ′ n-1 ) = e -(2-γ)θn 1 + ε n + e -(γ-1)∆n-1 (1 + ε ′ n-1 ) ∼ ∞ e -(2-γ)θn . Thus, r c-1 n J ψ ′ (r n ) ∼ ∞ e (γ-1-c)θn and x c-1 n J ψ ′ (x n ) ∼ ∞ 2e (1-c)(γ-1)θn-c(2-γ)θn+1 = e -c(2-γ)∆n e (γ-1-c)θn . Recall that ∆ n ∼ ∞ log n. Since 0 < x n < r n ≤ 1, (52) imply that 0 < C ≤ x c-1 n J ψ ′ (x n ) r c-1 n J ψ ′ (r n ) ∼ ∞ e -c(2-γ)∆n -→ n→∞ 0,
which is aburd. This completes the proof of the lemma when γ ∈ (1, 2).

Let us consider the case γ = 2. For any n ≥ 2, we set r n = e -n 2 and π(dr) = n≥2 r -2 n e -n log n δ rn (dr). We define ψ by (50) that is easily shown to be a branching mechanism of the form (3). We want to prove that γ ψ = 2, (which implies that η ψ = 2) and that δ ψ = 1. Recall that it is equivalent to prove that γ ψ ′ = 1 and δ ψ ′ = 0. For any λ > e 4 , there exists an integer n λ ≥ 2 such that e n 2 λ ≤ λ < e (n λ +1) 2 . Namely, n λ is the integer part of √ log λ. Observe that λr n λ +1 < 1 and use the inequality 1e -x ≥ x/2, x ∈ [0, 1], to get the following inequality that holds true for all sufficiently large λ:

ψ ′ (λ) ≥ r -1 n λ +1 e -(n λ +1) log(n λ +1) (1 -e -λrn λ +1 ) ≥ 1 2 λe -(n λ +1) log(n λ +1) ≥ λ exp(-2 log λ loglog λ),
which easily entails γ ψ ′ ≥ 1, and thus

γ ψ ′ = η ψ ′ = 1, since ψ ′ is concave. We next set R n = m≥n e -m log m ∼ ∞ e -n log n and S n = 2≤m≤n e m 2 -m log m ∼ ∞ e n 2 -n log n .
Recall (45) and observe that J ψ ′ (x) = R n+1 + xS n , for any x ∈ [r n+1 , r n ). Recall notation ∆ n = (n + 1) log(n + 1)n log n ∼ ∞ log n. We next set x n := r n e -∆n that belongs to the interval (r n+1 , r n ) for all sufficiently large integers n. It easy to check that for any c ∈ (0, 1), one has

x c-1 n J ψ ′ (x n ) ∼ ∞ 2e (1-c)n 2 -n log n-c∆n and r c-1 n J ψ ′ (r n ) ∼ ∞ e (1-c)n 2 -n log n
Thus, for any c ∈ (0, 1), lim

∞ x c-1 n J ψ ′ (x n )/r c-1 n J ψ ′ (r n ) = 0.
This proves δ ψ ′ = 0, which completes the proof of the lemma.

Estimates.

In this section we state the estimates used in the proofs of Theorems 1.1 and 1.2. Throughout the section we assume that ψ is a branching mechanism of the form (3) whose exponent δ defined by ( 13) is strictly larger than 1. Recall that ϕ = ψ ′ • ψ -1 and that ϕ -1 stands for its reciprocal. Recall from [START_REF] Haas | The genealogy of self-similar fragmentations with negative index as a continuum random tree[END_REF] the definition of the decreasing function v : (0, ∞) → (0, ∞). Lemma 2.5 There exist r 1 , C 1 ∈ (0, ∞), that only depend on ψ and that satisfy ∀r ∈ (0, r 1 ) , v(r) < C 1 rϕ -1 (1/r) .

Proof: Since δ > 1, there exist c ∈ (1, ∞) and C ∈ (0, ∞) such that ψ(λ) ≤ Cψ(λu)u -c , for any u, λ ∈ [1, ∞). Choose Q such that C. ∞ Q u -c du ≤ 1/4. Thus, ψ(λ) λ ∞ λQ du ψ(u) = ψ(λ) ∞ Q du ψ(λu) ≤ C. ∞ Q u -c du ≤ 1 4 .
Denote by v -1 the reciprocal of v and recall that v satisfies [START_REF] Haas | The genealogy of self-similar fragmentations with negative index as a continuum random tree[END_REF]. Then, the previous inequality entails that v -1 (Qλ) ≤ λ/(4ψ(λ)) and (48

) implies v -1 (Qλ) ≤ 1/ψ ′ (λ). Since v is decreasing we get v(1/ψ ′ (λ)) ≤ Qλ. Substitute λ with ψ -1 (λ) to get v 1/ϕ(λ) ≤ Qψ -1 (λ) , λ ≥ ψ(1).
Next observe that ψ -1 (λ) ≤ 4λ/ϕ(λ) by (48). Thus,

v 1/ϕ(λ) ≤ 4Qλ ϕ(λ) , λ ≥ ψ(1). (53) 
Set C 1 = 4Q, r 1 = ϕ(ψ(1)) = ψ ′ (1) and apply (53) with λ = ϕ -1 (1/r) to get the desired result.

Recall from [START_REF] Evans | Probability and real trees[END_REF] the definition of κ r (λ, µ) and recall that it satisfies the differential equation [START_REF] Evans | Rayleigh processes, real trees, and root growth with re-grafting[END_REF]. Recall from (43) the definition of M * r (a). Observe that if a ≥ r, then M * r (a) = M * r (r). To simplify notation, we set

M * r := M * r (r) and L r (λ) := 1 - ψ κ r (λ, 0) λ , r, λ ≥ 0 . (54) 
Lemma 2.6 For any r ∈ (0, ∞), and for any λ ∈ [0, ∞), one has

L r (λ) = N ℓ r e -λm( B(ρ,r)) = e -αr E e -λM * r . Proof: First observe that if µ = ψ -1 (λ), then (22) entails that κ r (λ, µ) = ψ -1 (λ), for any r ≥ 0. If µ = ψ -1 (λ), then (22) 
can be rewritten as the following integral equation

κr (λ,µ) µ du λ -ψ(u) = r , r, λ, µ ≥ 0 and µ = ψ -1 (λ) . ( 55 
) Note that µ ℓ r + λm( B(ρ, r)) = µL r ζ + λ ζ 0 ds1 {Hs≤r} , for any r, λ, µ ≥ 0. Then, (22) entails N (1 -exp(-µ ℓ r -λm( B(ρ, r)) ) ) = κ r (λ, µ).
We differentiate this identity with respect to µ to get

N ℓ r e -µ ℓ r -λm( B(ρ,r)) = ∂κ r ∂µ (λ, µ) = λ -ψ κ r (λ, µ) λ -ψ(µ) ,
which implies the first equality by taking µ = 0.

It remains to prove that e αr L r (λ) = E[exp(-λM * r )]. To that end, recall that U is a (conservative) subordinator defined on (Ω, F , P) with Laplace exponent ψ * ′ = ψ ′α. Then (43) and (41) imply

E [ exp(-λM * r )| U ] = exp - [0,r]
dU s κ r-s (λ, 0) .

We therefore get

E exp - [0,r] dU s κ r-s (λ, 0) = exp - r 0 ds ψ * ′ (κ r-s (λ, 0)) = exp αr- r 0 ds ψ ′ (κ s (λ, 0)) . Now recall that ∂ ∂s κ s (λ, 0) = λ -ψ(κ s (λ, 0)
) and a simple change of variable gives

r 0 ds ψ ′ κ s (λ, 0) = log λ -log λ -ψ(κ r (λ, 0)) ,
which easily completes the proof of the lemma.

Lemma 2.7 For any r, λ ≥ 0, one has

-log Lr(λ) 0 dx ϕ λ(1-e -x ) = r.
Proof: Recall (55) that asserts that r = κr (λ,0) 0 du(λψ(u)) -1 . Set v = ψ(u) and recall that the derivative of ψ -1 is 1/ϕ. So, easy changes of variable entail r = κr(λ,0)

0 du λ-ψ(u) = ψ(κr(λ,0)) 0 dv (λ-v)ϕ(v) = 1 Lr (λ) w -1 dw ϕ(λ(1-w)) = -log Lr (λ) 0 dx ϕ λ(1-e -x )
that is the desired result.

Remark 2.1 It is obvious from Lemma 2.6 that λ →log L r (λ) is increasing. Note that Lemma 2.7 implies that r →log L r (λ) is also increasing.

We now prove the key estimate for the lower bound in Theorem 1.2.

Lemma 2.8 Set C 2 = (1e -1 ) -1 . There exists r 2 ∈ (0, ∞) that only depends on ψ such that

L 2r C 2 ϕ -1 2 r loglog 2 r ≤ exp -2loglog 2 r
, r ∈ (0, r 2 ).

Proof: The proof is in four steps. We first claim the following.

∀ r, λ ∈ (0, ∞), -log L r (λ) ≤ 1 =⇒ 2 λ ψ rλ/2 ≤ 1 . ( Claim 1) 
Proof of (Claim 1): Note that 1e -x ≥ x/2 for any x ∈ [0, 1] and recall that 1/ϕ is the derivative of

ψ -1 . If -log L r (λ) ≤ 1, then Lemma 2.7 entails that r = -log Lr(λ) 0 dx ϕ λ(1-e -x ) ≤ 1 0 dx ϕ(λx/2) = 2ψ -1 (λ/2)/λ ,
which entails (Claim 1). We next claim the following.

∀ r, λ ∈ (0, ∞), -log L r (λ) > 1 =⇒ L 2r (2λ) ≤ exp -r ϕ 2(1-e -1 )λ . (Claim 2)
Proof of (Claim 2): Assume thatlog L r (λ) > 1. Then, Lemma 2.7, combined with elementary inequalities entails the following.

ψ -1 (λ) λ = 1 0 dx ϕ(λx) ≤ 1 0 dx ϕ(λ(1-e -x )) ≤ -log Lr (λ) 0 dx ϕ λ(1-e -x ) = r. (56) 
By Remark 2.1, we havelog L 2r (2λ) >log L r (λ) > 1. Thus, we get 2r =

-log L2r(2λ)

0 dx ϕ 2λ(1-e -x ) ≤ 1 0 dx ϕ(λx) + -log L2r (2λ) 1 dx ϕ 2λ(1-e -x ) ≤ ψ -1 (λ) λ - log L 2r (2λ) ϕ 2(1-e -1 )λ . (57) 
(here again, we use the inequality 1e -x ≥ x/2, x ∈ [0, 1]). Then (57) and (56) entail that r ≤log L 2r (2λ)/ϕ(2(1-e -1 )λ), which implies (Claim 2).

Recall from [START_REF] Duquesne | Hausdorff and packing measure of stable trees[END_REF] the definition of g. We claim that there exists R ∈ (0, 2r 0 ) such that ∀r ∈ (0, R) ,log L r Proof of (Claim 3): Let us set λ r = ϕ -1 ( 2 r loglog 2 r ), for any r ∈ (0, r 0 ). Thus, g(r/2) = (loglog 2 r )/λ r . Suppose thatlog L r ( 4 g(r/2) ) ≤ 1. Then, (Claim 1) easily entails that 1 ≥ 1 2 g(r/2)ψ 4r/(2g(r/2)) , which is equivalent to the following:

1 ≥ 1 2 • loglog 2 r λ r • ψ 4λ r 2 r loglog 2 r = 1 2 • loglog 2 r λ r • ψ 4λ r ϕ(λ r )
Now recall from (48) that 4λ r /ϕ(λ r ) ≥ ψ -1 (λ r ). Thus, the latter inequality implies 2 ≥ loglog 2 r and (Claim 3) holds true with R being the largest r in (0, 2r 0 ) such that loglog 2 r ≥ 2. End of the proof of the lemma: Recall the notation C 2 = (1e -1 ) -1 . There exists

r 2 ∈ (0, R) such that 4/ loglog 2 r2 ≤ C 2 /2. The definition of g implies 4 g(r/2) = 4 loglog 2 r ϕ -1 2 r loglog 2 r ≤ 1 2 C 2 ϕ -1 2 r loglog 2 r , r ∈ (0, r 2 ).
Remark 2.1 and (Claim 3) entail that for any r ∈ (0, r 2 ),

1 < -log L r 4 g(r/2) ≤ -log L r 1 2 C 2 ϕ -1 2 r loglog 2 r
. Now (Claim 2) implies that

L 2r C 2 ϕ -1 2 r loglog 2 r ≤ exp -rϕ ϕ -1 2 r loglog 2 r = exp -2 loglog 2 r ,
which completes the proof of the lemma.

The following estimate is used in the proof of Theorem 1.1.

Lemma 2.9 There exist r 3 , C 3 , C 4 ∈ (0, ∞) that only depend on ψ such that for any r ∈ (0, r 3 ), one has g(16r) N sup H ≥ 3r ; Proof: Recall that (g 2r j , d 2r j ), j ∈ I 2r , stand for the open connected components of {s ∈ [0, ζ] : H s > 2r} and that H 2r,j = H (g 2r j +•)∧d 2r j -2r, j ∈ I 2r , are the corresponding excursions of H above 2r. Recall that G 2r is the sigma-field generated by the height process H 2r below level 2r, augmented by the N -negligible sets. Recall from [START_REF] Gall | Branching processes in Lévy processes: the exploration process[END_REF] the notation N 2r . The branching property asserts that under N 2r and conditionally given G 2r , the random variable Y := j∈I 2r 1 {sup H 2r,j ≥r} is distributed as a Poisson random variable with parameter L 2r

ζ N (sup H > r) = L 2r ζ v(r). Now observe that N -a.e. 1 {Y =0} = 1 {sup H≥3r} . Thus,

N 2r 1 {sup H≥3r} | G 2r = N 2r 1 {Y =0} | G 2r = 1 -e -v(r)L 2r ζ ≤ v(r)L 2r ζ . Since ζ 0 1 {Hs≤2r} ds is G 2r -measurable, we get N 2r sup H ≥ 3r ; ζ 0 1 {Hs≤2r} ds ≤ C 3 g(16r) ≤ v(r)N 2r L 2r ζ 1 { ζ 0 1 {Hs≤2r} ds≤C3g(16r)} .
where C 3 is a positive constant to be specified further. Recall that N -a.e.

1 {L 2r ζ =0} = 1 {sup H>2r} . Consequently, N sup H ≥ 3r ; ζ 0 1 {Hs≤2r} ds ≤ C 3 g(16r) ≤ v(r)N L 2r ζ 1 { ζ 0 1 {Hs≤2r} ds≤C3g(16r)} .
Recall that L 2r ζ = ℓ 2r , that ζ 0 1 {Hs≤2r} ds = m( B(ρ, 2r)) and recall from (54) the notation L 2r (λ). Then, the Markov inequality combined with Lemma 2.6 entails for any λ ≥ 0,

N L 2r ζ 1 { ζ 0 1 {Hs≤2r} ds≤C3g(16r)} = N ℓ 2r 1 {m( B(ρ,2r))≤C3g(16r)} ≤ e C3λg(16r) L 2r λ . ( 58 
)
Set r 3 = r 1 ∧r 2 , where r 1 and r 2 are as in Lemmas 2.5 and 2.8. We fix r ∈ (0, r 3 ). Since we assumed that δ = δ ψ > 1, there exists C ≥ 1 such that g satisfies a C-doubling condition [START_REF] Dress | T-theory: an overview[END_REF]. Thus, g(16r) ≤ C 5 g(r/2). Recall notation λ r = ϕ -1 ( 2 r loglog 2 r ) and note that λ r g(r/2) = loglog 2 r . Take λ = C 2 λ r in (58) and use Lemma 2.8 to get

N L 2r ζ 1 { ζ 0 1 {Hs≤2r} ds≤C3g(16r)} ≤ exp -(2 -C 3 C 5 ) loglog 2 r .
We now choose C 3 such that C 3 C 5 = 1/2. We then get for any r ∈ (0, r 3 ),

g(16r)N sup H ≥ 3r ; ζ 0 1 {Hs≤2r} ds ≤ C 3 g(16r) ≤ g(16r)v(r)e -3 2 loglog 2 r . ( 59 
)
We now use Lemma 2.5 to get the following.

g(16r)v(r) ≤ C 4 • g(r)v(r) ≤ C 4 • v(r) loglog 1 r ϕ -1 ( 1 r loglog 1 r ) ≤ C 4 • v(r) loglog 1 r ϕ -1 ( 1 r ) ≤ C 4 C 1 • r loglog 1 r ,
which implies the desired result with C 4 = C 4 C 1 by (59).

We recall in a lemma a result due to Fristedt and Pruitt [START_REF] Fristedt | Lower functions for increasing random walks and subordinators[END_REF] on subordinators that is needed to prove the upper bound in Theorem 1.2. Recall that ϕ = ψ ′ • ψ -1 and that ψ ′ (0) = α. We set ϕ * = ϕα. Thus, ϕ * (0) = 0 and ϕ * is the Laplace exponent of a conservative subordinator.

Lemma 2.10 (Fristedt and Pruitt [START_REF] Fristedt | Lower functions for increasing random walks and subordinators[END_REF] Theorem 1 p 173) Let (S r , r ≥ 0) be a subordinator starting at 0 defined on (Ω, F , P) whose Laplace exponent is ϕ * . Let us assume that δ = δ ψ > 1. Recall that g is the gauge function defined by [START_REF] Duquesne | Hausdorff and packing measure of stable trees[END_REF]. Then, there exists a constant K ψ ∈ (0, ∞) that only depends on ψ such that

P -a.s. lim inf r→0 S r g(r) = K ψ .
Remark 2.2 Theorem 1 [START_REF] Fristedt | Lower functions for increasing random walks and subordinators[END_REF] is actually more general than the result stated in Lemma 2.10. It actually asserts the following: If γ = γ ψ > 1, then for any a > 1, there exists K a,ψ ∈ (0, ∞) that only depends on a and ψ, such that

P -a.s. lim inf r→0 S r g * (ar) = K a,ψ , (60) 
where g * is derived from ϕ * as g is derived from ϕ in [START_REF] Duquesne | Hausdorff and packing measure of stable trees[END_REF]. Observe that ϕ * and ϕ are equivalent at infinity. Thus, g ∼ 0 g * and g * can be replaced by g in (60). If δ = δ ψ > 1, then g satisfies the doubling condition [START_REF] Dress | T-theory: an overview[END_REF]. Consequently, g(ar) ≍ 0 g(r)

and Blumenthal zero-one law allows to deduce Lemma 2.10 from (60) under the more restrictive assumption δ = δ ψ > 1.

3 Proof of Theorem 1.2.

Recall that (U t , t ≥ 0) is a subordinator defined on (Ω, F , P) with Laplace exponent ψ * ′ (λ) = ψ ′ (λ)α, λ ≥ 0. Recall that N * = j∈I * δ (r * j , H * j ) is a random point measure on [0, ∞) × C 0 defined on (Ω, F , P) such that conditionally given U , N * is distributed as a Poisson point measure with intensity dU r ⊗ N (dH). Also recall the notation

M * r = M * r (r) = j∈I * 1 [0,r] (r * j ) • ζ * j 0 1 {H * j s ≤r-r * j } ds , r ≥ 0 ,
where ζ * j stands for the lifetime of H * j , for any j ∈ I * . We now set

∀r ≥ 0 , S r = j∈I * 1 [0,r] (r * j )ζ * j .
First observe that ∀r ≥ 0 , M * r ≤ S r .

Next observe that (S r , r ≥ 0) is cadlag and that S 0 = 0. Let 0 = r 0 < r 1 < . . . < r n and λ 1 , . . . , λ n ≥ 0. Recall from [START_REF] Duquesne | Growth of Lévy trees[END_REF] that N (1exp(-λζ) ) = ψ -1 (λ). We then get

E exp - 1≤k≤n λ k (S r k -S r k-1 ) = E exp - 1≤k≤n ψ -1 (λ k )(U r k -U r k-1 ) = exp - 1≤k≤n (r k -r k-1 )ϕ * (λ k ) .
This implies that (S r , r ≥ 0) is a subordinator with Laplace exponent ϕ * . Lemma 2.10 applies: There exists a constant K ψ ∈ (0, ∞) that only depends on ψ such that

P -a.s. lim inf r→0 M * r g(r) ≤ lim inf r→0 S r g(r) = K ψ < ∞ . ( 62 
)
Let us prove a lower bound. Lemma 2.6 asserts that E[exp(-λM * r )] = e αr L r (λ). Recall notation λ r = ϕ -1 ( 2 r loglog 2 r ) so that λ r g(r/2) = loglog 2 r . Lemma 2.8 asserts that there exist r 2 , C 2 ∈ (0, ∞) such that L 2r (C 2 λ r ) ≤ exp(-2 loglog 2 r ) for any r ∈ (0, r 2 ). Let K be a positive real number to be specified later. By Markov inequality, for any r ∈ (0, r 2 ), one has

P (M * 2r ≤ Kg(r/2) ) = P C 2 λ r M * 2r ≤ C 2 K loglog 2 r ≤ exp C 2 K loglog 2 r E exp -C 2 λ r M * 2r ≤ exp C 2 K loglog 2 r + 2αr L 2r (C 2 λ r ) ≤ exp -(2 -C 2 K) loglog 2 r + 2αr .
We choose K such that C 2 K = 1/2. Borel-Cantelli entails

P-a.s. lim inf n→∞ M * 2 -n g(2 -n-2 ) ≥ K .
Recall that g satisfies a C-doubling condition. Thus, g(2r) ≤ C 2 g(r/2), for all sufficiently small r > 0. Since r → M * r is non-decreasing, we get

P-a.s. lim inf r→0 M * r g(r) ≥ C -3 lim inf n→∞ M * 2 -n g(2 -n-2 ) ≥ C -3 K > 0 . (63) 
By standard results on Poisson point processes, lim inf r→0 M * r /g(r) is a random variable that is measurable with respect to the tail sigma-field of U at 0+ and Blumenthal's 0-1 law entails that there exists a constant denoted by C ψ such that Pa.s. lim inf r→0 M * r /g(r) = C ψ . Moreover (62) and (63) show that C ψ ∈ (0, ∞). Then, (44) implies N T m(dσ) 1 {lim infr→0 m(B(σ,r))/g(r) =C ψ } = 0 , which entails Theorem 1.2.

Proof of Theorem 1.1.

The proof is in several steps that are stated as lemmas. Recall that for any a > 0, the intervals (g a j , d a j ), j ∈ I a , are the open connected components of {s ∈ [0, ζ] : H s > a}. Recall notation H a,j = H (g a j +•)∧d a ja, j ∈ I a , for the excursions of H above a. We shall denote by ζ a,j = d a jg a j , the lifetime of H a,j . Recall that G a stands for sigmafield generated by the height process Ha below a, augmented by the N -negligible sets and recall from [START_REF] Gall | Branching processes in Lévy processes: the exploration process[END_REF] the notation N a . The branching property asserts that under N a and conditionally given G a , the point measure

M a = j∈Ia δ L a g a j , H a,j
is distributed as a Poisson point measure with intensity 1 [0,L a ζ ] (x)dx ⊗ N (dH). We apply this property as follows. Let F : 

C 0 → [0, ∞) be measurable. Set Z a F = j∈Ia F (H a,j
For any n ∈ N, we denote by D n the set {k2 -n-3 ; k ∈ N}. For any a ∈ D n and for any j ∈ I a , we define the event E(a, j) as follows

E(a, j) = sup H a,j > 3.2 -n-3 ; ζa,j 0 1 {H a,j s ≤2.2 -n-3 } ds ≤ C 3 g(2.2 -n ) ,
where C 3 is the constant appearing in Lemma 2.9. For any positive integer Q, we then set

U n,Q = a∈Dn∩[0,Q+1] j∈Ia g(2.2 -n ) 1 E(a,j) . (65) 
We suppose that 2 -n-3 < r 3 , where r 3 is the constant appearing in Lemma 2.9. We apply (64) with a ∈ D n ∩ [0, Q + 1] and Lemma 2.9 with r n = 2 -n-3 , and we get

N j∈Ia g(2.2 -n ) 1 E(a,j) ≤ C 4 r n loglog 1 rn e -3 2 loglog 1 rn ≤ C 5 2 -n-3 n -3/2 log n,
Here C 4 is the constant appearing in Lemma 2.9 and C 5 only depends on ψ. Since

#(D n ∩ [0, Q + 1]) = 2 n+3 (Q + 1) ≤ 2Q.2 n+3 , we get N (U n,Q ) ≤ 2C 5 Q • n -3/2 log n , (66) 
which easily entails the following lemma.

Lemma 4.1 There exists a Borel set

A 1 ⊂ C 0 such that C 0 \A 1 is N -negligible and such that on A 1 , ∀Q ∈ N , lim n→∞ m≥n U m,Q = 0 .
Recall notation P * g for the g-pre-packing measure on T . Lemma 4.1 is now used to prove the following. Lemma 4.2 There exists C 6 ∈ (0, ∞) that only depends on ψ such that on A 1 , one has P * g (K) ≤ C 6 m(K), for any compact subset K of T .

Proof: Recall the notation Γ = sup H = sup{d(ρ, σ) ; σ ∈ T } that is the total height of T . Without loss of generality, we can assume that Γ ∈ (0, ∞) on A 1 . Let 0 < ε < min(1, Γ) and let Q be a positive integer such that Q > Γ. Let K be any compact subset of T and let ( B(σ ℓ , r ℓ ), ℓ ≥ 0) be any ε-packing of K. Namely, the closed balls B(σ ℓ , r ℓ )'s are pairwise disjoint, σ ℓ ∈ K and r ℓ ≤ ε, for any ℓ ≥ 0. Observe that at most one ball may contain the root ρ. Without loss of generality, we assume that if a ball of the ε-packing of K contains ρ, then it is B(σ 0 , r 0 ). Thus, ρ / ∈ B(σ ℓ , r ℓ ), for any ℓ ≥ 1.

We fix (σ, r) ∈ {(σ ℓ , r ℓ ) ; ℓ ≥ 1}. Since r ≤ ε < 1, there exists an integer n(r) ≥ 1 such that 2 -n(r) < r ≤ 2.2 -n(r) . Since ρ / ∈ B(σ, r), one has d(ρ, σ) > r and there exists t 0 ∈ (0, ζ) such that p(t 0 ) = σ (recall that p stands for the canonical projection from [0, ζ] onto T ). Thus, H t0 = d(ρ, σ) > r > 8.2 -n(r)-3 and there exists a unique integer k > 8 such that k2 -n(r)-3 ≤ H t0 < (k + 1)2 -n(r)-3 . We then set g = sup{s ∈ [0, t 0 ] :

H s = (k -3)2 -n(r)-3 } d = inf{s ∈ [t 0 , ζ] : H s = (k -3)2 -n(r)-3 }.
To simplify notation, we set a = (k -3)2 -n(r)-3 ∈ D n(r) ∩ [0, Q + 1].

(I) Observe that 0 < g < t 0 < d < ζ, that H g = H d = a, that H s > a for any s ∈ (g, d) and that H t0a ≥ 3.2 -n(r)-3 . Therefore there exists a unique j ∈ I a such that (g a j , d a j ) = (g, d) , H a,j s = H (g+s)∧da , s ≥ 0 , and sup H a,j ≥ 3.2 -n(r)-3 .

(II) Recall that b(s 1 , s 2 ) = inf [s1∧s2,s1∨s2] H and d(s 1 , s 2 ) = H s1 + H s2 -2b(s 1 , s 2 ), for any s 1 , s 2 ∈ [0, ζ]. Let s ∈ (g, d) be such that H s -a ≤ 2.2 -n(r)-3 . First observe that b(s, t 0 ) ≥ a. Next observe that H t0 -a ≤ 4.2 -n(r)-3 . Consequently, d(s, t 0 ) ≤ 2.2 -n(r)-3 + H t0 -a ≤ 6.2 -n(r)-3 < r. Thus, {s ∈ (g, d) : H s -a ≤ 2.2 -n(r)-3 } ⊂ {s ∈ [0, ζ] : d(s, t 0 ) ≤ r}, which implies that ζa,j 0 
1 {H a,j s ≤2.2 -n(r)-3 } ds ≤ m B(σ, r) . Recall that B(σ 0 , r 0 ) is the only ball of the ε-packing that may contain the root. Since the B(σ ℓ , r ℓ )'s are pairwise disjoint, (I) and (II) imply the following inequalities

ℓ≥0 g(r ℓ )1 {m(B(σ ℓ ,r ℓ ))≤C3g(r ℓ )} ≤ g(ε) + n:2 -n <ε U n,Q . This entails the following ℓ≥0 g(r ℓ ) = ℓ≥0 g(r ℓ )1 {m(B(σ ℓ ,r ℓ ))>C3g(r ℓ )} + ℓ≥0 g(r ℓ )1 {m(B(σ ℓ ,r ℓ ))≤C3g(r ℓ )} ≤ 1 C3 m K (ε) + g(ε)+ n:2 -n <ε U n,Q , (67) 
where we have set K (ε) = {σ ∈ T : d(σ, K) ≤ ε}. Recall from (9) the definition of P (ε)

g . Since the previous inequality holds true for any ε-closed packing of K, we get

P (ε) g (K) ≤ 1 C3 m K (ε) + g(ε)+ n:2 -n <ε U n,Q . Since K is compact, lim ε→0 m(K (ε) ) = m(K).
The previous inequality, combined with Lemma 4.1, implies the desired result on A 1 with C 6 = 1/C 3 .

Recall that Theorem 1.2 asserts that there exists a Borel subset A 2 ⊂ C 0 such that N (C 0 \A 2 ) = 0 and such that, on A 2 , we have Proof: We set Good = {σ ∈ T : lim inf r→0 g(r) -1 m(B(σ, r)) = C ψ } and Bad = T \Good. We argue deterministically on A 1 ∩ A 2 . Observe that P g (Bad) ≤ P * g (T ) ≤ C 6 m(T ) < ∞. By (68), m(Bad) = 0. Then, for any compact K ⊂ Bad, Lemma 4.2 implies that P g (K) ≤ P * g (K) ≤ C 6 m(K) = 0. Thus, Property Pack(2) implies that P g (Bad) = 0. For any Borel subset B ⊂ T we get P g (B) = P g (B ∩ Good) and m(B) = m(B ∩ Good). The comparison lemma 2.1 then entails (C ψ ) -1 C -2 m(B ∩ Good) ≤ P g (B ∩ Good) ≤ (C ψ ) -1 m(B ∩ Good), which proves the lemma with C 7 = (C ψ ) -1 C -2 and C 8 = (C ψ ) -1 .

m σ ∈ T : lim inf r→0 g(r) -1 m B(σ, r) = C ψ = 0 ( 
We now prove a 0-1 law to complete the proof of Theorem 1.1. To that end we need the following lemma. Lemma 4.4 Let η n ∈ (0, ∞), n ≥ 0, be a sequence that decreases to 0. Then, there exists a constant C 9 ∈ [0, ∞] that only depends on ψ and on the sequence (η n ) n≥0 , such that N -a.e. for Lebesgue-almost )) was a Borel-measurable function of H, then Lemma 4.4 would be a direct consequence of Lemma 2.2. However, this point seems difficult to prove because the packing measure P g is defined in two steps and the second step [START_REF] Duquesne | Asymptotics for the genealogy of Galton-Watson processes with immigration[END_REF] (or its variant Pack(3)) causes measurability problems. This explains the unexpected length of the proof of Lemma 4.4.

We now completes the proof of Theorem 1.1. By (28), Lemma 4.3 and Lemma 4.4, there exists a Borel subset A of C 0 such that N (C 0 \A) = 0 and such that for any H ∈ A, the following holds true. (c) For Lebesgue-almost all t ∈ [0, ζ], C 9 = lim inf n→∞ η -1 n P g p([t, t + η n ]) . We follow the end of the proof of Theorem 1.1 [START_REF] Duquesne | The Hausdorff measure of stable trees[END_REF]. We argue deterministically on A. Let 0 ≤ s ≤ t ≤ ζ. Suppose that there exists r ∈ [0, ζ]\[s, t] such that p(r) ∈ p([s, t]). Then there exists u ∈ [s, t] such that p(u) = p(r). We then get H u = H r = b(u, r) and since u = r, (29) implies that p(r) ∈ Sk(T ). This easily implies the following. P g (p([s, t])) = q(t)q(s), m(p([s, t])) = ts, and C 7 (ts) ≤ q(t)q(s) ≤ C 8 (ts).

The function q is then absolutely continuous. Thus, q is differentiable Lebesgue-almost everywhere, q(t)q(s) = [s,t] q ′ (u)du and for Lebesgue-almost all t ∈ [0, ζ],

q ′ (t) = lim inf n→∞ 1 η n (q(t + η n )q(t)) = lim inf A Appendix: proof of Lemma 4.4.

Let us recall basic facts on analytic sets and let us set some notation. Let E be a topological space that is Polish. We shall always denote by B(E) the Borel sigma-field of E. A subset A ⊂ E is said to be analytic iff there exists an auxiliary Polish space E ′ and a Borel set B of E × E ′ equipped with the product topology such that A is the projection of B on E. We shall denote by A(E) the set of the analytical subsets of E. Then B(E) ⊂ A(E) and A(E) is stable under countable unions and intersections. Moreover, the continuous image of an analytic set is also analytic (see Jech [START_REF] Jech | Set Theory, 3rd millennium[END_REF] pp 142-148 and Dudley [START_REF] Dudley | Real Analysis and Probability[END_REF] Chapter 13 Section 2 pp 493-501). Let F ⊂ E be a closed subset. Since F is Polish and since the canonical injection from F into E is continuous, we have A(F ) = {A ∩ F ; A ∈ A(E)} and B(F ) = {B ∩ F ; B ∈ B(E)}. We shall denote by σA(E) the sigma-field generated by A(E). Let µ be a sigma-finite positive measure defined on B(E). We denote by B µ (E) the Borel sigma field B(E) augmented by the µ-negligible sets. Recall that A(E) ⊂ B µ (E) (see Dudley [START_REF] Dudley | Real Analysis and Probability[END_REF] Theorem 13.2.6 p 497). This easily entails the following lemma.

Lemma A.6 For any η ∈ (0, ∞), there exists a function Λη : C 0 → [0, ∞] that is B(C 0 )-measurable and such that {h ∈ C 0 : Λη (R η h) = Λ(R η h)} is Q-negligible.

Proof: We fix η ∈ (0, ∞). For any n ∈ N, we define the finite measure Q n,η on C 0 by setting Q n,η (B) = Q(V n ∩ R -1 η (B) ), B ∈ B(C 0 ). Lemma A.1 asserts that there exists a B(C 0 )-measurable function Λn,η : C 0 → [0, ∞] such that the set S n,η := {h ∈ C 0 : Λn,η (h) = Λ(h)} is Q n,η -negligible. Namely, V n ∩ R -1 η (S n,η ) is Q-negligible. Let us set S η := n≥0 V n ∩ R -1 η (S n,η ) that is Q-negligible and let us set Λη = lim inf n→∞ Λn,η that is B(C 0 )-measurable. It is easy to check that for any h ∈ C 0 \S η , Λη (R η h) = Λ(R η h), which completes the proof of the lemma.

We now fix a sequence (η n ) n≥0 of positive numbers that decreases to 0 and for any h ∈ C 0 , we set 

D(h) = lim inf

  (g b j +s)∧d b jb, s ≥ 0. This has to be interpreted in terms of the tree as follows. Recall that B(ρ, b) stands for the closed ball in T with center ρ and radius b. Observe that the connected components of the open set T \ B(ρ, b) are the subtrees T b,o j := p((g b j , d b j )), j ∈ J b . The closure T b j of T b,o j is simply {σ b j } ∪ T b,o j , where σ b j = p(g b j ) = p(d b j ) is the points on the b-level set T (b) at which T b,o j is grafted. Observe that the rooted compact R-tree (T b j , d, σ b j ) is isometric to the tree coded by H b,j . We then define Hb s = H(ζ ∧ τ b s ), where s → τ b s is given by ∀s ≥ 0 , τ b s = inf t ≥ 0 : t 0 dr 1 {Hr≤b} > s , with the usual convention inf ∅ = ∞. The process Hb is the height process below b and the rooted compact R-tree ( B(ρ, b), d, ρ) is isometric to the tree coded by Hb . We denote by G b the sigma-field generated by Hb augmented by the N -negligible sets.We see from (21) that L b ζ is measurable with respect to G b . We next define the probability measure N b on C 0 by N

ζ 0 1 3 2 loglog 2 r r loglog 1 r

 1321 {Hs≤2r} ds ≤ C 3 g(16r) ≤ C 4 e -.

  ) and note that Z a F = 0 if sup H ≤ a. A basic result on Poisson point processes entails that N a (Z a F |G a ) = L a ζ N (F (H)). Recall that N -a.e. 1 {L a ζ =0} = 1 {sup H>a} . Thus, N (Z a F ) = N (L a ζ )N (F (H)). By (23), N (L a ζ ) = exp(-αa) ≤ 1, which entails N j∈Ia F (H a,j ) ≤ N (F (H)) .

( a )

 a The mass measure m is diffuse and m(Sk(T )) = 0. (b) For any Borel subset B of T , we have C 7 m(B) ≤ P g (B) ≤ C 8 m(B).

  p([s, t]) ∩ p([u, v]) ⊂ Sk(T ) ∪ {p(t)} , 0 ≤ s ≤ t ≤ u ≤ v ≤ ζ . (69)For any t ∈ [0, ζ], we set q(t) = P g (p([0, t])). Observe that for any 0≤ s ≤ t ≤ ζ, p([0, t]) = p([0, s]) ∪ p([s, t]).Then, (69) combined with (a) and (b), implies that for any 0 ≤ s ≤ t ≤ ζ.

n→∞ η - 1 n

 1 P g p([t, t + η n ]) = C 9 , by (c). This proves that C 7 ≤ C 9 ≤ C 8 and that P g (p([s, t])) = C 9 (ts), for any 0 ≤ s ≤ t ≤ ζ. Since m and P g are diffuse, this entails that for any intervalJ ⊂ [0, ζ], P g (p(J)) = C 9 m(p(J)) = C 9 ℓ(J), where ℓ stands for the Lebesgue measure.Let O be an open set of (T , d). Denote by J n , n ≥ 0, the (possibly empty) open connected components of p -1 (O) that are pairwise disjoint subintervals of [0, ζ]. By (69), (a) and (b), we get P g p(J n ) ∩ p(J n ′ ) = 0, for any 0 ≤ n < n ′ . Consequently,P g (O) = n≥0 P g p(J n ) = C 9 n≥0 m p(J n ) = C 9 n≥0 ℓ J n = C 9 ℓ(p -1 (O)) = C 9 m(O). Set c ψ = (C 9 ) -1 . Then, c ψ P g (O) = m(O), for any open subset of T , which entails c ψ P g = m. This completes the proof of Theorem 1.1 since N (C 0 \A) = 0.

n→∞ η - 1 n 1 { 1 { 1 {

 1111 Λ(R ηn h) and D(h) = lim inf n→∞ η -1 n Ληn (R ηn h) .Observe that D :C 0 → [0, ∞] is B(C 0 )-measurable. Lemma A.6 implies that the subset {h ∈ C 0 : D(h) = D(h)} is Q-negligible.Moreover, Lemma 2.2 entails that there exists C 9 ∈ [0, ∞] that only depends on ψ and on (η n ) n≥0 such thatQ({h ∈ C 0 : D(h) = C 9 }) = N ζ 0 D( Ȟt ) =C9} = 0 . (76)We now complete the proof of Lemma 4.4 as follows. We first set S * = {h ∈ C 0 : D(h) = C 9 }. Lemma A.6 and (76) entail that C 0 \S * is Q-negligible. Therefore, we can find a Borel set B * ∈ B(C 0 ) such that B * ⊂ S * and Q(C 0 \B * ) = 0 . ȟt ∈C 0 \S * } dt and M (h) = ζ(h) 0 ȟt ∈C 0 \B * } dt . Since C 0 \B * ∈ B(C 0 ), standard arguments imply that h → M (h) is B(C 0 )-measurable. Thus, the set B := {h ∈ C 0 : M (h) = 0} is a Borel subset of C 0 . By Fubini, we get C 0 M (h)N (dh) = N ζ 0

  the quotient set [0, ζ(h)]/ ∼ h , where we recall that ζ(h) stands for the lifetime of h. Standard arguments imply that d h induces a metric on T h that is also denoted by d h to simplify notation. We denote by p h : [0, ζ(h)] → T h the canonical projection.

s). It is easy to check that d h satisfies the four points inequality, which implies that d h is a pseudo-metric. We then introduce the equivalence relation s ∼ h t iff d h (s, t) = 0 (or equivalently iff h(s) = h(t) = b h (s, t)) and we denote by T h

  all t ∈ [0, ζ],

	lim inf n→∞	1 η n	P

g p([t, t + η n ]) = C 9 . Proof: see Appendix A. Remark 4.1 If P g (p([t, t + η n ]

g(r/2) > 1 .(Claim 3)

Therefore, N (C 0 \B) = 0. Recall from (71) the definition of S and recall that

which completes the proof of Lemma 4.4 since C 0 \(B ∩ S) is N -negligible.

This works benefited from the partial support of ANR A3, Projet BLAN-****

Lemma A.1 Let E be a Polish space and let f : E → [0, ∞] be a σA(E)-measurable function. For any sigma-finite nonnegative measure µ on B(E), there exists a B(E)measurable function fµ : E → [0, ∞] such that {x ∈ E : fµ (x) = f (x)} is µ-negligible.

Recall Notation 2.1: C 0 is the usual Polish space of the continuous functions from [0, ∞) to R. For any h ∈ C 0 , ζ(h) denotes sup{t ∈ [0, ∞) : h(t) = 0}, with the convention sup ∅ = 0. Recall that C stands for the set of continuous functions with compact support: C = ζ -1 ([0, ∞)). For any r ∈ [0, ∞), we also set C r = ζ -1 ([0, r]) that is a closed subset of C 0 . For any h ∈ C , we set h = sup |h|. Observe that the topology of the Polish space (C r , • ) is the trace on C r of the topology of C 0 . Thus, B(C r ) = {B ∩ C r ; B ∈ B(C 0 )} and A(C r ) = {A ∩ C r ; A ∈ A(C 0 )}, that are resp. the Borel sigma-field and the set of analytic subsets of the Polish space (C r , • ).

Let h ∈ C . Recall from Section 2.2 the definition of the compact rooted R-tree (T h , d h , ρ h ). Recall that p h : [0, ζ(h)] → T h stands for the canonical projection. Recall that m h is the measure induced by the restriction of the Lebesgue measure ℓ on [0, ζ(h)] via the canonical projection (see [START_REF] Jirina | Stochastic branching processes with continous state-space[END_REF]). Recall that ph : [0, ∞) → T h is given by ph

Let g be the packing gauge function that is derived from ψ by [START_REF] Duquesne | Hausdorff and packing measure of stable trees[END_REF]. For any ε ∈ (0, ∞) and for any subset A ⊂ T h , we denote by P (ε) g,h (A) the quantity defined by ( 9), by P * g,h (A) the g-pre-packing measure of A that is defined by [START_REF] Duquesne | A limit theorem for the contour process of conditioned Galton-Watson trees[END_REF]. We finally denote by P g,h (A) the g-packing measure of A that is defined by [START_REF] Duquesne | Asymptotics for the genealogy of Galton-Watson processes with immigration[END_REF]. Property [START_REF] Duquesne | Probabilistic and fractal aspects of Lévy trees[END_REF] asserts that P * g,h (A) = P * g,h ( Ā) where Ā stands for the closure of A in T h . Combined with Property Pack(3), it entails the following:

Recall C 7 , C 8 ∈ (0, ∞), that appear in Lemma 4.3. We introduce the following subset of functions

Recall that for any t ∈ [0, ∞) and any h ∈ C 0 , ȟt stands for the shifted function (h(t + s), s ≥ 0). Recall that for any η ∈ [0, ∞) we have defined R η :

To simplify notation, we set h = R η ( ȟt ). Observe that for any s, s ′ ∈ [0, η], one has

For any p ∈ N * , we denote by K p the set of compact subsets of the interval [0, p] ⊂ R, equipped with the usual metric. We equip K p with the Hausdorff distance denoted by d (p) H . Then (K p , d (p) H ) is a compact metric space (see Definition 2.2 (a)).

Proof: For any ε ∈ (0, ∞), K ∈ K p and h ∈ C p , we denote by Π p ε (h, K) the set of the non-empty finite sequences (t 1 , r 1 ), . . . , (t n , r n ) ∈ K×(0, ε] such that d h (t i , t j ) > r i +r j , for any 1 ≤ i < j ≤ n. Since ph (t i ) and ph (t j ) can be joined by a geodesic in

equipped with the product topology. So we fix ε, x ∈ (0, ∞), K ∈ K p and h ∈ C p and we assume that P (ε) g,h (p h (K)) > x. There exists 0 ≤ t 1 < . . . < t n ≤ p in K and r 1 , . . . , r n ∈ (0, ε], such that 1≤i≤n g(r i ) > x and d h (t i , t j ) > r i + r j , for any 1 ≤ i < j ≤ n. We first set

Next observe that for any

Now, fix δ ∈ (0, ε 2 ) and η > 0 such that ε 1 > 4ω(h, δ) + 4η, which is always possible. Let (h ′ , K ′ ) be any element of C p × K p such that hh ′ < η and d (p) H (K, K ′ ) < δ. Then, there exist t * 1 , . . . , t * n ∈ K ′ such that |t it * i | < δ and (73) entails that d h ′ (t * i , t * j ) > r i + r j , for any 1 ≤ i < j ≤ n. Consequently, P

g,h ′ (p h ′ (K ′ )) > x, which completes the proof of the lemma.

We next introduce the space K N p of the K p -valued sequences. We equip K N p with the product topology. Standard results assert that K N p is a Polish space (it is a compact metric space). We also denote by S p the subset of the increasing sequences of compact subsets of [0, p]:

Therefore, S p is also Polish and B(S p ) = {B ∩ S p ; B ∈ B(K p ) ⊗N }. Recall that ℓ stands for the Lebesgue measure on the real line. We shall need the following Lemma.

H (K n , K) = 0. For any ε ∈ (0, ∞), there exists n ε ∈ N such that for any n ≥ n ε , K n ⊂ K (ε) . Then, for any ε ∈ (0, ∞), we have x ≤ ℓ(K (ε) ), which entails x ≤ ℓ(K) by letting ε go to 0. This proves that

Lemma A.5 There exists a function Λ :

Proof: Let us fix p ∈ N * . For any K = (K n ) n≥0 ∈ S p , and for any h ∈ C p , we set

Then, we set Λ p (h) = inf K∈Zp Γ p (h, K), for any h ∈ C p . For any x ∈ (0, ∞), we also set

p ([0, x) ). Note that B x is a Borel subset of C p × S p . Moreover, if we denote by π the canonical projection from C p × S p to C p , then {h ∈ C p : Λ p (h) < x} = π(B x ) that is an analytic subset of C p . This proves that Λ p :

We next introduce

Note that the set of sequences of compact subsets of T h that are of the form (p h (K n )) n≥0 , when (K n ) n≥0 varies in Z o p , is the same as the set of sequences of compact subsets

Therefore, (70) entails

it implies P g,h T h \p h n≥0 K n = 0. Consequently, P g,h (T h ) ≤ Γ p (h, K), for any K ∈ Z p . This, combined with (74), entails

Next, it is easy to check that for any h ∈ C and for any p, q ≥ ζ(h), we have Λ p (h) = Λ q (h). Then it makes sense to set Λ

p ([0, x)), that is an analytic subset of C 0 since A(C p ) ⊂ A(C 0 ) and since A(C 0 ) is stable under countable unions. This completes the proof of the lemma.

p is a Borel subset of S p , then the previous proof simplifies. However, we are only able to show that S p \Z o p is analytic (namely, that Z o p is co-analytic), which is not useful for our purpose.