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Abstract

We propose a method to characterize the fixed points described in Tarski’s theorem for complete

lattices. The method is deductive: the least and greatest fixed points are ”proved” in some inference

system defined from deduction rules. We also apply the method to two other fixed point theorems,

a generalization of Tarski’s theorem to chain-complete posets and Bourbaki-Witt’s theorem. Finally,

we compare the method with the traditional iterative method resorting to ordinals and the original

impredicative method used by Tarski.

We are interested in fixed points of maps defined over partially ordered sets (abbreviated as posets).

Consider Tarski’s fixed point theorem. Asserting the existence of fixed points under certain conditions,

it is proved according to one of these two methods. In the impredicative method, the fixed points are

characterized by a property (expressing extremality) using a quantification over a domain that includes

the fixed point itself. In the iterative method, the fixed points are iteratively computed by using a trans-

finite induction. The impredicative method corresponds to a logical specification that is essentially not

constructive1. As for the iterative method, it seems to be more constructive, in that it corresponds to an

iteration. However, first, it assumes the machinery of ordinals and second, it therefore requires a specific

computation for limit ordinals, the next value being then computed from an infinite set of preceding

values.

Is there a proof method that not only is not impredicative, but also does not resort to ordinals? In

this paper, we positively answer by proposing an alternative method, where fixed points are (inductively)

proved in inference systems: this is a deductive method. It corresponds to a proof construction, using

forward chaining for deduction rules, as used in logic programming, for instance in Datalog, a query

language for deductive databases.

The paper is organized as follows. After recalling Tarski’s theorem, the first section deals with

inference systems, and their interpretations, either inductive or coinductive. In the second section, we

introduce the deductive method, and apply it to different fixed point theorems: Tarski’s theorem, its

generalization to chain-complete posets and Bourbaki-Witt’s theorem. Finally, we compare the deductive

method with the iterative and impredicative methods.

1 Induction and Coinduction for Inference Systems

Generally speaking, following Aczel’s classical presentation [1], an inference system over a set U of

judgments is a set of deduction rules. A deduction rule is an ordered pair (A,c), where A ⊆ U is the set

of premises or antecedents and c ∈ U is the conclusion. A rule is usually written as follows:

A
.

c

Its intuitive interpretation is that the judgment c can be deduced from the set of judgments A.

∗An extended abstract of this article will appear in the proceedings of the 7th Workshop on Fixed Points in Computer

Science (FICS 2010, Brno, Czech Republic, August 21-22 2010).
1In a common sense: we do not specifically refer here to constructive mathematics.
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Fixed Point Approach. The first way to assign a definitional meaning to an inference system is to

consider the fixed points of the associated inference operator.

Indeed there exists a canonical Galois connection between the set of inference systems over U

ordered by inclusion and the set of isotone (order-preserving) maps from 2U to 2U ordered point-wise.

If Φ is an inference system over U , then the associated operator ϕ : 2U → 2U is defined as follows:

ϕ(S) = {c ∈ U | ∃A ⊆ S . (A,c) ∈ Φ}.

The application of ϕ to S gives the conclusions that can be inferred in one step from S by using the

inference rules: ϕ is thus called the inference operator associated to the system Φ. For instance, if S is

the empty set, then ϕ(S) is the set of the axioms of the inference system, in other words the conclusions

of the rules without premises. Conversely, given an isotone operator ϕ : 2U → 2U , the inference system

containing all the rules (A,c), with c ∈ ϕ(A), and only these rules, belongs to the inverse image of ϕ:

this is the greatest element of the inverse image of ϕ .

Let Φ be an inference system and ϕ its associated inference operator. Since the powerset 2U is a

complete lattice, by applying Tarski’s fixed point theorem [10, p. 286], we obtain that the inference

operator ϕ possesses both a least fixed point and a greatest fixed point.

We recall here Tarski’s fixed point theorem, with two proofs following the impredicative and the

iterative methods respectively.

Theorem 1 (Tarski). Let (E ,≤) be a complete lattice. Let η : E → E be an isotone map over E . Then

η has a least fixed point lfpη and a greatest fixed point gfpη .

Impredicative method. Let S = {x ∈ E | η(x)≤ x} and x in S. Since η is isotone, we have η2(x)≤ η(x),
hence η(x) ∈ S. Since E is a complete lattice, S has a greatest lower bound, ∧S. We have ∧S ≤ x, hence

η(∧S) ≤ η(x) by isotony. Therefore η(∧S) is a lower bound of S, hence η(∧S) ≤ ∧S, and ∧S ∈ S.

Then η(∧S) ∈ S, hence ∧S ≤ η(∧S). Finally, ∧S is a fixed point. Since all fixed point belongs to S, we

can deduce the first equality, and by duality, the second one.

This characterization of the least and greatest fixed points as the smallest η-closed2 set and the

greatest η-consistent3 set respectively can be found in original Tarski’s paper [10].

Iterative method. Let (∆α(η))α and (∇α(η))α be the sequences defined over ordinals as follows:

∆α(η) = η(
∨

β |β<α ∆β (η)) and ∇α(η) = η(
∧

β |β<α ∇β (η)).

By transfinite induction, we have for any ordinal α , ∆α(η) ≤ η(∆α(η)) and the sequence (∆β (η))β<α

is increasing. Assume for contradiction that the sequence is strictly increasing. We get an injective map

from the class of ordinals into a set, which is a contradiction, by Hartogs’ lemma. Consider the smallest

ordinal λ such that there exists β > λ satisfying ∆λ (η) = ∆β (η). By transfinite induction, we have

that the sequence (∆α(η))α is stationary from rank λ . Moreover, ∆λ (η) is a fixed point of η . Since

by transfinite induction we have that any fixed point is an upper bound of the sequence (∆α(η))α , we

deduce the first equality. By duality, we deduce the second one.

A slight variant of this proof can be found in Cousot’s article [5], for instance.

2We say that x is η-closed if η(x)≤ x.
3We say that x is η-consistent if x ≤ η(x).
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Deductive Method. In contrast with the fixed point approach, the deductive method starts from the

proofs admissible in an inference system. These proofs are represented as trees, called proof trees. These

are trees whose nodes are labeled with judgments in U and such that for all nodes n, the label c of n and

the labels A of the sons of n correspond to an inference rule (A,c) in Φ. The conclusion of a proof is the

label of its root node. A proof d is well-founded if it has no infinite branch; d is ill-founded otherwise.

Note that an ill-founded proof is always infinite. A well-founded proof is finite if and only if it only uses

rules with a finite set of premises.

In the deductive method, the inductive interpretation of the inference system Φ is the set ∆(Φ)
of the conclusions of the well-founded proofs, while the coinductive interpretation is the set ∇(Φ) of

the conclusions of all the proofs, ill-founded or well-founded. The following theorem shows that the

interpretations defined using fixed points and using proofs coincide.

Theorem 2 (Inductive and coinductive interpretations). Let Φ be an inference system and ϕ the associ-

ated inference operator. Then:

lfpϕ = ∆(Φ) and gfpϕ = ∇(Φ).

Proof. It is easy to show that ∆(Φ) and ∇(Φ) satisfy ϕ(∆(Φ)) ⊆ ∆(Φ) and ∇(Φ) ⊆ ϕ(∇(Φ)) respec-

tively. By Tarski’s theorem, we deduce lfpϕ ⊆ ∆(Φ) and ∇(Φ)⊆ gfpϕ .

Assume a set S satisfying ϕ(S) ⊆ S. An induction over well-founded proofs d shows that the con-

clusion of d is in S, hence ∆(Φ) ⊆ S. Since lfpϕ satisfies the assumption, the inclusion ∆(Φ) ⊆ lfpϕ

follows.

Finally, assume a set S satisfying S ⊆ ϕ(S). For any judgment j in S, there exists a rule (K j, j) in Φ,

where K j ⊆ S. We define a system of guarded recursive equations, with variables (x j) j∈S.

x j =
(xk)k∈K j

j

The solution σ of this system is such that for all j ∈ S, the derivation σ(x j) is valid in Φ and proves j.

Therefore, S ⊆ ∇(Φ). Since gfpϕ satisfies the assumption, the inclusion gfpϕ ⊆ ∇(Φ) follows.

The equality for the inductive case is proved by Aczel [1]. The equality for the coinductive case

is proved in the author’s PhD dissertation [6, p. 77]. Starting from this theorem, Leroy and the author

show in their article about coinductive operational semantics [8, Sect. 2] how the deductive method

accounts for induction and coinduction in the proof assistant Coq: for a concrete example, see the proof

of Lemma 5 [8, Sect. 3], where the same proposition is proved following the impredicative method, the

deductive method and in Coq.

2 Generalization of the Deductive Method

Theorem 2 asserts that the least and greatest fixed points of an isotone map over a powerset, a particular

complete lattice, can also be defined as the inductive and coinductive interpretations of an inference

system. We first generalize to any complete lattice, and then to more powerful fixed point theorems.

Tarski’s Theorem Revisited. Given an isotone map η over a complete lattice (E ,≤), how can we

define an inference system Φ over E , or equivalently an inference operator ϕ : 2E → 2E , whose inductive

and coinductive interpretations produce the least and greatest fixed points of η?

A first attempt, defining ϕ(S) as the image of S with η , trivially fails, since the least fixed point would

be the empty set. However, a well-known result [4, Th. I.5.3] allows a complete lattice to be embedded in
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its powerset. Indeed, let γ : 2E →{≤ x | x ∈ E } be the closure operator from the powerset of E to the set

{≤ x | x ∈ E } of principal order ideals defined as follows: γ(S) =≤ (∨S)4. Let δ : {≤ x | x ∈ E } → 2E

be its adjoint embedding: δ (≤ x) =≤ x. Now, the isomorphism ι from E to {≤ x | x ∈ E } is defined

as follows: ι(x) =≤ x. Finally, thanks to the embedding via a closure operator, we can associate to the

map η the operator ϕ : 2E → 2E , equal to δ ◦ ι ◦η ◦ ι−1 ◦ γ : we have ϕ(S) =≤ η(∨S). It turns out

that this operator has the intended properties with respect to fixed points. It suffices to use the associated

inference system to get the following theorem.

Theorem 3 (Tarski revisited). Let (E ,≤) be a complete lattice. Let η : E → E be an isotone map over

E . Consider the inference system Φ over E containing all the rules, and only these rules, of the following

form:
S

s

(

S ⊆ E ,s ≤ η(∨S)
)

.

Then:

≤ (lfpη) = ∆(Φ) and ≤ (gfpη) = ∇(Φ).

Proof. It is easy to show that the inference operator ϕ associated to Φ is equal to δ ◦ ι ◦η ◦ ι−1 ◦ γ ,

with the preceding notation. As ≤ (lfpη) = lfpϕ and ≤ (gfpη) = gfpϕ , we can conclude by applying

Theorem 2.

Two Other Fixed Point Theorems. The deductive characterization of fixed points is still pertinent

when we consider two other well-known fixed point theorems, where the assumptions for the poset and

the map are weakened.

A poset is chain-complete if any chain, including the empty chain, has a least upper bound5. Tarski’s

theorem can be extended to chain-complete posets, as shown for instance by Markowsky [9, Th. 9]. We

again resort to the preceding inference system to characterize the least fixed point, with two restrictions:

we only consider chains as premises and greatest judgments as conclusions.

Theorem 4 (Fixed point theorem for chain-complete poset). Let (E ,≤) be a chain-complete poset and

η : E → E an isotone map. Let Φ be the inference system over E containing all the rules, and only these

rules, of the following form:
C

η(∨C)

(

C ⊆ E ,C chain
)

.

Then η has a least fixed point lfpη satisfying:

≤ (lfpη) = ≤ ∆(Φ).

Proof. We first show that ∆(Φ) is a chain, precisely that for any x1 and any x2 in ∆(Φ), we have x1 ≤ x2 or

x2 ≤ x1. We proceed by induction over well-founded proofs. Consider a well-founded proof ended with

the rule (C1,η(∨C1). Assume as inductive hypothesis that for any y1 ∈C1 and any y2 ∈ ∆(Φ), we have

y1 ≤ y2 or y2 ≤ y1. Let x2 be in ∆(Φ). There exists a chain C2 included in ∆(Φ) such that x2 = η(∨C2).
There are two cases.

First, assume ∃y1 ∈C1 . ∀y2 ∈C2 . y2 ≤ y1. We therefore have, for some y1 in C1 and for all y2 in C2:

y2 ≤ y1, y2 ≤ ∨C1 and ∨C2 ≤ ∨C1. We deduce by monotony x2 ≤ η(∨C1).

4Here, and in the following, given x ∈ E , we denote by ≤ x the principal order ideal {y ∈ E | y ≤ x}. Likewise, if X ⊆ E ,

we denote by ≤ X the union
⋃

x∈X (≤ x).
5A chain-complete poset has therefore a bottom element, ∨ /0.
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Second, assume ∀y1 ∈ C1 . ∃y2 ∈ C2 . ¬(y2 ≤ y1). We therefore have, for all y1 in C1 and some

dependent point y2 in C2: y1 ≤ y2 (inductive hypothesis), y1 ≤ ∨C2 and ∨C1 ≤ ∨C2. We deduce by

monotony η(∨C1)≤ x2.

Since ∆(Φ) is a chain,
(

∆(Φ),η(∨∆(Φ))
)

is a rule. We have η(∨∆(Φ))∈∆(Φ), hence η(∨∆(Φ))≤
∨∆(Φ) and then η2(∨∆(Φ)) ≤ η(∨∆(Φ)) by monotony. Assume x is η-closed: η(x) ≤ x. It is easy

to show by induction over well-founded proofs that x is an upper bound of ∆(Φ). We deduce that first

∨∆(Φ)≤ η(∨∆(Φ)) and second ∨∆(Φ) is the least fixed point of η . Finally ≤ (lfpη) = ≤ ∆(Φ) since

∨∆(Φ) ∈ ∆(Φ).

Actually, as shown by Markowsky [9, Th. 9], the preceding theorem can be considered as a corollary

of Bourbaki-Witt’s theorem [3]. We also give a proof of this theorem by using the same inference system

as in Theorem 4.

Theorem 5 (Bourbaki-Witt). Let E be a chain-complete poset and η : E → E an expansive6 map. Let

Φ be the inference system over E containing all the rules, and only these rules, of the following form:

C

η(∨C)

(

C ⊆ E ,C chain
)

.

Then η has a fixed point fpη satisfying:

≤ (fpη) = ≤ ∆(Φ).

Proof. We show that ∆(Φ) is a chain, which allows to conclude. Indeed, if ∆(Φ) is a chain, the inference

rule
(

∆(Φ),η(∨∆(Φ))
)

belongs to Φ. From η(∨∆(Φ))∈ ∆(Φ), we deduce η(∨∆(Φ))≤∨∆(Φ). Since

η is expansive, we deduce that ∨∆(Φ) is a fixpoint of η . Moreover, ∨∆(Φ) belongs to ∆(Φ). Therefore

≤ ∆(Φ) =≤ (∨∆(Φ)).
To show that ∆(Φ) is a chain, we introduce the notion of useful proofs. A well-founded proof,

say ended by the rule (C,η(∨C)), is said useful if for any well-founded proof, say ended by the rule

(D,η(∨D)), we have:

(∨D < ∨C)⇒ (η(∨D)≤ ∨C).

Two crucial properties about usefulness can be asserted. First, for any useful proof ended by (C,η(∨C))
and any well-founded proof ended by (D,η(∨D)), we have either η(∨C) = η(∨D), η(∨C) ≤ ∨D or

η(∨D)≤ ∨C. Second, all well-founded proofs are useful.

Thanks to these properties, it is easy to conclude that ∆(Φ) is a chain. Indeed, let x1 and x2 be in

∆(Φ). There exists two well-founded proofs, respectively ended by (C1,η(∨C1)) and (C2,η(∨C2)),
such that x1 = η(∨C1) and x2 = η(∨C2). Since the former proof is useful, we have by applying the first

property either x1 = x2, x1 ≤ ∨C2 or x2 ≤ ∨C1. Since η is expansive, we deduce x1 ≤ x2 or x2 ≤ x1.

Let us prove the two properties about usefulness.

Suppose that a useful proof ends by the rule (C,η(∨C)). We prove by induction that for any well-

founded proof, say ended by (D,η(∨D)), we have either η(∨C) = η(∨D), η(∨C)≤ ∨D or η(∨D)≤
∨C. Let us consider a proof concluded by the rule

(

D,η(∨D)
)

and where the sub-proof of each premise

y in D is ended by the rule
(

Dy,y
)

. Assume the inductive hypothesis: for any y in D, we have either

η(∨C) = y, η(∨C)≤ ∨Dy or y ≤ ∨C. There are three cases.

First, suppose that there exists y in D such that η(∨C) = y. We deduce η(∨C)≤ ∨D.

Otherwise, second, suppose there exists y in D such that η(∨C)≤ ∨Dy. Since η is expansive, we have

η(∨C)≤ y, hence η(∨C)≤ ∨D.

6A map η : E → E is expansive (also inflationary, progressive) if any point is η-consistent: ∀x ∈ E . x ≤ η(x).
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Otherwise, third, for all y in D, we have y ≤ ∨C. We deduce ∨D ≤ ∨C. If ∨D = ∨C, we deduce

η(∨C) = η(∨D). Otherwise, we have ∨D < ∨C. Since the proof ended by (C,η(∨C)) is useful, we

deduce η(∨D)≤ ∨C.

Let us prove that all well-founded proofs are useful. We proceed by induction over well-founded

proofs. Let us consider a proof concluded by the rule
(

C,η(∨C)
)

and where the sub-proof of each

premise x in C is concluded by the rule
(

Cx,x
)

Assume the inductive hypothesis: for all x in C, the

sub-proof with conclusion x is useful. Let us consider a well-founded proof ended by (D,η(∨D)), and

suppose ∨D < ∨C. We have to show η(∨D) ≤ ∨C. The inductive hypothesis and the first property

give for any x in C either x = η(∨D), x ≤ ∨D or η(∨D)≤ ∨Cx. We first notice that there exists x in C

such that either x = η(∨D) or η(∨D)≤ ∨Cx. Otherwise, we would have for any x in C, x ≤ ∨D, hence

∨C ≤ ∨D, contradiction. There are two cases.

First, suppose there exists x in C such that x = η(∨D). We deduce η(∨D) ≤ ∨C. Otherwise, second,

there exists x in C such that η(∨D)≤ ∨Cx. Since η is expansive, we deduce by transitivity η(∨D)≤ x,

hence η(∨D)≤ ∨C.

The notion of useful proofs comes from the notion of extreme points, which is standard in the proof

of the Bourbaki-Witt’s theorem following the impredicative method, as given for instance in Lang’s

book [7, pp. 881–884].

Comparison of the Methods. Tarski’s theorem and its two extensions to chain-complete posets are

usually proved with the iterative method or the impredicative method, two methods that are not clearly

connected. We now suggest that the deductive method allows these two methods to be connected.

First, to each inference system Φ used in Theorems 3, 4 and 5, we can associate an inference operator

ϕ over 2E . Thus, the inductive interpretation ∆(Φ) of Φ can also be defined as the smallest ϕ-closed set,

as expressed in Theorems 1 and 2. It turns out that the definition of a ϕ-closed set is very akin to the

definition of an admissible set, as found in the standard proof of Bourbaki-Witt’s theorem following the

impredicative method [7, pp. 881–884].

Second, the deductive method can be considered as an abstraction of the iterative method: it abstracts

away from the iterative process involved in proof construction. The following proposition precisely

describes their relationship in the case of Tarski’s theorem. The height of a well-founded proof tree d

is defined as follows: it is the least ordinal greater than the height of each immediate proof sub-tree of

d. Given an inference system Φ over E and an ordinal α , we say that x ∈ E has complexity α if there

is a well-founded proof of x with height less or equal to α . We denote by ∆α(Φ) the set of all x with

complexity α .

Proposition 1. Let (E ,≤) be a complete lattice and η : E → E an isotone map over E . Consider the

transfinite sequence (∆α(η))α defined as follows:

∆α(η) = η(
∨

β |β<α ∆β (η)).

Consider the inference system Φ containing all the rules, and only these rules, of the following form:

S

s

(

S ⊆ E ,s ≤ η(∨S)
)

.

Then, for any ordinal α:

≤ ∆α(η) = ∆α(Φ).

Proof. We proceed by transfinite induction for both inclusions.

6
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Assume x ≤ ∆α(η). Assume as inductive hypothesis that for any β < α , we have ≤ ∆β (η)⊆ ∆β (Φ).
Since

(

{∆β (η) | β < α},x
)

is a rule, we deduce that x belongs to ∆α(Φ).
Assume x ∈ ∆α(Φ). Assume as inductive hypothesis that for any β < α , we have ∆β (Φ)⊆≤ ∆β (η).

There exists a well-founded proof of x with height less or equal to α . This proof ends with a rule (S,x),
with x ≤ η(∨S). Each s in S belongs for some β < α to ∆β (Φ), hence by the inductive hypothesis to ≤
∆β (η). We deduce ∨S ≤

∨

β |β<α ∆β (η), then by monotony η(∨S)≤ ∆α(η) and finally x ≤ ∆α(η).

An analogous proposition holds for the two other fixed point theorems.

3 Conclusion

We have presented a method to characterize the fixed points described in fixed point theorems for com-

plete lattices and chain-complete posets. The method is deductive: the fixed points are ”proved” in some

inference system. The techniques used in the proofs of these theorems is consistent with the method:

they are based on induction over well-founded proofs. Finally, we have sketched a comparison between

the deductive method and the two traditional methods, impredicative and iterative. In brief, given an in-

ference system, the impredicative method essentially corresponds to the characterization à la Tarski using

the inference operator associated to the inference system, whereas the iterative method corresponds to an

iterative construction of the well-founded proofs in the inference system. The connection that we have

suggested deserves a further exploration, which we reserve to future work.

We have already experienced the deductive method in a work about coinductive operational seman-

tics [8]. It turns out that the method is well-suited to the proof assistant Coq, which uses a calculus of

inductive and coinductive constructions, an extension of type theory. The fixed points were expressed

through inference systems and defined over powerset lattices. A motivation of the present work was to

extend the method to fixed points defined in Coq over complete lattices or chain-complete posets. The

iterative method resorts to ordinals, which are rarely used in Coq. Indeed, either they require to encode

set theory, which is expensive, or they are implemented as constructive ordinals, which is restrictive. As

for the impredicative method, it does not really fit with the calculus of inductive and coinductive con-

structions. Thus, the deductive method is a good candidate. A major problem to be solved is the use of

classical logic. First, since the fixed points defined may have a non-terminating behavior, for instance

when the fixed point is a function possibly divergent, adding classical logic axioms to the constructive

logic of Coq is needed. In the same way, in the preceding proofs of the fixed point theorems, we have

used the law of excluded middle. Second, as explained in the recent proposal of Bertot and Komen-

dantsky [2], the addition of classical logic axioms should allow not only to reason about a fixed point

with a terminating or non-terminating behavior, but also to extract a program computing the fixed point

from the proof that the fixed point satisfies its specification, following the Curry-Howard correspondence.

Acknowledgments I would like to thank the anonymous reviewers of the workshop FICS 2010 for

their feedback and for a correction (in Proposition 1).
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