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 2 

 

 

Abstract: 

The optimization of chemical processes that take place in a finite time constitutes an 

important application of finite-time thermodynamics. In this study we investigate two 

generic optimal control problems for nucleation-and-growth based syntheses: the 

maximization of the amount of a crystalline solid phase generated via cooling from the 

melt within a finite time τ , and the maximization of the difference between two 

metastable crystalline modifications again synthesized by crystallization from a 

supercooled melt. In both cases the optimal temperature program consists in a bang-

bang solution with constant values of the temperature, where a switch from a 

temperature T1, where nucleation rates are high, to a temperature T0 > T1, where the 

growth rates of the crystallites are maximal, occurs. The location of the switching time 

ts *, 0 ≤ ts* ≤ τ , is analyzed as function of the parameters of the models describing the 

chemical systems, and an application to the synthesis of glycerol crystals is given. 

 

Inhaltsübersicht: 

Die Optimierung chemischer Prozesse, die in endlicher Zeit ablaufen, stellt eine 

wichtige Anwendung der „Thermodynamik in endlicher Zeit“ dar. In dieser Arbeit 

untersuchen wir zwei generische Probleme der optimalen Kontrolle für Synthesen, die 

auf Keimbildung und –wachstum basieren: Die Maximierung der Menge einer 

kristallinen festen Phase, die durch Abkühlung einer Schmelze in einer endlichen Zeit τ  

entsteht, sowie die Maximierung der Differenz zweier metastabiler Modifikationen, die 

ebenfalls durch Kristallisierung aus einer unterkühlten Schmelze gewonnen werden. In 

beiden Fällen ergibt sich für das optimale Temperaturprogramm eine Bang-Bang-
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 3 

Lösung mit konstanten Temperaturwerten, bei der ein Sprung von einer Temperatur T1, 

bei der die Keimbildungsraten hoch sind, zu einer Temperatur T0 > T1, bei der die 

Wachstumsraten der Keime maximal sind, auftritt. Der Zeitpunkt des Sprungs ts *, 

0 ≤ ts* ≤ τ , wird als Funktion der Modellparameter der chemischen Systeme analysiert, 

und eine Anwendung auf die Synthese von Glycerolkristallen wird gegeben. 
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 4 

 

1. Introduction 

 

The major task of experimental chemistry has been, and still is, the synthesis of new 

compounds, molecules and solids, closely followed by the determination of the 

mechanisms that underlie the individual reactions and the whole synthesis process. 

Optimizing these syntheses with regard to an increased yield or a decreased work 

consumption is usually a secondary issue to the ability to synthesize the compound in 

the first place.  

 

In contrast, the optimization of chemical processes constitutes one of the major tasks in 

the field of chemical engineering [1]. Besides the straightforward task of optimizing 

individual chemical reactions [2-6] or a sequence of reactions [7], the most common 

examples are the increase in the efficiency of various distillation procedures [8-10], the 

design of chemical plants [11], where complex syntheses take place that include e.g. 

heat exchanger networks [12] or the recycling of chemicals, and the transformation 

between different phases of a given substance with a minimal loss of availability [13]. 

Typically, the objective(s) or cost function(s) with respect to which a chemical process 

is to be optimized are the yield of the desired product, the amount of chemicals needed 

and the energy required for the production, the total monetary cost, or the environmental 

impact of the process. 

 

In many, perhaps most, instances, such an optimization is based on empirical rules of 

thumb, where one is often guided by simple estimates and models that capture (at least 

qualitatively) some basic features of the reactions involved. Similarly, one often 

proceeds by systematically varying the process parameters in the laboratory where 
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 5 

efficient combinatorial schemes and correlation tables are employed to reduce the 

amount of test syntheses needed [14] and to control multivariate processes [15]. An 

example of such systematic variations of process parameters are the so-called high-

throughput syntheses [16,17]. They are most efficient, if one wants to optimize some 

property within a well-defined class of molecular or solid compounds; in this way they 

nicely complement the theoretical scanning of the energy landscapes of chemical 

systems, where the primary goal is to discover the possible types of compounds that can 

serve as synthesis targets in a given chemical system [18-21].  

 

Alternatively, one can address this issue on the level of theory. The general 

mathematical theory that underlies such an optimization is the so-called optimal control 

theory [22]. Here, one describes the system by a set of „internal“ variables   
r 
x (t ) plus a 

set of controls   
r 
u (t ) that can be adjusted within certain limits to achieve an optimal 

outcome of the process. This optimal control problem is then usually solved using the 

calculus of variations or dynamical programming methods. 

 

One notes that for many chemical processes the objective function is a thermodynamic 

quantity such as the total amount of a substance, the entropy produced or the work 

consumed in the process. On a very general level, the optimal control of such processes 

falls into the purview of the field of finite-time thermodynamics (FTT) [23]. Finite-time 

thermodynamics deals with the implications for thermodynamic processes of having 

only a finite time available to achieve a certain task, e.g. performing a complete cycle of 

a thermodynamic engine such as the Carnot- [24] or the Otto-engine [25]. In particular, 

a FTT-analysis yields both a lower (or upper) bound on the thermodynamic quantity of 
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 6 

interest and the optimal path (in control variable space, and thus in internal variable 

space) that achieves this limit value. 

 

In this paper, we will give an introduction to the field of finite-time thermodynamics 

and optimal control, and show some applications in the field of chemistry. In particular, 

we will discuss the application of optimal control to the optimization of the outcome of 

a generic synthesis that proceeds via nucleation-and-growth processes, where one or 

two (metastable) compounds can be the outcome of the synthesis. 

 

 

2. Finite-Time Thermodynamics 

 

Classical thermodynamics deals with the analysis of thermodynamic processes, which 

are defined as the movement of a chemical or physical system between thermodynamic 

equilibrium states. Using the first and second law of thermodynamics and the concept of 

reversible and irreversible quasi-static processes, it is possible to define state functions 

in the thermodynamic space and to derive bounds on thermodynamic processes, in 

particular on cyclic processes. However, one of the basic assumptions behind this 

analysis is that an infinite time is available for the processes to take place, together with 

the ability to perform the process in infinitesimally small increments along the path.  

 

The driving force behind the development of the so-called finite-time thermodynamics 

was the recognition that these bounds on the efficiency or maximum power of an ideal 

cyclic process are of only limited relevance for real processes where only a finite time 

(and / or a finite number of steps) is available for completing the cycle. Until the middle 

of the seventies of the last century, the focus was on the so-called second-law analysis 
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 7 

[26,27] that was employed predominantly in the engineering sciences, in order to 

develop (economically) efficient procedures. This changed with the work by Curzon & 

Ahlborn [28], who considered the (global) optimization of thermodynamic processes in 

a finite time interval. 

 

In nearly all application-oriented questions in finite-time thermodynamics, one deals 

with an optimal control problem [22], where a quantity   J[
r 
x (t),

r 
u (t), t]  is to be optimized 

that is given as a functional of the internal (thermodynamic) variables of the system 

  

r 
x (t ) and the control parameters   

r 
u (t ). The time evolution of these variables is usually 

described by differential equations  

 

  d
r 
x /dt =

r 
f (

r 
x ,

r 
u ,t)  (1) 

 

that often represent phenomenological rates of change or dissipation equations. In 

addition, the process has to obey certain boundary conditions, which often take the form  

 

  

r 
x (t f ) =

r 
x f ,

r 
x (t0) =

r 
x 0;t0 = 0,t f = τ . (2) 

 

A short introduction into the concepts of optimal control theory is given in the 

supplementary material. By now a large number of thermodynamic processes have been 

analysed, e.g. Carnot-cycles [24,29,30], Diesel-cycles [31], Otto-cycles [25], heat 

exchange [12], diffusion [32], energy conversion [30], phase conversion [33], 

distillation [8-10], heat pumps and refrigerators [34-36], thermal insulation [37], solar 

energy [38], chemical reactions [6,7] and chemical converters [1]. Over the past two 

decades, this analysis has been performed for engines that use not only classical gases as 
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 8 

medium but also Bose- and Fermi-gases [39,40], and has been extended to a large 

variety of multi-source systems and complicated dissipative systems [41]. Furthermore, 

spatially dispersed systems have been investigated, where both the thermodynamic 

variables and the control parameters can vary in space [42], and the performance of 

computer algorithms has been optimized [43].
1
 

 

One reason for the broad applicability of finite-time thermodynamics are some very 

general and generalizable concepts that were introduced in the early eighties. These are 

based on the insight that one can compute very general bounds on the quantities to be 

minimized [47], e.g. the increase of entropy ∆S
u  or the loss of availability −∆A

u ,  

 

∆S
u ≥

r 

τ
LS

2
 and −∆A

u ≥
r 

τ
LU

2
, (3)  

 

which depend only on the thermodynamic path length  

 

  

dLS (d
r 
X ) = dXi

∂2
S(

r 
X )

∂Xi∂X j

dX j

i, j

∑  and 

  

dLU (d
r 
X ) = dXi

∂ 2
U(

r 
X )

∂Xi∂X j

dX j

i, j

∑   (4) 

 

between the initial and final point in thermodynamic space defined via the matrix of 

second partial derivatives of U(S,V ,...) and S(U,V ,...), respectively,[48,49] and the 

various parameters in the phenomenological evolution equations such as the relaxation 

time r  and the total time τ  of the process. For more details we refer the reader to the 

supplementary material. 

                                                 
1
 Even outside the fields of physics, chemistry and engineering, a variety of topics ranging from 

economics [44,45] over ecology [45] to coding theory [46] have been investigated using finite-time 
thermodynamics concepts. 
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 9 

 

3. Examples 

 

In this section, we present two examples for the optimization of chemical syntheses that 

proceed via nucleation and growth, e.g. from a melt. In the first example, the quantity to 

be maximized is the amount of desired product (only one solid modification exists). In 

the second example, two different solid modifications can form, and the quantity to be 

optimized is the difference in the amounts of the two products.  

 

In both cases, we attempt to reduce the very complicated syntheses to their most 

elementary features. This allows us to construct highly simplified but at the same time 

quite generic models for the time evolution of the chemical system, such that the 

solutions of the optimal control problem can be derived analytically. While this 

simplification reduces the amount of realistic details of the model description, we can 

understand how the optimal control and the system interact, and furthermore we can 

analyze the influence of the parameters of the model on the behaviour of the optimal 

solution. Although the resulting solutions of the optimization problem usually are not 

very accurate in a quantitative sense, they typically represent the qualitative aspects of 

the optimal control of the real system correctly and can be used as guidance both in 

fine-tuning experiments and in the numerical solution of the optimal control problem 

when using much more realistic models of the synthesis process.  

 

3.1 Optimal control of a generic synthesis based on nucleation and growth 

 

The generic synthesis we are going to optimize is the production of the solid 

(crystalline) phase of a compound via cooling from the melt. However, the general 
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 10 

analysis is also applicable to all syntheses that are based on nucleation-and-growth 

processes exhibiting the kind of temperature dependence described below. In contrast to 

e.g. a chemical reaction in the gas phase, two processes occur during the formation of a 

solid phase from the melt that exhibit very different dependences on the control 

parameters, here temperature: the nucleation of the desired phase and the subsequent 

growth of the nuclei. Their temperature dependence is opposite [50]: a reduction in 

temperature increases the rate of nucleation (down to the glass transition where the 

whole system freezes and no nuclei of critical size can be formed anymore), while an 

increase in temperature enhances diffusive processes and thus the growth of the nuclei 

and the product phase (up to the melting temperature, where the solid modification 

begins to fall apart again).
2
 Clearly, just choosing a single fixed temperature below the 

melting temperature and letting the system evolve for a time τ  is very unlikely to yield 

the maximal amount of product within the finite time τ . 

 

3.1.1 Mathematical model description 

 

In order to construct a model amenable to analytical analysis, the following simplifying 

assumptions are being made:  

1. The amount of melt/volume nmelt  is assumed to greatly exceed the amount of solid 

material n  throughout the process. We lump all the material in the solid phase together 

in one variable n(t), i.e. neither a cluster size distribution
3
 nor individual clusters are 

being considered in this averaged description. Since n <<< nmelt = ntotal − n ≈ ntotal , the 

supercooled melt does not change due to transfer of material into the solid phase, and 

                                                 
2
 We consider only homogeneous nucleation, i.e. no externally induced heterogeneous nucleation takes 

place. 
3
 Experience with modeling coarsening processes [51] has shown that many of the relevant features can 

be captured in averaged quantities such as the mean cluster size. 
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 11 

we do not need to keep track of the amount of material in the supercooled melt 

explicitly but can treat it as an external constant that is implictly included in the 

parameters of the model. 

2. The increase of the amount of desired product is governed by two processes, 

nucleation and growth. The growth rate is supposed to depend on the amount of 

material n  already present in the solid (crystalline) phase, in form of a power law n
r  

( 0 < r ≤1),
4
 while the nucleation rate is independent of n .  

3. The temperature dependences of nucleation and growth follow power laws in a range 

between two reference temperatures T1 < T < T0, (T0 −T )m  and (T −T1)l , respectively. 

No additional temperature dependence is assumed to be present. T = T1  is the reference 

point (e.g. corresponding to the glass transition temperature), below which the 

nucleation rate rapidly drops from a maximum to zero because even local diffusion 

processes stop or become logarithmically slow and furthermore the thermodynamic 

barriers against the formation of critical nuclei rapidly increase. Similarly, below 

T = T1 , no significant growth can take place due to the slowness of diffusion processes 

at low temperatures. Without loss of generality, we can set T1 = 0 for mathematical 

convenience. T = T0  is the reference temperature (e.g. the melting point) above which 

no nucleation can take place. We also assume that above T0 no growth can take place 

either. Thus the permitted temperature interval for the control is T ∈ [0,T0 ].  

Taking assumptions 2 and 3 together, the formula for the growth rate is given by 

  

dn

dt
= f (n,T) = A(T0 − T)m + BT

l
n

r , (5) 

                                                 
4
 If only one cluster were present, i.e. all the material were really accumulated in one single cluster, the 

most natural choice of r  would be r = 2 / 3 reflecting the dependence of the growth rate on the size of 

the cluster surface. However, in reality, the total surface is the sum of the surface of many individual 
clusters, and this quantity is larger than the surface of a single big cluster, suggesting a larger value of r . 
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 12 

 

with m,l ≥1 and 0 < r ≤1.  

4. We assume that the internal temperature T (t)  of the system can nearly 

instantaneously adjust to changes in the control parameter, the external temperature 

Text (t ), i.e. we can set  

 

T (t) = Text (t)  (6) 

 

in the formulation of the problem and treat T (t)  as the control. 

5. Only homogeneous nucleation takes place. Also, we ignore effects due to preferred 

surfaces of the crystal for the growth processes. Furthermore, we ignore effects like the 

local depletion of the liquid phase (melt) or local changes of temperature due to the 

formation of the solid phase – the system is assumed to react quickly enough to adjust 

both the temperature and the local density of the liquid to the externally prescribed 

values. 

 

The next step is the definition of the state variables of the system: In our simplified 

description, there are only two variables, T  and n . The external control variable is the 

applied temperature Text , which we can set equal to the internal temperature T . The 

quantity to be optimized is the total amount of (crystalline) solid phase  

 

J = n(τ )  (7) 

 

                                                                                                                                               
On the other hand, there exist some empirical growth laws that are better represented by smaller values of 

r . 
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 13 

generated in the interval [0,τ ], where we assume that initially only melt was present 

( n(0) = 0 ). This means that we must maximize the integral of the growth rate of the 

solid phase f (n,T ),  

 

J = f (n(t),T (t))dt
0

τ

∫ , (8) 

 

with respect to the function T (t) . In addition, we need to add the constraint  

 

c(dn /dt,n,T) =
dn

dt
− f (n,T) = 0 (9) 

 

that describes the time evolution of n . This is included by augmenting the integral (c.f. 

supplementary material),  

 

J → Jaug = f (n(t),T(t)) + p(t)(dn /dt − f (n(t),T(t)))dt
0

τ

∫ . (10) 

 

Thus we can formulate the optimal control problem as follows: Maximize the amount of 

product at the end of the duration of the synthesis, n(τ ) = J , by adjusting the 

temperature along the path, where the temperature is restricted to the interval 

T ∈ 0,T0[ ], the time evolution of n  is given by eq. (5), and the initial amount of product 

n(0) equals zero. 

 

 

3.1.2 Solution of the optimal control problem 
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 14 

 

The variation of Jaug  yields  

 

δJaug = δp(dn /dt − f ) + δT
∂f

∂T
− p

∂f

∂T

 

 
 

 

 
 + δn

∂f

∂n
− p

∂f

∂n
− dp /dt

 

 
 

 

 
 

 

 
 

 

 
 

0

τ

∫ dt , (11) 

 

where we have taken care of the variation of dn /dt  by performing an integration by 

parts, pδ(dn /dt) = pdδn /dt"="−(dp /dt)δn +  vanishing surface terms. This yields for 

the optimization the following set of equations:  

 

dn

dt
= f (n,T) , (12a) 

(1− p(t ))
∂f

∂T
= 0, (12b) 

and  

dp

dt
= (1− p(t))

∂f

∂n
. (12c) 

 

Clearly, a trivial solution of eqs. (12b) and (12c) would be p(t) ≡1 for the whole time 

interval; however, in this case, there would be no constraint at all on the system’s time 

evolution since then δp(dn /dt − f (n,T)) = 0 for all trajectories n(t). Thus, we find that 

a non-trivial solution leads to  

 

∂f

∂T
= −Am(T0 −T )m−1 + BlT

l−1
n

r = 0. (13) 
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 15 

Note, however, that since T  is restricted to the interval 0,T0[ ], the term associated with 

the variation of the control T (t)  can vanish either by fulfilling equation (13), or by T (t)  

being piecewise constant on the boundary,  

 

T (t) = T0  or  T (t) = 0 , (14) 

 

such that δT = 0 along these time intervals, with one or more switches between these 

values (a so-called bang-bang-type solution, c.f. supplementary material). Solving eq. 

(13) yields  

 

n =
mA

lB

(T0 −T*)m−1

T *l−1

 

 
 

 

 
 

1
r( )

. (15) 

 

In order to decide, whether T * constitutes a local minimum or maximum of f , we next 

compute the second derivative  

 

∂2
f

∂T 2
= m(m −1)A(T0 −T )m−2 + l(l −1)BT l−2nr  (16) 

 

 and insert the value of n  from eq. (15), i.e. we set T = T *. We find ∂ 2 f /∂T 2

T*
> 0, 

and thus, T *(n) is a minimum for every value of n. In particular, we find for the initial 

value T *(t = 0) = T *(n = 0) = T0 , and thus no production of the solid phase would take 
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place. This result of solving the necessary conditions of the optimal control problem has 

produced the global minimum and not the maximum of the objective n(τ ) .
5
  

 

As a consequence, the optimal solution must be a bang-bang-type of solution, where T  

switches between T = 0  and T = T0 , and dn /dt  between the two boundary maxima of 

f (n,T ),  

 

f (T = 0,n) = AT0

m
 and f (T = T0,n) = BT0

l
n

r , (17) 

 

respectively, at the value of  

 

n = ns =
A

B
T0

m−l 

 
 

 

 
 

1
r( )

 (18) 

 

where f (T = 0,n) = f (T = T0 ,n).  

 

For T = 0 ,  

 

dn

dt
= AT0

m
, (19) 

 

and thus  

 

n(t) = n
(1) (t) = n(t0 )+ AT0

m
(t − t0 ). (20) 

                                                 
5
 Since f ≥ 0  for all permitted values of T  and n , and n(0) = 0 , n(τ ) ≥ 0  for every choice of the 

control T (t) . Thus, the solution found is obviously a global minimum. 
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Similarly, for T = T0 ,  

 

dn

dt
= BT0

l
n

r , (21) 

 

and  

 

n(t) = n
(2)(t ) = (1− r)BT0

l
(t − t0 )+ (n(t0 ))1−r( )

1
1−r( )

. (22) 

 

Note that for the initial condition n(t0 ) = 0 , the differential equation for n
(2)(t) is 

singular for r <1, and the appropriate solution is  

 

n
(2)(t) = 0  (23a) 

instead of  

n
(2)(t) = (1− r)BT0

l
(t − t0 )( )

1
1−r( )

. (23b) 

 

However, for any other value of n(t0 ), arbitrary close to 0, eq. (23b) applies. A special 

case is r =1, where we find
6
  

  

n(2)(t) = n(t0 )exp BT0

l
(t − t0 )( ). (24) 

 

                                                 
6
 Note that eq. (24) is the limiting case of eq. (22) for r =1. 

Page 17 of 46

Wiley-VCH

ZAAC

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 18 

Clearly, the initial choice of the temperature should be T = 0 , else we are just wasting 

valuable time. Since there should be only one switch to T = T0 , we can compute the 

optimal switching time  

 

ts* =
BT0

l

AT0

m( )1−r

 

 

 
 

 

 

 
 

−1
r( )

  (25) 

 

by equating n
(1)(t = ts ) = ns . From this follows the optimal trajectory for the amount of 

product  

n * (t) =
AT0

m
t,

(1− r)BT0

l
(t − ts*) + (AT0

m
ts*)1−r( )

1
1−r( )

,

 
 
 

  

0 ≤ t ≤ ts *

ts* < t ≤ τ
.  (26) 

 

Table 1 shows ts *, ns = n *(t = ts *), and the final amount of product n *(t = τ )  for 

some useful choices of l , m  and r .  

 

We note that after having realized that only one switch takes place from T = 0  to T = T0  

at a time ts , we could have first computed the general form of n(t) parametrized by ts , 

 

 ˆ n (t, ts) =
AT0

m
t,

(1− r)BT0

l
(t − ts) + (AT0

m
ts)

1−r( )
1
1−r( )

,

t ≤ ts

t > ts

 
 
 

  
, (27) 

 

and then derived ts * by maximizing the function  

 

˜ n (ts ) = ˆ n (t = τ , ts ) = (1− r)BT0

l
(τ − ts )+ (AT0

m
ts )1−r( )

1
1−r( )

 (28) 
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 19 

 

with respect to ts . From this we can then compute the value of n *(t) at the switching 

time n *(t = ts ) = ˆ n (t = ts*,ts = ts *). In general, the derivative of ˆ n (t, ts ) with respect to t  

is not defined at t = ts ; only for ts = ts * the left- and right-derivative agree at t = ts , 

since we now have (dn /dt)(1)(t = ts) = (dn /dt)(2)(t = ts). For t < ts *, 

(dn /dt)(2)(t) < (dn /dt)(1)(t) , and for t > ts *, (dn /dt)(2)(t) > (dn /dt)(1)(t) , i.e. the optimal 

choice of switching time ensures that the growth rate f  is maximized throughout the 

process for every value of n , a fact we have already indirectly exploited when choosing 

the bang-bang-type solution as the optimal one.
7
 In this context, we also note that 

exponential temperature dependences of the nucleation and/or growth rate would have 

led to the same kind of bang-bang-solution for the optimal control, as long as these 

exponential laws had exhibited the same monotonic decrease and increase, respectively, 

as the power laws for nucleation and growth we had assumed above. Furthermore, if 

T1 ≠ 0, then we just have to replace T0 by T0 −T1 in all the formulas. 

 

 

3.2 Optimal control of a generic nucleation-and-growth synthesis from the melt with 

competition between two different modifications 

 

An interesting variation of the previous problem is the following one: Given a system, 

where two different modifications 1 and 2 are known to exist side-by-side in the solid 

state, how can one select the optimal temperature control such that modification 1 will 

be the preferred product of the synthesis via solidification from the melt? For 

                                                 
7
 The fact that f ≥ 0 for all values of n and n(t) grows monotonically would allow us to solve the optimal 

control problem given by eq. (8) in an alternative fashion using Tsirlin's "averaged optimal control" 
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concreteness, we will define as the quantity that is to be maximized the difference in the 

amounts of the two products n1(t) and n2(t) 

 

∆(t) = n1(t )− n2 (t ) (29) 

 

after a finite time τ , ∆(τ ) = n1(τ )− n2 (τ ). If both nucleation and growth rates of 

modification 1 are larger than the ones of modification 2, a decent heuristic might 

consist in just maximizing n1(τ ) and ignoring n2(τ ), thus reducing the task to the 

previously solved problem. But even in this special case, the optimal solution is more 

efficient, and we are clearly in trouble if modification 2 either nucleates or grows more 

quickly than modification 1. 

 

3.2.1 Formulation of the optimal control problem 

 

We will employ the same approximations as in the previous example. In particular, we 

assume that the general dependence of the nucleation and growth rates is the same for 

the two polymorphs, i.e., m,l ≥1 and r  ( 0 < r ≤1) are the same for the two 

modifications. Thus, the difference between the two modifications resides only in the 

different rate parameters Ai  and Bi , i =1,2 . Again, we assume that the total amount of 

starting material/volume, the (supercooled) melt, is essentially infinite compared to 

n1(t) and n2(t). A more subtle assumption is that the total time τ , although potentially 

very large, should be smaller than the typical time scales where coarsening would take 

place and the thermodynamically stable modification would devour the unstable one. 

Taking these two assumptions together, we can assume that the two polymorphs 

                                                                                                                                               
approach. [52] This leads again to the condition that at each moment of time, i.e. for each value of n(t), 
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nucleate and grow independently such that the amount of product of each modification 

never decreases during the process,  

 

dni

dt
= f i(ni,T) = Ai(T0 − T)m + BiT

l
ni

r ≥ 0 ( i =1,2 ) (30) 

 

for all permitted values of T ∈ 0,T0[ ] and ni ≥ 0.  

 

The state variables of the problem are the amounts of the two solid phases n1 and n2, 

and the temperature T  of the system that at the same time serves as the control variable. 

Thus we can formulate the optimal control problem as follows: Maximize the difference 

of the two products ∆ = n1 − n2  at the end of the duration of the synthesis, 

 

 ∆(τ ) = J = f1(n1(t),T (t)) − f2(n2 (t ),T (t ))dt
0

τ

∫ , (31) 

 

 by adjusting the temperature along the path, where the temperature is restricted to the 

interval T ∈ 0,T0[ ], the time evolution of ni  is given by eq. (30), and the initial amount 

of product ni(0) equals zero ( i =1,2 ). 

 

The two constraints dni /dt = f i(ni,T)  can again be included via the two Lagrange-

multiplier functions pi(t) in an augmented functional  

 

Jaug =
f1(n1(t),T(t)) − f2(n2(t),T(t))( )+ p1(t)(dn1 /dt − f1(n1(t),T(t))) +

+ p2(t)(dn2 /dt − f2(n2(t),T(t)))

 

 
 

 

 
 dt

0

τ

∫ .  (32) 

                                                                                                                                               
we should chose T such that f is maximized. 
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3.2.2. Solution of the optimal control problem 

 

The variation of Jaug  proceeds analogously to the previous example, and yields the 

following set of equations:  

 

dni

dt
= f i(ni,T) ; ( i =1,2 ),  (33a) 

dpi

dt
= (1− pi)

∂f i

∂ni

; ( i =1,2 ), (33b) 

and  

1− p1(t)( )∂f1

∂T
= 1− p2 (t )( )∂f2

∂T
. (33c) 

 

We note that the presence of two independent Lagrange-multiplier functions in eq. (33c) 

prevents us from applying the simple approach of the previous example, where the 

optimal solution could be directly identified by maximizing the function f (T ,n) for 

every value of n  with respect to T . Thus, we need to analyze the function  

 

d∆
dt

(n1,n2,T) = f1(n1,T) − f2(n2,T) , (34) 

 

whose integral is to be maximized with the constraints dni /dt = f i(ni,T) , in detail. In 

particular, we are interested in whether the optimal control T *(t)  is an interior point in 

function space (in this case, we need to solve the full boundary value problem of the 

five coupled differential equations (33)) or whether we again are dealing with a bang-

bang-type solution. 
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The analysis proves to be rather lengthy, and thus we just outline the procedure. We 

consider a set of points   ni(t0 ) =
( 
n i > 0 at some time t0 > 0 that belong to the hypothetical 

optimal solution for ∆ *(t) = n1 *(t) − n2 * (t). What is now the temperature for which a 

maximal/minimal growth rate   (d∆ /dt)(
( 
n 1,

( 
n 2,T)  is found? Computing ∂(d∆ /dt) /∂T  and 

∂ 2(d∆ /dt) /∂T
2, we find that three cases can occur: 1. no interior extremum exists, i.e. 

we obviously have to choose one of the boundary values to increase ∆(t). 2. The 

interior extremum is a local minimum, and thus again T* = 0 or T* = T0 . 3. The interior 

extremum is a local maximum. But in this case, we find that ∆(t0 )  is negative and both 

the nucleation and the growth rate of n2 are larger than the ones for n1. In this situation, 

the global optimal solution would have been to keep T = T0  for the whole time interval 

[0,τ ], i.e. we should not have attempted a synthesis in the first place since n2(τ) > n1(τ ) 

for all other choices of T (t) . Thus, the global solution to the optimal control problem 

that maximizes ∆(τ ) = n1(τ )− n2 (τ ) consists in a bang-bang-type solution where only 

one switch from T = 0  to T = T0  occurs.
8
 

 

The general solution to the optimal control problem is thus given by:  

 

T *(t) =
0,

T0,

 
 
 

0 ≤ t ≤ ts *

ts* < t ≤ τ
,  (35a) 

ni * (t) =
AiT0

m
t,

(1− r)BiT0

l
(t − ts*) + (AiT0

m
ts*)1−r( )

1
1−r( )

,

 
 
 

  

0 ≤ t ≤ ts *

ts* < t ≤ τ
; ( i =1,2 ). (35b) 

 

                                                 
8
 Note that ∆*(t)  does not necessarily grow monotonically for the whole time interval (see 

supplementary material for more details). 
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We still have to identify ts *. To do so, we investigate ˆ n i(t, ts ) and ˜ n i(ts ), and determine 

the value of ts  that maximizes  

 

˜ ∆ (ts ) = ˜ n 1(ts ) − ˜ n 2(ts ). (36) 

 

Several issues complicate the solution: For one, ts * can usually only be determined 

numerically by solving the equation  

 

d ˜ n 1(ts )

dts

=
d ˜ n 2(ts )

dts

⇔

(1− r)B1T0

l
(τ − ts )+ (A1T0

m
ts )1−r( )

r
1−r( )

(−B1T0

l + (A1T0

m
)1−r

ts

−r
) =

= (1− r)B2T0

l
(τ − ts )+ (A2T0

m
ts )1−r( )

r
1−r( )

(−B2T0

l + (A2T0

m
)1−r

ts

−r
)

.  (37) 

 

This equation can have 0, 1 or 2 solutions ts * in the interval 0,τ[ ], and furthermore 

˜ ∆ (ts*)  have to be compared with the value of ˜ ∆ (ts ) at the boundary of the time interval, 

˜ ∆ (ts = 0)  and ˜ ∆ (ts = τ ). A further subtle complication arises from the singularity of the 

differential equation (21): we need to distinguish between ts* = 0 (which implies that 

T = T0  for the whole time and no solid is produced) and ts* = ε  (1 >> ε > 0 ) (which 

implies that we have tiny initial nuclei of modifications 1 and 2 that grow for the whole 

time interval). Finally, the type and number of solutions ts * depends on the relative 

size of A1, A2 , B1 and B2 characterizing the two nucleation and growth rates in general. 

Thus, eight different cases must be studied individually: B1 = B2, A1 > A2  (1); 

B1 = B2, A1 < A2  (2); B1 > B2, A1 = A2  (3); B1 < B2, A1 = A2  (4); B1 > B2, A1 > A2  (up to 3 

subcases) (5); B1 > B2, A1 < A2  (up to 6 subcases) (6); B1 < B2, A1 > A2  (up to 6 subcases) 

(7), B1 < B2, A1 < A2  (8). The subcases reflect the values of these rates, and their rates of 
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change, at t = 0 and t = τ , and also the total time τ  available. Some of the general types 

of solutions one finds are: 1) ts* ≈ ts

(1)
* (essentially maximize the amount of 

modification 1; especially if B1 > B2  and τ  large), 2) ts* = 0 (perform no synthesis at 

all), 3) ts* ≈ τ  (essentially permit only nucleation, especially if B1 ≤ B2, A1 > A2),  4) 

ts* = ε  (after an extremely short nucleation phase switch to the growth phase, especially 

if B1 > B2, A1 < A2). Note that we only have one switch in temperature along the optimal 

trajectory: If B1 > B2 , then we will stay in the growth phase once it became 

advantageous to switch to higher temperature, and if B1 < B2 , then we time the switch to 

the growth phase (if we switch at all!) in such a fashion that a possible switch back to 

low temperature would occur precisely once the total allotted time has been used up 

(and thus no further switch is needed). 

 

Tables 2 and 3 summarize the results for m = l =1,r =1 and m = l =1,0 < r <1, 

respectively. Since interior values of ts * must be computed numerically, in the general 

case we can only give their location relative to the optimal switching times ts

(1)
* and 

ts

(2)
* we would obtain if we wanted to maximize the amount of modification 1 and 2, 

respectively, regardless of the amount of the competing phase (regarding the formulas 

for ts

(1)
* and ts

(2)
*, c.f. eq. (25)). In the supplementary material, we discuss the 

simplest case, m = l =1,r =1, in some more detail to illustrate the procedure, and 

similarly address the case m = l ≠1,r ≠1. Note that the rich solution structure shown in 

the tables can make it difficult to design simple heuristic guidelines for achieving the 

objective: even relatively small changes in the various parameters in eq. (30) or the total 

synthesis time can lead to a switch to a different regime of optimal solutions. 
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Note that we can use the same basic approach to address the more general case, where 

m1 ≠ m2, l1 ≠ l2 , and/or r1 ≠ r2. We find the same kind of bang-bang-type solutions, but 

the number of cases to be analyzed grows enormously, and even a tabular overview is 

not very helpful. Thus we are not presenting the detailed results for this general case; for 

specific systems with given experimental values of mi , li  and ri, the most efficient way 

would be to treat the optimal control problem analogously to the case m1 = m2, l1 = l2  

and r1 = r2 analyzed above, and then numerically solve the analogue to eq. (37) for the 

switching time. 

 

 

4. Discussion 

 

4.1. Summary of results and application to a real system (glycerol) 

 

In the previous section, we have formulated two optimal control problems for a 

nucleation-and-growth based synthesis using a simplified but nevertheless quite general 

model for the nucleation and growth rates of the product phase as function of 

temperature and product already present. We have shown that these problems, the 

maximization of the yield of one solid phase and the maximization of the difference 

between the amounts of two solid phases, can be solved and that we obtain solutions of 

the bang-bang-type, with a switch from T = T1(≈ Tglass ) to T = T0(≈ Tmelt ), in both cases. 

To make these problems analytically accessible, many simplifying assumptions were 

required. But the fact that we were able to reach a quite general solution that holds for 

very generic laws describing the temperature dependence of nucleation and growth of 
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the nuclei, yields much insight into the general optimal control problem of this type of 

syntheses and the qualitative aspects of its solution. 

 

A natural question is to what extent this „phenomenological“ optimal control result can 

be applied in a quantitative fashion: Can we plug numbers based on experiments into 

the solutions in tables 1 – 3 and e.g. find ts * anywhere near realistic values?  

Obviously, the first step would be a fit of the model parameters, Ai , Bi ,T0 ,T1, m,l,r , to 

experimental data describing nucleation and growth rates as function of temperature. 

Next we would calculate the appropriate switching time, either by inserting the 

parameters into the formulas in table 1 or by numerically solving eq. (37). 

 

As a specific example, we consider the application of the optimal control formalism to 

the synthesis of glycerol crystals. Here, the goal is to maximize the yield of the 

crystalline phase within the finite time τ . From the literature [50], we find that the 

nucleation rate in the supercooled melt increases very rapidly upon cooling to a 

maximum at T1 ≈ −65o
C  and then rather abruptly drops to zero even before the glass 

transition temperature Tglass ≈ −85o
C  is reached [53]. The growth rate of the crystallites 

increases quickly with increasing temperature to a maximum at about T0 ≈0o
C , and 

then rapidly decreases towards the melting temperature Tmelt ≈ +18o
C  [54]. Fitting 

power laws to the data yields for the model parameters: A ≈ 2.4 ×10−13 / seccm
3
K

9 , 

B ≈ 0.3/seccmK
3, T0 −T1 ≈ 65K , m ≈ 9 , l ≈ 3, and r ≈ 2 / 3. If we plug these values 

into the formulas in table 1, we find a switching time of ts* ≈ 2sec . Thus, the optimal 
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solution consists of keeping the melt for about 2 seconds at about −65o
C , and then let 

the nuclei generated grow at the maximum rate at a temperature of about 0o
C .

9
 

 

 

4.2 Analysis of the approximations 

 

As mentioned above, several approximations and simplifications had been necessary, in 

order to make the optimal control problem analytically accessible. Perhaps the most 

drastic one is the description of the product phase by a single variable n(t), ignoring the 

fact that we are actually dealing with a distribution of clusters of various sizes. 

However, in the past it has proven to be quite successful to focus on the time evolution 

of an „average“ cluster while modeling processes involving nucleation of clusters 

instead of trying to follow the full distribution, e.g. in various models of primary 

crystallization [55], coarsening [51] or in the optimization of the gas-liquid transition 

[13]. Thus only two variables would be needed to describe the solid phase, the total 

amount of crystalline material n(t) and the number of clusters generated, NC (t). Since 

the NC  clusters are treated as identical, they obey the same growth law. As a 

consequence, the fact that n(t) represents not only one cluster but several ones can be 

included in a heuristic fashion by choosing the parameter r  in the model (see eq. (5)) to 

be different from r = 2 / 3. In particular, we note from the glycerol example that less 

than 10 nuclei /cm
3
 have been generated by the time ts * is reached, and thus treating 

the system as if all the solid material were combined into one effective crystallite should 

be quite reasonable. Having to modify r  is only a small price to pay for eliminating 

                                                 
9
 There is some uncertainty about the size of the critical nuclei. We assumed a critical cluster size of 1000 

atoms when determining the parameter A. If a critical cluster contains only 100 atoms (a lower bound), A 

would be smaller by about a factor 10, and ts * would be reduced by a factor of about 3. 
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NC (t) as an independent variable. The situation is slightly different in the case of two 

competing modifications where ts* = τ  can be the optimal solution, and thus the 

exponent r  would vary as a function of n(t) since NC (t) ranges from one to many 

nuclei. However, in this case the optimal solution is independent of the value of r  (the 

growth phase of the nuclei is actually never reached), and thus the model again 

describes the features of the growth process relevant for the optimal control problem. 

 

The second approximation concerns the use of power laws to model the nucleation and 

growth rates. Of course, these rates do not drop infinitely fast to zero for (Tglass <)T < T1 

and (Tmelt >)T > T0 , respectively. However, we note that for T < T1 , the growth rate 

remains zero, and analogously the nucleation rate is zero for T > T0 . From the point of 

view of optimizing the amount of final product, there is clearly nothing to be gained 

from ever selecting a temperature below T1 or above T0, and thus we can restrict the 

range of feasible values of the control, i.e. the temperature, to the interval T1,T0[ ]. In 

particular, we note that as long as the rates are monotonic in the interval T1,T0[ ], the 

general solution will be of the bang-bang-type, and one usually can find some 

reasonable power-law approximation for the temperature dependence of the rates within 

the relevant interval. 

 

The situation is more subtle if the two competing modifications should exhibit different 

values for T1

(i)
 and T0

(i)
, e.g. T1

(1) < T1

(2) < T0

(1) < T0

(2)
. While the models as such are still 

an appropriate description of the rates of each of the two polymorphs within T1

(i)
,T0

(i)[ ], 

it is not clear, whether we still have a bang-bang-type of solution of the optimal control 

problem. In principle, we need to consider the large interval T1

(1)
,T0

(2)[ ] as the range of 
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feasible values of the control parameter, but then the peaks in the nucleation rate for 

modification 2 and in the growth rate for modification 1 do not occur at the boundaries. 

But if we choose the small interval T1

(2)
,T0

(1)[ ], it can happen that at T1

(2)
 and T0

(1)
 the 

growth rate of modification 1 or the nucleation rate for modification 2, respectively, are 

still substantially different from zero while on the other hand the nucleation rate of 

modification 1 at T1

(2)
 and the growth rate of modification 2 at T0

(1)
 are still far from 

their maximum values. Clearly, for neither of the two intervals we would expect a 

straigthtforward bang-bang solution where the boundaries of the interval could serve as 

the optimal temperature values. Thus, a full re-analysis of the optimal control problem 

is called for if T0

(1) ≠ T0

(2)
 or T1

(1) ≠ T1

(2)
. In contrast, slightly different power laws of the 

temperature dependence of the nucleation and growth rates, l1 ≠ l2  and/or m1 ≠ m2 , do 

not pose big problems, and even different values of r1 ≠ r2  will only complicate the 

equations (e.g. lead to additional solutions in the analogue to eq. (37) for r1 ≠ r2). But 

these changes would not preclude an analytical analysis, as long as T0

(1) = T0

(2)
 and 

T1

(1) = T1

(2)
, because we can still expect that a bang-bang-type solution is the optimal 

one. 

 

Another important approximation is the range of allowed synthesis times τ . Clearly, if 

τ → ∞, the amount of melt nmelt  will decrease and n(t) will become comparable unless 

we keep adding supercooled melt to the system effectively keeping the density of solid 

material small compared to nmelt  inside the synthesis chamber. Similarly, for large 

times, coarsening of the cluster size distribution will take place. However, the neglect of 

coarsening effects is not critical in the context of our model because the average cluster 

size still keeps increasing, and thus the lumped approximation that only considers the 

total amount of solid phase n(t) encompasses and averages out possible coarsening 
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effects, with the consequence that coarsening does not have much of an influence on the 

optimal control problem. Regarding the decrease of nmelt , we note that if we are 

maximizing the amount of a single solid phase, the transition to a pure growth stage 

takes place rather early independent of the total synthesis time. Thus, the decrease in 

nmelt  does not affect the optimal control problem as such, and it will only be noticeable 

in the fact that n(t) reaches a limiting value corresponding to the intrinsic density of the 

solid phase itself (instead of growing to infinity as the formulas in section 3.1 suggest). 

 

Again, additional complications arise for two competing modifications. Here, cases can 

occur (c.f. tables 2 and 3), where the switching time equals τ  or is relatively close to τ . 

These situations only occur if we need to stay for a very long time in the nucleation 

stage that favors modification 1, in order to balance the faster growth of the nuclei 

belonging to modification 2. This fact will not change much if the amount of melt is 

being depleted, and it will still be favorable to stay at T = T1  for nearly the whole time if 

we want to maximize n1 − n2 . Much more critically, coarsening processes can be of 

great importance when two modifications compete, since for sufficiently large synthesis 

times and/or sufficiently unstable nuclei/crystallites, the thermodynamically stable 

modification will eliminate the metastable solid phase even in finite time. If such effects 

are to be taken into account, one would need to construct a considerably more 

sophisticated model of the nucleation-and-growth synthesis with competing 

modifications (possibly including an approximate cluster size distribution). It is very 

likely that such a model can only be solved numerically. 

 

Finally, we have assumed that the system reacts instantaneously both to changes in the 

applied external temperature and to local changes in temperature and melt-density 
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caused by the nucleation of clusters of critical size or by the attachment of atoms from 

the melt to the crystallites. Taking these effects into account will lead to optimal control 

solutions that are approximately of the bang-bang-type, as long as the relaxation times 

are much smaller than ts *. This can be expected to hold for so-called microreactors, 

e.g. in the increasingly popular "lab-on-a-chip". If the relaxation times are rather large, 

however, a full re-analysis of the optimal control problem is required taking the flow 

properties and the thermal conductivity of the melt into account, and the more 

complicated set of differential equations one would derive using the variational 

approach would most likely have to be solved numerically. 

 

4.3 Outlook 

 

The discussion of the various approximations in the previous subsection implicitly 

suggests a number of future projects in the optimal control of nucleation-and-growth 

based syntheses. Most straightforward is the analysis of the optimal control problem 

with competing polymorphs for l1 ≠ l2 , m1 ≠ m2  and/or r1 ≠ r2 . Similarly, one could 

replace the power laws in eqs. (5) and (30) by more general functions involving 

exponentials such as exp −∆G(T ) / kBT[ ] that are often used to describe activation 

barriers to the nucleation of clusters of critical size [50]. As we mentioned earlier, the 

general type of solution is not going to change as long as these functions are 

monotonically increasing and decreasing with temperature, respectively, although the 

case-by-case analysis is going to be much more complicated and numerical solutions 

will be unavoidable. 
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Next, one would want to address the case where the maxima of growth and nucleation 

rates of different modifications do not occur at the same temperature. A more 

substantial extension of the model would be the inclusion of coarsening processes 

between the competing polymorphs, where one probably will need to add at least the 

number of clusters or equivalently the average size of the clusters for each modification 

to the state variables describing the system. Furthermore, one would add conversion 

terms between the two modifications as function of cluster size in the rate equations for 

(dni /dt)(t)  and (dNC /dt)(i)(t). 

 

A further issue that deserves to be studied is the competition between homogeneous and 

heterogeneous nucleation. As a first step, one might want to study purely heterogeneous 

nucleation-and-growth on the same level of complexity as was done in this work for 

homogeneous nucleation, followed by a combination of both nucleation processes. 

Another level of sophistication of the models involves the homogeneity of the spatial 

distribution of the solid clusters within the supercooled melt. In contrast to the gas 

phase where a well-stirred reactor approximation is quite realistic, the condensed phases 

are rather slow in relaxing to (thermodynamic) equilibrium after e.g. the external 

temperature has been changed or latent heat has been released during a nucleation event. 

Modeling these delays is clearly important but also quite challenging, in particular with 

regard to the solution of the associated optimal control problems. 

 

Clearly, many more possible extensions of the models employed here can be proposed 

and investigated. However, another very interesting question is to what extent the 

optimal control problems we have studied can be applied to other nucleation-and-

growth based syntheses besides the growth of a solid phase from a melt. In particular, it 
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would be worthwhile to investigate the growth of crystals from solution, or the 

crystallization inside an amorphous matrix e.g. during the synthesis of metastable 

crystalline modifications via the low-temperature atom deposition method [56,57]. 

 

Finally, one might want to consider the place of our two optimal control problems in the 

framework of finite-time thermodynamics. The generic laws and guidelines 

incorporated in eq. (3), and in eqs. (9) and (10) in the supplementary material, are based 

on the assumption that we are moving between two equilibrium states within a finite 

time that is still large enough for the system to stay close to the equilibrium path it 

would follow in the infinite-time limit. Such considerations would be applicable e.g. 

when one tries to refine our simple model by taking the delays in the relaxation to local 

equilibrium into account. However, the generic aspect of the type of problems we 

consider in this work is that they are „open-ended“, i.e. we want to produce as much of 

a solid crystalline phase as possible within the given time, and not minimize the amount 

of work needed to transform a certain amount of melt into solid in finite time while 

staying close to the melting (i.e. equilibrium) temperature. In particular, we note that 

both for loss of availability and entropy dissipation, the Hessian of the energy and the 

entropy, respectively, can serve as a positive definite metric and this allows the 

definition of a proper thermodynamic distance (c.f. eq. (4)). This is not the case for the 

processes studied in this work, where the analogous quantity, the second derivative of 

the amount of product with respect to the temperature, ∂ 2
n /∂T

2 , is not necesssarily 

positive or negative definite for the whole process and thus no thermodynamic length 

can be computed. 

 

The optimal control problems we consider are more similar to the maximization of the 

product of a chemical reaction in the gas phase studied in earlier work [6,7]. For the 
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optimization of the reactions nA ↔ mB  [6] it was found that the distance between the 

optimal and the equilibrium curves, T *(N product )  and Teq(N product ) , respectively, in 

( N product ,T )-space was approximately constant. In contrast to those finite-time 

thermodynamics problems where entropy production or loss of availability were 

minimized, this distance did not go to zero for τ → ∞, however. But while in the gas 

phase reaction there existed a well-defined equilibrium curve for the amount of product 

as function of temperature to serve as a reference, an analogous quantity is more 

difficult to discern in a nucleation-and-growth synthesis, since three (metastable) 

„equilibrium states“ of the system have to be taken into account, each of which might 

serve as a reference point: the (supercooled) melt, the (macroscopic) crystal and the 

clusters (of critical or larger size). Clearly, if one could establish that such a constancy 

in ∆T  also holds in optimally controlled nucleation-and-growth processes, this would 

allow us to employ this information in determining an optimal path for those systems 

that do not easily yield to the optimal control methods described in section 3 and the 

supplementary material.  

 

To a certain degree, a comparison can be drawn with two consecutive chemical 

reactions A ↔ B ↔ C , where the melt, the critical nuclei and the crystalline solid would 

correspond to the chemical species "A", "B" and "C", respectively. Such a system has 

been studied [7] using Tisrlin's averaged optimal control [52] to maximize the 

intermediary species "B". In contrast to this study, the model presented in section 3.1 

assumes that no back-reactions take place, and due to the bang-bang-type of solution 

nucleation and growth processes do not take place in appreciable amounts at the same 

time. Furthermore, unless one were to specify individual large crystals instead of the 

total amount of crystalline phase as the objective, the species "B" and "C", i.e. the 
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critical nuclei and the larger crystals, both contribute to the objective of the optimal 

control n(τ) . Thus, the analogy does not hold in all details. As a consequence, we never 

encounter a "maximal useful time" that is less than the total time available. Due to the 

non-reversibility of the processes incorporated in the model and the fact that in the 

optimal solution either nucleation or growth takes place, the same holds true even if we 

were to maximize only the number of critical nuclei since obviously the maximum 

would be achieved by remaining in the nucleation phase for the whole duration τ . But 

in general, it should be possible to pursue this analogy further, especially once one 

includes the number of clusters NC  as an independent state variable and modifies the 

objective to be the amount of crystalline phase that is present in the form of large 

crystals. 

 

Similarly, one might try to compare the second optimization problem with the case of 

two competing chemical reactions, A ↔ B and A ↔ C . Again, no back-reactions are 

included in the melt-to-crystalline material system, in contrast to a standard e.g. gas 

phase reaction, where both a possible transformation C ↔ B (via C ↔ A ↔ B) and the 

existence of equilibrium concentrations for "A", "B", and "C" at a given temperature are 

implied. Furthermore, eq. (30) describes a rather unusual pair of reaction rates, since 

each is a sum of two terms, one of which increases (monotonically) with the amount of 

product present, and thus represents a positive feedback built into the reaction, in 

contrast to the usual slowing down of the net reaction rate due to the increase of the 

back-reaction rate with increasing amount of product. Thus, while such a comparison 

would be valid in principle, this unusual reaction rate and general set-up makes it 

difficult to apply one's intuition based on competing gas phase reactions.
10

 

                                                 
10

 This problem of competing gas phase reactions does not appear to have been treated within the context 

of finite-time thermodynamics so far. 
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The rather mathematical study presented here might appear to be far removed from the 

everyday cares and worries of the experimental synthetic chemist. But even in the non-

industrial context greater efficiency is something to be strived for; e.g., achieving large 

differences in the amount of the two competing phases might greatly simplify the 

subsequent purification stage. And the purposeful synthesis of only one of several 

different metastable modifications is one of the great challenges of experimental solid 

state chemistry.[19,20] It is hoped that the results obtained in this investigation will 

provide a starting point for further analyses of the optimal control of nucleation-and-

growth based syntheses, where the construction of more detailed models and their 

solution by theory needs to be complemented by robust, quantitative measurement data 

that only experiment can supply.  
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Tables: 

 

Table 1: ts *, n *(ts *), n *(τ ) for the maximization of the one-component system, for different choices of m , l  and r . 

 

 ts * n *(ts *) n *(τ ) 

m = l =1,r =1 1
BT0

 A
B

 A
B( )exp BT0τ −1[ ] 

m = l =1,0 < r <1 
A

1−r
r( )

T0B
1

r( ) 
A

B( )
1

r( )
 1− r( )BT0τ + r A

B( )
1−r

r( ) 

 
 

 

 
 

1
1−r( )

 

m,l ≥1,r =1 1
BT0

l  A
B( )T0

m−l
 A

B( )T0

m−l
exp BT0

lτ −1[ ] 
m,l ≥1,0 < r <1 

A
1−r

r( )

B
1

r( )
 

 
 

 

 
 T0

m−l
r

−m( ) A
B( )T0

m−l[ ]
1

r( )
 1− r( )BT0

lτ + r A
B

T0

m−l( )
1−r

r( ) 

 
 

 

 
 

1
1−r( )
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Table 2: Case-by-case list of the approximate location of ts *, ˜ ′ ∆ (0), ˜ ′ ∆ (τ ), and ∆ *(τ → ∞), where applicable, for the maximization of the 

difference between the two modifications, ∆(τ ) = n1(τ )− n2 (τ ), for m = l =1,r =1. The results for m,l >1 can be found by replacing AiT0  and 

BiT0  by AiT0

m
 and BiT0

l
, respectively, both in the conditions defining the various cases and subcases, and in the actual results. Subcases (i), (ii) 

and (iii) are defined in the supplementary material. Note that subcases (i) and (ii) are only applicable for short values of τ . 

 

 ˜ ′ ∆ (0) ˜ ′ ∆ (τ ) ts * ∆ *(τ → ∞) Comment 

B1 = B2, A1 > A2  > 0 < 0 1
BT0

 ∆ *(τ ) →
A1 − A2

B1

exp B1T0τ −1[ ]  

B1 = B2, A1 < A2  < 0 > 0 0 0 No synthes. 

B1 > B2, A1 = A2  > 0 < 0 0 < ts* < ts

(1)
* ∆ *(τ ) → A1T0ts * exp B1T0 (τ − ts *)[ ]  

B1 < B2, A1 = A2  < 0 > 0 0; τ  0 No synthes. 

/ only nucl. 
B1 > B2, A1 > A2  > 0 < 0 0 < ts* < ts

(1)
* < ts

(2)
* ∆ *(τ ) → A1T0ts * exp B1T0 (τ − ts *)[ ]  

B1 > B2, A1 < A2  

i) (see suppl.) 

< 0 > 0 0 τ → ∞ not applicable; ∆ *(τ ) = 0 No synthes. 

(increase τ  

to reach case 

iii) 
B1 > B2, A1 < A2  

ii) (see suppl.) 

> 0 > 0 ts* = ts1* < ts

(1)
* < ts

(2)
* τ → ∞ not applicable; ∆ *(τ ) > 0  

B1 > B2, A1 < A2  

iii) (see suppl.) 

> 0 < 0 0 < ts* < ts

(1)
* < ts

(2)
* ∆ *(τ ) → A1T0ts * exp B1T0 (τ − ts *)[ ]  

B1 < B2, A1 > A2  

i) (see suppl.) 

> 0 < 0 ts

(2)
* < ts

(1)
* < ts* < τ  τ → ∞ not applicable; 

∆ *(τ ) > (A1 − A2 )T0τ > 0 
 

B1 < B2, A1 > A2  

ii) (see suppl.) 

< 0 < 0 ts

(2)
* < ts

(1)
* < ts * = ts2 * τ → ∞ not applicable; 

∆ *(τ ) = ˜ ∆ (ts2 ) > (A1 − A2 )T0τ > 0  

 

B1 < B2, A1 > A2  

iii) (see suppl.) 

< 0 > 0 τ  (A1 − A2 )T0τ > 0 Only nucl. 
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B1 < B2, A1 < A2  < 0 > 0 0 0 No synthes. 
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Table 3: Case-by-case list of the approximate location of ts *, ˜ ′ ∆ (0), ˜ ′ ∆ (τ ), and ∆ *(τ → ∞), where applicable, for the maximization of the 

difference between the two modifications, ∆(τ ) = n1(τ )− n2 (τ ), for m = l =1,0 < r <1. The results for m,l >1 can be found by replacing AiT0  and 

BiT0  by AiT0

m
 and BiT0

l
, respectively, both in the conditions defining the various case and subcases, and in the actual results. Subcases (i), (ii) 

and (iii) and their subcases are defined in the supplementary material. Note 1: A priori, it is not possible to decide, whether the global maximum 

occurs at the boundary ( ts* = ε ) or at the interior maximum. Note 2: A priori, it is not possible to decide, whether the global maximum occurs at 

the boundary ( ts* = τ ) or at the interior maximum (if an interior maximum exists at all). 

 

 

 ˜ ′ ∆ (0) ˜ ′ ∆ (τ ) ts * ∆ *(τ → ∞) Comment 

B1 = B2, A1 > A2  > 0 < 0 ts

(2)
* < ts

(1)
* < ts * (1− r)B1T0τ( )

r
1−r( )

(A1T0ts*)1−r − (A2T0ts*)1−r[ ] 1− r( )  

B1 = B2, A1 < A2  < 0 > 0 0 0 No synthes. 

B1 > B2, A1 = A2  > 0 < 0 ts* < ts

(1)
* < ts

(2)
* > B1

1 (1−r) − B2

1 (1−r)( )(1− r)T0τ[ ]1 (1−r )
  

B1 < B2, A1 = A2  < 0 > 0 0, τ  0 No synthes. / 

only nucl. 
B1 > B2, A1 > A2  

i) (see suppl.) 

> 0 < 0 ts

(2)
* < ts

(1)
* < ts * > B1

1 (1−r) − B2

1 (1−r)( )(1− r)T0τ[ ]1 (1−r )
  

B1 > B2, A1 > A2  

ii) (see suppl.) 

> 0 < 0 ts* < ts

(1)
* < ts

(2)
* > B1

1 (1−r) − B2

1 (1−r)( )(1− r)T0τ[ ]1 (1−r )
  

B1 > B2, A1 > A2  

iii) (see suppl.) 

> 0 < 0 ts* = ts

(1)
* = ts

(2)
* > B1

1 (1−r) − B2

1 (1−r)( )(1− r)T0τ[ ]1 (1−r )
  

B1 > B2, A1 < A2  

i) (see suppl.) 

< 0 > 0 ε  B1

1 (1−r) − B2

1 (1−r)( )(1− r)T0τ[ ]1 (1−r )
 Infinitesimal 

nucl. + growth 

B1 > B2, A1 < A2  

ii) (see suppl.) 

< 0 > 0 ε  B1

1 (1−r) − B2

1 (1−r)( )(1− r)T0τ[ ]1 (1−r )
 Infinitesimal 

nucl. + growth 

B1 > B2, A1 < A2  

iii)a) (see suppl.) 

< 0 > 0 ε  B1

1 (1−r) − B2

1 (1−r)( )(1− r)T0τ[ ]1 (1−r )
 Infinitesimal 

nucl. + growth 

B1 > B2, A1 < A2  

iii)b) (see suppl.) 

> 0 < 0 ts* < ts

(1)
* < ts

(2)
* > B1

1 (1−r) − B2

1 (1−r)( )(1− r)T0τ[ ]1 (1−r )
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B1 > B2, A1 < A2  

iii)c) (see suppl.) 

> 0 > 0 ts* = ts1* < ts

(1)
* < ts

(2)
* < ts2 * > B1

1 (1−r) − B2

1 (1−r)( )(1− r)T0τ[ ]1 (1−r )
  

B1 > B2, A1 < A2  

iii)d) (see suppl.) 

< 0 < 0 ts

(1)
* < ts

(2)
* < ts1* < ts2* = ts * 

or ts* = ε  

≥ B1

1 (1−r) − B2

1 (1−r)( )(1− r)T0τ[ ]1 (1−r )
 Note 1 

B1 < B2, A1 > A2  

i) (see suppl.) 

> 0 < 0 ts* = ts

(1)
* = ts

(2)
* > A1 − A2( )T0τ   

B1 < B2, A1 > A2  

ii) (see suppl.) 

> 0 < 0 ts* < ts

(1)
* < ts

(2)
* > A1 − A2( )T0τ   

B1 < B2, A1 > A2  

iii)a) (see suppl.) 

> 0 < 0 ts* > ts

(1)
* > ts

(2)
* > A1 − A2( )T0τ   

B1 < B2, A1 > A2  

iii)b) (see suppl.) 

< 0 > 0 τ  A1 − A2( )T0τ  Only nucl. 

B1 < B2, A1 > A2  

iii)c) (see suppl.) 

> 0 > 0 ts

(2)
* < ts

(1)
* < ts1* = ts* < ts2 * 

or ts* = τ  

≥ A1 − A2( )T0τ  Note 2 

B1 < B2, A1 > A2  

iii)d) (see suppl.) 

< 0 < 0 ts

(1)
* < ts

(2)
* < ts1* < ts2* = ts * > A1 − A2( )T0τ   

B1 < B2, A1 < A2  < 0 > 0 0 0 No synthes. 
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