
HAL Id: hal-00507632
https://hal.science/hal-00507632

Submitted on 30 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dealing with asynchronicity in parallel Gaussian Process
based global optimization

David Ginsbourger, Janis Janusevskis, Rodolphe Le Riche

To cite this version:
David Ginsbourger, Janis Janusevskis, Rodolphe Le Riche. Dealing with asynchronicity in parallel
Gaussian Process based global optimization. [Research Report] Mines Saint-Etienne. 2011. �hal-
00507632�

https://hal.science/hal-00507632
https://hal.archives-ouvertes.fr


Dealing with asynchronicity in parallel Gaussian Process

based global optimization ∗

David Ginsbourger†‡

Joint Work with Janis Janusevkis §and Rodolphe Le Riche ¶

July 30, 2010

Abstract

During the last decade, Kriging-based sequential algorithms like EGO and its vari-
ants have become reference optimization methods in computer experiments. Such
algorithms rely on the iterative maximization of a sampling criterion, the expected
improvement (EI), which takes advantage of Kriging conditional distributions to make
an explicit trade-off between promizing and uncertain search space points. We have
recently worked on a multipoints EI criterion meant to simultaneously choose several
points, which is useful for instance in synchronous parallel computation. Here we pro-
pose extensions of these works to asynchronous parallel optimization and focus on a
variant of EI, EEI, for the case where some new evaluation(s) have to be done while
the reponses of previously simulations are not all known yet. In particular, different
issues regarding EEI’s maximization are addressed, and a proxy strategy is proposed.
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1 Introduction

Sampling criteria such as the Expected Improvement (EI) allow sequentially choosing evalu-
ation points in Gaussian Process (GP) based optimization algorithms. A major strength of
using EI in a sequential procedure is that it progressively integrates available observations
(points and responses), and thus avoids resampling at already explored points, at least in
the case of noise-free simulations.

Recent works deal with the adaptation of EI for parallel Kriging-based optimization.
In particular, a multipoints version of EI, called q-EI (or simply EI when there is no
ambiguity), has been proposed for synchronous parallel Kriging-based optimization. q-EI
measures the joint potential of a given additional q-points design of experiments. So, a
natural parallelization of EI algorithms for q synchronous processors is to maximize q-EI at
each iteration, with update of the Kriging metamodel (including possible re-estimation of
covariance parameters) whenever new observations are assimilated. However, maximizing
q-EI is in most cases unaffordable, all the more so that the dimension of inputs d and the
number of points q increase. Furthermore, evaluating q-EI when q ≥ 3 bases on a Monte
Carlo method relying on GP conditional simulations, which would make this intermediate
optimization problem noisy and potentially very time consuming. Heuristic strategies such
as the Constant Liar (CL) and the Kriging Believer (KB) have been proposed in [34] to
circumvent the computational difficulties associated with q-EI maximization, by turning it
into a stepwise maximization with virtual intermediate observation values.

In this report, we focus on the case of asynchronous parallel Kriging-based optimization,
i.e. where sampling decisions have to be made before all previously started simulations
have produced their result. Hence we have to distinguish between already visited points,
currently visited (or ”busy”) points, and candidate points for forthcoming simulations.
Having to take busy points into account within GP modeling sends back to similar problems
encountered in the heuristic strategies mentioned above, so that we take advantage of
previous work on that topic, and revisit those heuristic strategies in a more general manner.

After some necessary definitions concerning the EI criterion with (partially or com-
pletely) enriched information, a variant of EI is proposed for the case where a processor
did not give its result yet. Relying on conditional simulations, EEI proves to be a sensible
criterion, but practically not straightforward to maximize. A special variant of CL with
random lie is then investigated to generate a finite set of candidate EEI maximizers, and
gives surprisingly excellent results on the basis of a first 1-dimensional toy example.

Some research perspectives and a rich bibliography close this report, and set a frame-
work for additional testing and developements to be made in forthcoming project phases.
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2 Injecting incomplete information in EI criteria

2.1 EI with (partially) enriched information

The regular EI is defined as follows

EI(x) = E
[
(min(Y (X))− Y (x))+ |A

]
, (1)

where (.)+ = max(0, .), and A = {Y (X) = y} is the event summing up all currently
available observation points and corresponding responses.

Let us now assume that an evaluation of y at point xbusy ∈ D (say at an EI global
maximizer, assumed unique for convenience) has been started, that the result is not known
yet, and that one wishes to determine the next most promizing point (in terms of EI) where
to perform an evaluation using a newly available processor.

Ignoring that an evaluation is going on at xbusy may cause loosing crucial information for
the next evaluation(s). However, it is not possible to add the event

{
Y (xbusy) = y(xbusy)

}
to A since y(xbusy) is not kwown yet.

Question 1 How is it possible to inject the partial knowledge that an evaluation is going
on at xbusy in the EI criterion without knowing y(xbusy)?

Before giving a probabilistic answer to that question, let us introduce some necessary
additional concepts and notations.

Definition 1 Given X, y, A as above, and an additional point xadd ∈ D together with its
corresponding response yadd, we denote by EI with enriched information the function

x ∈ D −→ EI(x; xadd, yadd) := E
[
(min(Y (X), yadd)− Y (x))+ |A, Y (xadd) = yadd

]
(2)

This modification of the EI criterion basically amounts to updating the underlying condi-
tioning event A to

{
Y (X) = y, Y (xadd) = y(xadd)

}
. As a consequence, the EI with enriched

information is 0 at xadd whatever the observation value yadd. This property will be useful
in the sequel since we will actually often be in situations where the value of yadd is unkown.

A probabilistic answer to question 1 is to continue treating the unknown y(xbusy) as a
random variable Y (xbusy), but to insert it in on the side of conditioning events by plugging
it in the previously defined EI with enriched information.

Definition 2 Let us define the EI with partially enriched information as

EI(x; xbusy) : = EI(x; xbusy, Y (xbusy))

= E
[(

min(Y (X), Y (xbusy))− Y (x)
)+
|A, Y (xbusy)

] (3)
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For any given fixed x ∈ D, EI(x; xbusy) is hence a function of the random variable Y (xbusy),
thus inheriting from its randomness. Indeed, the classical EI formula can be developed,
and the randomness of the obtained expression appears clearly through the instances of
Y (xbusy) in the current minimum and in the Kriging mean.

Since the function EI(.; xbusy) is consequently a random function, it does not make sense
to maximize it in order to derive the next most promizing point xnew.

Question 2 Indeed, what would it mean to maximize a random function?

Several alternatives are possible, such as maximizing quantiles of it conditional on the
current information, or basically focus on the following conditional expectation function

Definition 3 The expectation of EI(.; xbusy) conditional on A is denoted by

EEI(.; xbusy) := E[EI(.; xbusy)|A] (4)

Denoting by fY (xbusy)|A(.) the probability density function (pdf) of Y (xbusy) conditional
on A, which is deduced from the standard gaussian pdf φ by an affine change of variable,

fY (xbusy)|A(ybusy) =
1

s(xbusy)
φ

(
ybusy −m(xbusy)

s(xbusy)

)
(whenever s(xbusy) 6= 0 ) (5)

we may in fact explicitely derive the latter conditional expectation in integral form:

EEI(.; xbusy) =
∫

EI(.; xbusy, ybusy)fY (xbusy)|A(ybusy)dybusy (6)

Now, EI(.; xbusy, ybusy) depends on ybusy in a quite complicated non-linear way, and there
is no hope of getting an analytical expression for EEI, even though fY (xbusy)|A is known and
rather simple. However, coming back to its probabilistic definition, EEI can be approxi-
mated by averaging out the EI(.; xbusy, ybusy)’s obtained when drawing a sufficiently high
number of ybusy candidate values generated by using the conditional law of Y (xbusy)|A.

Algorithm 1 Estimate EEI using MC simulations
1: for i← 1, nsim do
2: Y sim

i ∼ L(Y (xbusy)|A)
3: EIi(x) = EI(x; xbusy, Y sim

i )
4: end for
5: ÊEI(x) = 1

nsim

∑nsim
i EIi(x)
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Thus, a straightforward way of getting statistical estimates of EEI(x; xbusy) (pointwise, for
given x ∈ D, or of the whole function EEI(.; xbusy)) is to base on Monte Carlo drawings,
as in alg. 2.1. Obviously, the reliability of such a Monte Carlo approximation of EEI will
depend on the invested number of drawings nsim. To be more precise, on can state that
for any fixed x ∈ D, the estimator ÊEI(x) obtained above is unbiased, and has a variance
given by a formula of a well-known kind:

Var
[
ÊEI(x)

]
=

1
nsim

∫ (
EI(.; xbusy, ybusy)− EEI(x)

)2
fY (xbusy)|A(ybusy)dybusy (7)

2.2 Main example

Let us consider a deterministic one-dimensional function,

y : x ∈ [0, 1] −→ y(x) =
sin(10x+ 1)

(1 + x)
+ 2cos(5x)× x4 ∈ R, (8)

and first approximate it using a Kriging model based on y’s observation at a three-points
design X = {0, 0.475, 0.95}. The chosen Simple Kriging model is centered, has a Matérn
covariance structure with regularity coefficient ν = 3

2 , unit variance, and range parameter
θ = 0.5√

3
. The objective function, the Kriging mean predictor, and the corresponding

Expected Improvement function are represented on figure 2.1. This very simple example
will enable us to get a first illustration of the previously discussed notions, and to put
the finger on some related problems, in a surprisingly rather general way (despite the low-
dimensional framework). Let us now detail the example. First, we consider the Kriging
predictor and the EI function of figure 2.1, both in blue. Assume that a first processor is
vacant, and that one wishes to use it to perform a fourth simulation. It is then natural to
perform this additional simulation at the point maximizing the current version of EI, that
is to say at the point 0.698 magnified by an orange dashed line on figure 2.1.

Let us now pretend that the evaluation of y at the latter point is getting started at a
currently available processor, say proc1, and set xbusy = 0.698. Assume further that a
second processor, proc2, is becoming available while proc1 is still busy with the computation
of y(xbusy). The main issue here is obviously to choose xnew, the point at which to evaluate
y with proc2, in such a way that the all available information is optimally used.

Computing the EEI criterion of eq. 6 by means of a procedure such as alg. 2.1 will lead us to
makes conditional simulations of Y (xnew) knowing the past observations. Before averaging
out a whole collection of EI curves obtained by this means and maximizing the obtained
EEI estimate, let us first focus on a single conditional simulation and detail the underlying
mechanism. Figure 2.2 illustrates the effect of enriching EI with a simulated observation.
The latter is represented by a green point on the upper graph, as well as the new (virtual)
Kriging mean predictor. In the same color, the curve on the lower graph stands for the
corresponding EI with enriched information. As mentioned earlier, this updated EI is null
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Figure 2.1: A first Kriging model, with maximization of the Expected Improvement.
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Figure 2.2: Evolution of EI afer one conditional simulation at xbusy.

at xbusy. Furthermore, since the simulated value of Y (xnew) is particularly low, and hence
appealing in our minimization context, EI is now pointing to values of x close to xbusy

(note the EI values of smaller magnitude than at the previous step). However, choosing
the global maximizer of this EI for xnew does not completely make sense. Indeed, the
simulated value of Y (xnew) is arbitrary, and another simulated value would maybe lead to
discard this point and go for a candidate xnew in a different zone of the input space.

It seems therefore necessary to propagate the uncertainty concerning the new EI function
by integrating it over the possible scenarii concerning the value of Y (xnew), or at least to
circumvent the problems associated to this unkown value and its variability by using some
adapted heuristic. Here we propose at first to use brute force: simulating 100 values of
Y (xnew) conditional on the past, calculate the 100 associated EI with enriched information,

8



Figure 2.3: 100 conditional simulations at xbusy and the corresponding EEI estimate.

and take the arithmetic mean of them as proxy for EEI.

The lower graph of figure 2.3 above represents the estimate of EEI obtained by averaging
out the 100 EI’s with enriched information obtained by conditional simulation of Y (xnew)
(maximum reached at x ≈ 0.347). The correponding values are materialized by colored
points on the upper graph of figure 2.3. The 100 EI curves are printed on figure 2.4, with
colors matching the one previously used on figure 2.3 for the simulated responses at xnew.

A natural surrogate for EEI maximization is to maximize its Monte Carlo estimate ÊEI,
such as represented on figure 2.3 (lower graph, see maximization result above). However,
nsim has to be chosen sufficiently large in order to guarantee a good approximation of EEI,
which may cause high computational costs. Furthermore, based on figure 2.4 above, one
can imagine that a small set of carefully selected EI’s might lead the user to a simplified
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Figure 2.4: 100 simulations of the Expected Improvement with enriched information, based
on the simulated Y (xnew) of figure 2.3.

description of this family of curves, yielding an efficient proxy for EEI maximization. Let
us now explore these questions in some more detail.
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3 Maximization of the EEI and related problems

3.1 Direct approach: maximizing the mean of a random function

3.1.1 A bit of theory and bibliography

Maximizing the previously introduced EEI criterion is in fact a special case of a classic
stochastic optimization problem, i.e. the maximization of an expectation function such as

x ∈ D −→ E[Q(x, ζ)], (9)

where Q is a function depending on x and on the scalar- or vector-valued random variable
ζ), and the distribution of ζ is assumed known or at least reproducible by simulation.

Such problems are commonly solved in practice thanks to approximations of E[Q(x, ζ)] by
finite averages of the form 1

N

∑N
i=1Q(x, ζ(i)), where N and the ζ(i) are chosen in order to

get a good trade-off between the sample size (N , wished small) and a good approximation
of the distribution of ζ by a uniform discrete law over the N -sample {ζ(1), . . . , ζ(N)}.

One natural idea is to generate {ζ(1), . . . , ζ(N)} by Monte Carlo, i.e. to draw by simulation
a N -sample of variables independently following the distribution of ζ. This is what Shapiro
calls SAA (Sample Average Approximation). To quote him,

” The term sample average approximation method was coined in [47], al-
though this approach was used long before that paper under various names.
Statistical properties of the SAA method are discussed in [74] and complexity
of two and multi-stage stochastic programming in [75] . . . Rates of convergence
of Monte Carlo and Quasi-Monte Carlo estimates of the expected values are
discussed in [58]. Numerical experiments with the SAA method are reported
in [50, 51, 83], for example. ”

Such an approach makes sense, and without going into difficult detail concerning the dif-
ferent kinds of stochastic convergence, the law of large numbers ensures (under specific
conditions) that the Sample Average Approximation will resemble the expectation objec-
tive function E[Q(x, ζ)] always more as N grows, and that so will do their respctive maxima
and maximizers. See e.g. [81] for a discussion on sufficient conditions for the sequence of
proxy maximizers to converge to the actual maximizer in a suitable way.

Anyway, even under conditions where nice asymptotic properties might be guaranteed, the
major question to answer in practice is the number of Monte Carlo simulations N needed to
ensure that arg min 1

N

∑N
i=1Q(x, ζ(i)) is a reasonable approximation of arg min E[Q(x, ζ)].

A theoretical study of this would certainly be very demanding, and is somehow out of
scope here. However, we will come back in the next section to our previous example, and
propose some illustrations related to these convergence questions.
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3.1.2 Back to the main example

Before focusing on the estimation of EEI and on the maximization of the obtained estimate,
let us brievly study the variability of the maximum and maximizer of EI with enriched
information when ybusy randomly varies following the distribution defined by density 5.
The ybusy values used here are the same as on figures 2.3 and 2.4. The variability shown by
the upper left histogram of fig. 3.1 illustrates the fact that the value of ybusy significantly
influences the EI with enriched information and its maximum. Indeed, a very low value of
ybusy changes the current minimum, and makes it harder to exceed. On the other hand,
a very high value of ybusy does not affect the current minimum but may locally attract
the Kriging predictor, and prevents from any improvement in the close neighbourhood of
xbusy. However, depending on the rigidity of the covariance kernel used, such high ybusy

values might cause some low overshooting and could magnify the value of EI in farther
areas. Finally, medium values of ybusy, in particular slightly above the current minimum,
are susceptible of keeping the EI maximum at the same order of magnitude as earlier.

Figure 3.1: Left: histograms of the minima and minimizers of the 100 EI with simulated
enriched information represented on figure 2.4. Right: joint distribution.

The lower left histogram of fig. 3.1 shows how the maximizer of the EI with enriched
information behaves when ybusy varies. We clearly distinguish three modes. The first one,
around 0.35, roughly matches with the left local maximum of EI at the previous step. As
can be seen on the left graph of fig. 3.2, this mode corresponds to relatively high values of
ybusy. The second mode, around 0.6, gathers a smaller number of points with medium ybusy

values. A clear linear trend appears in the corresponding cluster of points on figure 3.2,
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higher values of ybusy tendencially matching with minimizers on the left, while smaller ybusy

seem pushing the maximizer of the enriched EI closer to xbusy. Note that a reverse trend
is similarly visible on the first cluster, which may presumably be imputed to some kind of
rigidity effect, as evocated earlier: a very high ybusy value would drastically lower EI in the
close neighbourhood of xbusy, but the associated curvature in the Kriging predictor would
also create a steeper hill, moving the maximizer of the enriched xbusy to the right of the left
cluster. Finally, the right cluster corresponds to the lowest simulated values of ybusy, with a
similar slope to the one of the first cluster. A moderatly small value of ybusy causes a slight
decrease of the current minimum response, and sends the maximizer of the enriched EI to a
zone with high variance, the right of the third cluser. As ybusy decreases further, however,
the influence of this very appealing value at xbusy reaches the third cluster, progressively
moving the maximizer of the enriched EI to the left of the cluster.

Figure 3.2: Left: Dependence bewteen the location of the maximizer of the enriched EI
and ybusy. Right: maximum of the enriched EI as a function of ybusy.

The right graph of fig. 3.2 represents the evolution of the maximum of the enriched EI
as ybusy increases. Contrarily to the previous graph, this scatter plot seems to stem from
a continuous function, which makes sense from a mathematical point of view. Indeed,
the enriched EI is a continuous function of ybusy, and hence absolutely continuous over
any compact set. One can show that the maximum of EI with enriched information is
consequently a continuous function of ybusy. As could already be felt on the basis of the
previous graphs, only the range of medium values of ybusy breaks the monotonicty of this
function. Indeed, for very small values of ybusy, there isn’t much room for improvement.
Then, the maximum increases until ybusy reaches the actual current minimum (red vertical
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line on the right graph of fig. 3.2). At this stage, the maximum of the enriched EI starts
decreasing with increasing ybusy: higher ybusy now do not change anything to the minimum
of reference, but do pull the response surface up in the neighbourhood of the maximizer
of the enriched EI, hence affecting its maximum negatively through the increasing Kriging
mean predictor. At a certain point, however, the maximizer of the enriched EI jumps to
the left cluster, and the associated maximum starts again to increase with ybusy. This last
effect seems due to the previously evocated rigidity artifact, a higher observation value at
xbusy causing deeper valleys in the surrounding clusters.

We now continue with the maximization of the estimated EEI, and with an investigation
concerning the number of ybusy simulations needed here to achieve a good result.

Figure 3.3: Evolution of EEI maxima and maximizers with progressively growing sample

Fig. 3.3 shows how the maximum and the global maximizer of the estimated EEI evolves,
when the sample size of ybusy values used for the estimation of EEI varies. Here, only the
100 values previously simulated are used, and the increasing number of ybusy values means
that nested subsets of that 100 values are progressively considered (the first one, the two
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first ones, and so on . . . ). It is quite impressive to observe how fast the maximizer of
the estimated EEI converges to the actual EEI maximizer. Here, after an unstable phase
during the 8 first iterations (averaging with less or equal than the 8 first simulated ybusy

values), the maximizer of the estimated EEI stabilizes to a unique point. Meanwhile, the

estimated EEI maximum seems to converge with a classical rate of convergence of n
− 1

2
sim.

In order to see in what measure this early stability is due to the particular sample drawn
in the previous example, let us generate other samples at random following the same
distribution and observe the variability of the new estimated EEI maxima and maximizers.
We follow for each simulated sample the same nesting scheme as above.

Figure 3.4: Boxplots retracing the evolution of EEI maxima and maximizers with progres-
sively growing sample (1 to 20 here), when the sample is drawn 100 times at random.
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Despite the particularly good results obtained in the previous example (stability for a
sample of size greater than 8), the boxplots of fig. 3.4 are here to signify that this first
attempt was rather lucky, and that significantly larger samples were nedeed in order to
guarantee a sucessful approximate EEI maximization with high probability.

Figure 3.5: Left: boxplots retracing the evolution of EEI maxima and maximizers with
progressively growing sample (1 to 100 here, 100 sample realizations). Right: proportion
of approximate EEI maximizers in the first cluster in function of the sample size.

Let us finally see what happens if we replicate 100 times the complete previous experiment,
i.e. every time with 100 simulated ybusy values. The results are presented on fig. 3.5.
On the left graph, the boxplots confirm again that we had been lucky in the previous
experiment: here, we need to invest about 100 ybusy simulations to get rid of approximate
EEI maximizers landing in the right cluster (upper points in lower graph). As we can
see on the right graph of figure 3.5, investing 20 conditional simulations leads to the good
cluster (i.e. near to the actual EEI maximizer) in about 80% of the cases. This leaves
20% of misleading approximate optimization results, which a reasonable user may choose
not to accept. Always on the same graph, increasing the sample size to 50 leads to a
probability of about 95% to get an approximate optimizer in the good cluster, while the
100% probability level seems to be reached for a sample of 100 simulated ybusy values.
Working with an average of so many EI functions can be computationally very demanding,
so that reliable and efficient methods involving a limited number of ybusy values might be
appealing. We address this issue in the following section, where encouraging results are
obtained in the modest present framework case of a unique busy processor.
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3.2 Towards reducing to a limited number of scenarii

3.2.1 Theory: per un pugno di quantili . . .

In the last section, we proposed to approximate EEI by averaging several EI criteria with
enriched information, where the unkown response ybusy was randomly simulated following
the ”Kriging conditional distribution” of Y (xbusy)|A.

Here we depart from this Monte Carlo approach by deterministically choosing a represen-
tative subset of ybusy values, and restricting the EEI maximization to the maximizers of
the different EI enriched with the latter ybusy values.

The approach proposed here to get a subset of ybusy values representing well the Kriging
conditional distribution is to select quantiles of it. We focus on quantiles of level α, α
varying regularly between 0.05 and 0.95 with a finesse depending on the chosen number of
subset points. Denoting nquant this number of points, the proposed protocole reads:

1. Calculate nquant quantiles of Y (xbusy)|A

2. For ybusy equal to each of these quantiles, maximize the enriched EI

3. For each of the obtained maximizers, estimate EEI
(possibly with the same nquant ybusy values as earlier)

4. Choose the enriched EI maximizer with highest estimated EEI

Such a technique should a priori not be expected to work well. In fact, in a general
stochastic optimization framework, nothing guarantees that the maximum of an expected
function will be reached at the maximizer of some of the underlying realizations. It is even
easy to build counter-examples: consider for instance the piecewise linear function f1 over
[−1, 1] with slope 2 over [−1, 0] and slope 1 over [−1, 0], f2 similarly defined with slopes
−1 and −2, and f being a random function equal to f1 or f2 with probability one half. It
is then clear that f1 takes its global maximum (1) at 1, f2 takes its global maximum (1) at
−1, but none of these points is a maximizer of the expectation of f . indeed, the expectation
value of f at these two points is −1, while the latter takes the value 0 (its maximum) at
0, which is not a maximum of f1 nor f2. Note that a variant of this counter-example with
positive functions may be constructed by a simple vertical translation.

Coming back to our EI functions with enriched information, things are going much better
than in the counter-example above. Indeed, it is quite unlikely that a point being a
EI maximizer for some value of ybusy becomes dramatically bad for another ybusy value.
Furthermore, it is natural to suspect that a point maximizing EI with a high EI value for
some ybusy is a good one for EEI. If however the high potential of a point would be due
to an artifact and rely on the precise ybusy value considered in the enriched EI, then we
could expect that the fact of averaging enriched EI values over several ybusy candidates
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would smooth this outlier out and cancel the dominantion of this point. Even if we are not
convinced that this method should work in every situation, the example below shows quite
encouraging results. Before coming to any general conclusions however, the latter have to
be questioned and complemented by further investigations.

3.2.2 Back to the main example

Let us first choose nquant = 10 and detail review the protocole above in the framework
of our main example. We recall that the EEI maximizer obtained by Monte Carlo with
a 100-sample over a 200-elements grid was 0.3467337. Now, we replace the Monte-Carlo
sample by the 10 quantiles of Y (xbusy)|A with respective levels 0.05, 0.1, . . . , 0.9, 0.95:

> quantiles
[1] -1.52060808 -1.11769068 -0.87799880 -0.68650068 -0.51454523 -0.34811045
[7] -0.17615500 0.01534313 0.25503501 0.65795240

Maximizing the 10 obtained enriched EI criteria, we get the following candidates:

> EI_maximizers
[1] 0.7487437 0.7688442 0.7788945 0.7939698 0.5929648 0.5728643 0.3467337
[8] 0.3517588 0.3567839 0.3618090

We notice that the seventh is exactly the previous EEI maximizer, and that the three
following candidates are in its immediate neighbourhood. These values are plotted against
the corresponding enriched EI values on the left graph of fig. 3.6. We can observe that
the three clusters are well represented, even if the associated enriched EI estimates do not
respect the order observed in fig 3.2. This is due to the the approximation of these enriched
EI on the basis of 10 ybusy values only.

We now restrict our attention to the 10 previously derived maximizers, and compute EEI
estimates obtained at these points, enriched EI averages over the same 10 ybusy values.
The right graph of fig 3.2 represents the 10 enriched EI values obtained for each one of the
10 points. The four last points seem to clearly dominate the others in terms of median EI,
which would not be necessarily the case for other metrics penalizing uncertainty. Here we
give the estimated EEI values obtained by the ”quantile approximation”:

> EEI_values
[1] 0.03858103 0.04777052 0.05104971 0.05436474 0.05516403 0.05399162
[7] 0.07446641 0.07434650 0.07404384 0.07355171

And the point maximizing this rough EEI estimate among the 10 candidate points is the
7th, i.e. 0.3467337. This excellent result might seem relatively surprising, in particular
its precision. But one may not forget that the search (enriched EI maximization) has
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Figure 3.6: Left: maximizers and maxima of the enriched EI criteria associated with the
10 quantile-based ybusy values mentioned above. Right: enriched EI

been restricted in all cases to 200 points. Furthermore, this good finding might be highly
depending on the number of quantiles, and even be non monotonic in nquant, which could
lead to serious practical issues in the a priori choice of nquant. So let us go one step
deeper, and investigate the influence of nquant on the approximate EEI maximizer obtained
by the proposed method. Here below are the results obtained by repeating the quantile
approximation and optimization method for nquant varying from 1 to 30:

> maximizers
[1] 0.7487437 0.3618090 0.3618090 0.3467337 0.3517588 0.3517588 0.3467337
[8] 0.3517588 0.3467337 0.3467337 0.3467337 0.3467337 0.3467337 0.3467337
[15] 0.3467337 0.3467337 0.3467337 0.3467337 0.3467337 0.3467337 0.3467337
[22] 0.3467337 0.3467337 0.3467337 0.3467337 0.3467337 0.3467337 0.3467337
[29] 0.3467337 0.3467337

We observe that after a first point (0.7487437) in the third cluster, all followers belong to
the first cluster, and are close neighbours of 0.3467337. Starting from nquant = 9, they are
even all equal to 0.3467337. Compared to the variability observed on fig. 3.4 for the case
of Monte Carlo EEI estimation, the ”quantile method” provides a deterministic result, free
of any variability, and with very good performances on this example in terms of locating
the EEI correctly based on a small number of scenarii. Indeed, 2 or 3 quantile values are
necessary to locate the EEI maximizer in the right zone (”first cluster”), while nquant ≥ 9
guarantees the same result as found by Monte Carlo with a 100-elements sample (search
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restricted to a 200-points grid). Despite the impressively good results obtained on this
example, one has also to notice and remember that nquant = 1 does lead to a sub-optimal
cluster, which means in essence that plugging in the Kriging mean prediction (i.e. the KB
strategy) as a proxy to the unknown ybusy response is clearly not the best thing to do.

4 Conclusion and research perspectives

A variant of the EI criterion, EEI, has been proposed for the case of asynchronous Kriging-
based parallel optimization. Here we have restricted our attention to the canonical situation
where one processor is free while another one is still busy with the evaluation of the objective
function at a candidate point xbusy. The unkown response at xbusy can be simulated
conditional on the available information, hence providing a means to estimate EEI.

Estimating EEI by conditional simulations amounts to averaging several enriched EI criteria
obtained with the simulated response values at xbusy, i.e. applying several times a Liar
strategy with a random lie generated by Monte Carlo. Maximizing the estimated EEI
may then become quite computationally demanding, all the more so as the number of
simulations gets large when it comes to approximating the actual EEI well. Here we
relate that to a classical stochastic optimization problem, referred to as Sample Average
Approximation in the litterature, and propose to simplify it by summarizing the conditional
distribution of the unkown reponse(s) by a small set of representative scenarii.

The idea of reducing to a few scenarii is not new, and what is proposed here is just a first
draft of what could be developed for EEI maximization. In our main example, summarizing
the unkown reponse distribution by a few quantiles has given sensible results, and a good
picture of the full Monte Carlo results (with 100 drawings) with a lower computationnal
cost (10 evaluations). Moreover, restricting EEI maximization to the maximizers of the
enriched EI criteria obtained by the ”quantile method” has delivered the same results as
by maximizing the 100-drawings Monte Carlo EEI estimate over a 200-points grid. This is
a quite unexpected outcome, to be urgently investigated with further test configurations.
Apart from a bigger scale testing, and the generalization to multiple busy and vacant
processors, supplementary research could be done on several aspects including:

• a fine study of the impact of ybusy on the enriched EI and its maximizer(s),

• applying curve classification to the EI functions obtained with many ybusy values,

• distinguishing regions of low EI variation, in particular in higher dimensions.

The final report will include further tests and theoretical considerations related to the
questions above. A further study of several articles listed in the following bibliography
—and with the help of [82]— is expected to shed some more light on existing tricks in
Monte Carlo methods and scenarii selection for stochastic optimization.
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