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Abstract

In this paper, we present a general way to correct a positive bias which occurs

in all the estimators in random balance design method (RBD) and in its hybrid

version, RBD-FAST. Both these techniques derive from Fourier amplitude sen-

sitivity test (FAST) and, as a consequence, are faced with most of its inherent

issues. And up to now, one of these, the well-known problem of interferences,

has always been ignored in RBD. After presenting in which way interferences

lead to a positive bias in the estimator of �rst-order sensitivity indices in RBD,

we explain how to overcome this issue. We then extend the bias correction

method to the estimation of sensitivity indices of any order in RBD-FAST. We

also give an economical strategy to estimate all the �rst-order and second-order

sensitivity indices using RBD-FAST.

Keywords: global sensitivity analysis, sensitivity indices, random balance

design, RBD-FAST, bias correction

1. Introduction

Global sensitivity analysis of a model output consists in quantifying the

respective importance of input factors over their entire range of values. Many

techniques have been developed in this �eld (see [1] for a review), and one of
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the most robust is built on the general decomposition of variance1 proposed by

Sobol' in the early nineties2 [5].

Decomposition of variance and sensitivity indices. Given a mathematical ex-

plicit model, Y = f(X1, . . . , Xp) where the input factors Xi are independent

scalar random variables and f is any square-integrable scalar function � e.g.

nonlinear or nonmonotonic �, we can de�ne an exhaustive group of indices

measuring the relative e�ect of input variables or combinations thereof. Indeed,

the total variance V of the model output Y can be decomposed as:

V =

p∑
k=1

∑
1≤i1<···<ik≤p

Vi1...ik (1)

where

Vi , Var
(
E(Y |Xi)

)
, (2)

Vij , Var
(
E(Y |Xi, Xj)

)
− Vi − Vj (3)

and so on. Thus, dividing both sides of (1) by V , we obtain a positive and

normalized decomposition of the global variations of the function f ,

1 =

p∑
k=1

∑
1≤i1<···<ik≤p

Si1...ik (4)

where the Si1...ik are the so-called sensitivity indices � or Sobol' indices �; in

particular, the �rst-order sensitivity indices,

Si ,
Vi

V
, 1 ≤ i ≤ p , (5)

describe the main e�ect of each input factor, and the second-order sensitivity

indices,

Sij ,
Vij

V
, 1 ≤ i < j ≤ p , (6)

1Variance-based methods constitute an important component of global sensitivity analysis.

Alternative approaches are nevertheless possible; one can cite, in particular, a recent work due

to Sobol' and Kucherenko [2] providing a new global sensitivity measure based on derivatives.
2This decomposition has a long history; one of the earliest work related to this topic is due

to Hoe�ding [3] (see [4] for further historical details).
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measure the part of variance due to both input variables Xi and Xj .

In the case of an additive model � i.e. f(X1, . . . , Xp) =
∑p

k=1 fk(Xk) �

all terms but the �rst-order sensitivity indices are null and we then obtain a

full decomposition with only S1, . . . , Sp. On the contrary, if f is a non-additive

function, it is necessary to evaluate higher-order terms to point out which in-

teractions are signi�cant. However, in practice, numerical models can't reach a

high degree of complexity � especially in high dimension � and most of the

time, it is su�cient to compute only the second-order indices to get a good

overview of interactions.

The FAST method and its developments. Di�erent methods have been proposed

to estimate this kind of indices based on variance, and FAST, introduced in the

seventies, was one of the earliest. The three introduction papers [6�8] describe

how to compute main e�ects � i.e. �rst-order sensitivity indices3 � exploiting

Weyl's ergodic theorem4 [12]. Then, in the review article [13], the authors

precise the underlying theory considering multiple Fourier series; it allows, in

particular, to de�ne higher-order sensitivity indices estimators and to suggest a

decomposition of variance (see formula (2.29) in [13]). But, in practice, because

of various sources of error � especially the one due to interferences � FAST has

only been applied to the estimation of �rst-order and total5 sensitivity indices

in small dimension.

The RBD and Hybrid FAST-RBD (HFR) methods, introduced in 2006 by

Tarantola et al. [15], partially overcome the inherent drawbacks of FAST using

a new kind of sampling technique based on Satterthwaite's random balance de-

3In 1998, Saltelli and Bolado [9] discussed the equivalence between �rst-order sensitivity

indices estimated with Sobol' method � i.e. Monte Carlo method � and main e�ects com-

puted with FAST, and proved the identity of their prediction on two test cases. Even if there

is no theoretical result on this issue, it is commonly admitted that these di�erent techniques

estimate the same statistical quantity.
4From a discrete point of view, it would probably be better to use the famous Weyl's

equidistribution criterion ([10], in german). For an english reference, see for example [11].
5See the EFAST method due to Saltelli et al. [14].
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signs [16]. However, as the authors state, both these new methods only allow to

estimate �rst-order terms, and it remains a speci�c issue due to the interferences

leading to an over-evaluation of the sensitivity indices, especially at low sample

size. This last problem has never been solved. Nevertheless, in 2009, Mara

[17] notices that interaction terms estimators can be de�ned using the hybrid

approach. More precisely, he explains how to compute the sensitivity index of

any group of input variables using the HFR method (renamed RBD-FAST).

In section 2, we brie�y recall the FAST method and discuss the di�erent

sources of error of its estimators. We then present, in section 3, the speci�c

problem of interferences in RBD which leads to the positive bias of the �rst-order

sensitivity indices and we propose a correction method to overcome this issue.

In section 4, we extend this technique to the estimators of sensitivity indices

of any order in RBD-FAST, and in section 5, we give an economical strategy

to estimate, under a rather general assumption, all the �rst-order and second-

order sensitivity indices using RBD-FAST. Numerical examples are presented

in section 6 to illustrate the accuracy of the proposed bias correction method

and, conclusions and ideas for a future work are summarised in section 7.

2. Sources of error in the FAST method

The FAST method is based on a sequence of approximations which generates

various error terms. Let us detail the four main sources of error which a�ect

the estimation of sensitivity indices by FAST.

2.1. Description of the FAST method

The FAST method is based on a speci�c experimental design � the so-called

search curve � which allows to make use of techniques relative to the Fourier

series. The sample points (xk)k=1...N are de�ned as

∀i = 1, . . . , p ,∀k = 1, . . . , N , xk
i = Gi

(
sin(ωisk + φi)

)
, (7)
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where Gi are functions to be settled to impose probability density functions on

the input variables Xi, ωi are integer frequencies � free of interferences up to

a certain order �, φi are random phase-shifts and (sk)k=1...N is the discrete

parametrical variable de�ned as

∀k = 1, . . . , N , sk =
2π(k − 1)

N
. (8)

In particular, to get uniform in [0, 1] marginal distributions, one shall use (see

for example [14]),

Gi =
1

π
arcsin+

1

2
. (9)

[ Figure 1 about here. ]

The set of image points
(
f
(
xj
1, . . . , x

j
p

))
j=1...N

, obtained from the experi-

mental design de�ned by (7) is then considered as a uniformly sampled signal.

Hence, decomposing the �nite spectrum of this discrete signal with respect to

the frequencies ω1, . . . , ωp, it is possible to de�ne the estimators of the di�erent

parts of variance as

V̂ =
∑

1≤|n|≤N/2

|cn|2 , (10)

V̂i =
∑

1≤|k|≤Nh

|ckωi |2 , (11)

V̂ij =
∑

2≤|k|+|l|≤Nlc2

|ckωi+lωj |2 , (12)

and so on; where Nh is the highest harmonic considered as non-negligible and

Nlc2 is the value over which the linear combinations of ωi and ωj are considered

as negligible, and where

for all − N

2
≤ n ≤ N

2
, cn =

1

N

N∑
j=1

f
(
xj
1, . . . , x

j
p

)
e−in

2π(j−1)
N (13)
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are the discrete Fourier coe�cients. Finally, dividing (11) (resp. (12)) by (10),

we get the estimator of a �rst-order (resp. second-order) sensitivity index:

Ŝi =

∑
1≤|k|≤Nh

|ckωi |2∑
1≤|n|≤N/2

|cn|2
, (14)

Ŝij =

∑
2≤|k|+|l|≤Nlc2

|ckωi+lωj |2∑
1≤|n|≤N/2

|cn|2
. (15)

2.2. Sources of error

The accuracy of these estimators is naturally function of the sample size and

we can observe an empirical convergence to the theoretical values as N tends

to +∞. But, this dependence with respect to the sample size is intricate; we

distinguish four main sources of problems generating an error which vanishes as

N tends to +∞.

The experimental design. We can notice that, even if it is possible to impose any

probability density functions to the marginal distributions using the functions

Gi, the search curve has bad space-�lling properties and doesn't respect the

joint probability density function (see �gure 1). As a consequence, this not

optimal experimental design leads to some error in terms of bias and variance.

The interferences. In the decomposition of the �nite spectrum, if there exists

a linear combination of the frequencies ω1,. . . , ωp which is equal to zero, some

parts of variance could be attributed by error to any estimator. For example, if

−2ω1 + ω2 = 0, the discrete Fourier coe�cient c2ω1 = cω2 contains information

of both X1 and X2, and should not be totally attributed to both Ŝ1 and Ŝ2.

These interferences can lead to an over-evaluation of all the sensitivity indices,

and in order to keep low these positive biases we adopt the criterion proposed

by Schaibly and Shuler [7] to get a set of frequencies free of interferences up to
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a certain order M ,

p∑
i=1

aiωi ̸= 0 for
p∑

i=1

|ai| ≤ M + 1 . (16)

The aliasing. Only the linear combinations ω =
∑p

i=1 aiωi that lie inside the �-

nite spectrum � i.e. between −N/2 and N/2 � are unambiguously represented

by the discrete sampled signal. If ω lies out of this range, its spectral component

is falsely attributed to another frequency inside the �nite spectrum. To avoid,

in part, this aliasing phenomenon, which can lead to positive biased estimators,

it is necessary to follow the Nyquist-Shannon theorem, i.e. to impose that the

sampling rate is large enough. As a consequence, the sample size is bounded

from below as follows,

N ≥ 2Nh max
1≤i≤p

ωi . (17)

The truncation. The di�erent �nite sums de�ning the estimators of the total

variance and the partial variances in formulas (10), (11) and (12) should be

in fact in�nite series. But, as the spectrum only contains a �nite number of

frequencies, it is necessary to consider truncated sums. As a consequence, all the

estimators being sums of squares, the truncations lead to an under-evaluation

of all these quantities. These negative biases naturally vanish as the spectrum

becomes larger, i.e. as N tends to +∞.

3. The random balance design method

Keeping the underlying theory of FAST, but using a new sampling method,

RBD allows to get round most of the issues inherent to FAST. However, the

problem of interferences remains in a sense clari�ed further, and it is necessary

to apply a speci�c correction method to eliminate the induced positive biases.

3.1. The sampling method

Contrarily to FAST, all the ωi, in RBD, are equal to a unique frequency

ω and the way to di�erentiate input variables consists in taking random per-

mutations of the coordinates of the sample points. Let π1, . . . , πp be random
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permutations on the set {1, . . . , N}, xk are de�ned as

xk
i = Gi

(
sin(ωsπi(k))

)
, ∀i = 1, . . . , p and ∀k = 1, . . . , N . (18)

Because of symmetries in sine, one shall choose an odd integer N to get a

good space-�lling design. In this case, RBD technique is very close to Latin

hypercube sampling introduced in 1979 (see [18]); the only di�erence is that, in

RBD, sample points are located in the center of the cells (see �gure 2).

[ Figure 2 about here. ]

3.2. The estimator

Proceeding with RBD sampling method, we can estimate the �rst-order

sensitivity indices; the estimator of the total variance is de�ned as in FAST and

the part of variance due to one factor is estimated by

V̂i =
∑

1≤|k|≤Nh

|cπi

kω|
2 (19)

with

cπi

kω =
1

N

N∑
j=1

f
(
x
π−1
i (j)

1 , . . . , x
π−1
i (j)

p

)
e−ikω

2π(j−1)
N . (20)

Indeed, considering a �xed i, the sample points
(
x
π−1
i (j)

1 , . . . , x
π−1
i (j)

p

)
j=1...N

are

such that the ith coordinate is sampled with respect to the frequency ω and the

other ones are sampled in a chaotic way because

x
π−1
i (j)

k = Gk

(
sin

(
ωsπk(π

−1
i (j))

))

=


Gk

(
sin(ωsj)

)
if k = i

Gk

(
sin

(
ωsπi

k(j)

))
if k ̸= i ,

(21)

where πi
k = πk ◦ π−1

i is almost surely a non-trivial permutation. As a conse-

quence, in the �nite spectrum � contained in [−N
2 ,

N
2 ] � of the signal(

f
(
x
π−1
i (j)

1 , . . . , x
π−1
i (j)

p

))
j=1...N

, (22)

the harmonic of ω are only related to Xi. Thus, using FAST's estimator, we get

formulas (19) and (20).
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Remark 1. The choice of the frequency ω seems to be of secondary importance;

but, to avoid aliasing, the most e�cient value is the smallest one, typically

ω = 1. In this case, the aliasing phenomenon is negligible and consequently,

there is no more restriction on the sample size like in formula (17).

3.3. The bias

In order to understand the underlying phenomenon which leads to the posi-

tive bias, it is necessary to precise the composition of the �nite spectrum of the

signal de�ned in (22). As we explained in the last section, the part of variance

due to Xi weights the harmonics of ω, but it is also essential to notice that, be-

cause of chaotic sampling of the (Xk)k ̸=i, the rest of variance � denoted V−i �

spreads on the whole �nite spectrum. In particular, the rest of variance weights

the harmonic of ω too, and these interferences lead to an over-evaluation of Vi.

The positive bias is denoted Bi and is de�ned as the part of V−i located on

the harmonics,

−Nhω, − (Nh − 1)ω, . . . , − ω, ω, . . . , (Nh − 1)ω, Nhω . (23)

It obviously depends on the sample points but chaotic sampling implies that

no frequency is favoured; so in mean6, V−i is equally shared on the whole �nite

spectrum. Thus, for an odd integer N , we de�ne the estimator of Bi as

B̂i =
2Nh

N
V̂−i , (24)

and the corrected estimator of Vi as

V̂ c
i = V̂i − B̂i . (25)

Thus, to get an explicit solution, it is necessary to de�ne the estimator V̂−i in

(24). An e�cient and economical way to get it consists in noticing that V−i is

6i.e. when the experience is repeated, with a �xed sample size N , using di�erent per-

mutations πi which are assumed to be the result of a uniform sampling inside the set of

permutations on {1, 2, . . . , N}.
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the complementary variance of Vi, i.e.

V−i = V − Vi ; (26)

so, assuming the bias correction, it comes

V̂−i = V̂ − V̂ c
i . (27)

As a consequence, the corrected estimator of the part of variance is such that

V̂ c
i = V̂i − 2Nh

N

(
V̂ − V̂ c

i

)
; (28)

and dividing both sides of the equality by V̂ , we obtain

Ŝc
i = Ŝi −

2Nh

N

(
1− Ŝc

i

)
, (29)

where Ŝi et Ŝ
c
i are respectively the RBD estimator of the �rst-order sensitivity

index and the corrected one. Finally, setting λ = 2Nh

N , we get the explicit

formula

Ŝc
i = Ŝi −

λ

1− λ

(
1− Ŝi

)
. (30)

Remark 2. It is important to notice that,

(i) the more N is large, the less the bias is signi�cant,

(ii) the more Si is large, the less the bias is signi�cant.

4. The hybrid approach: RBD-FAST

The underlying idea in RBD-FAST is to combine both the RBD and FAST

sampling approaches. Therefore, this new method is naturally faced with the

classical issues of FAST, but in a lesser extent. The main advantage in the hybrid

approach is that the estimation of interaction terms is possible, but because of

the same problem of interferences as in RBD, it is necessary to perform a bias

correction method.
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4.1. The sampling method

First, the p input variables are divided into groups of approximatively equal

cardinality. Then free of interferences frequencies are allocated within each

group of factors and random permutations are applied on each group. For

example, we can have the following con�gurations,

6 factors: X1 X2 X3 X4 X5 X6

ω1 ω2 ω3︸ ︷︷ ︸
π1

ω1 ω2 ω3︸ ︷︷ ︸
π2

6 factors: X1 X2 X3 X4 X5 X6

ω1 ω2︸ ︷︷ ︸
π1

ω1 ω2︸ ︷︷ ︸
π2

ω1 ω2︸ ︷︷ ︸
π3

7 factors: X1 X2 X3 X4 X5 X6 X7

ω1 ω2 ω3︸ ︷︷ ︸
π1

ω1 ω2︸ ︷︷ ︸
π2

ω1 ω2︸ ︷︷ ︸
π3

.

Remark 3. Tarantola et al. [15] and Mara [17] present RBD-FAST (or HFR)

in another way: the p input variables are partitioned in the same way but the

permutations are applied within the groups and a di�erent frequency is associ-

ated to each group. Actually, the methods are strictly equivalent; it is just two

di�erent points of view.

4.2. The estimators

As Mara explained in [17], this hybrid sampling method allows to de�ne the

estimator of sensitivity indices of any group of input variables. In particular,

considering two factors inside the mth group and respectively associated with

the frequencies ωi and ωj , we can de�ne the part of variance of their interaction

as,

V̂ij =
∑

2≤|k|+|l|≤Nlc2

|cπm

kωi+lωj
|2 (31)

where Nlc2 is the value over which the linear combinations of ωi and ωj are

considered as negligible and with

cπm

kωi+lωj
=

1

N

N∑
n=1

f
(
x
π−1
m (n)

1 , . . . , x
π−1
m (n)

p

)
e−i(kωi+lωj)

2π(n−1)
N . (32)

11



In the same way, considering a factor inside the mth group and associated with

the frequency ωi, we can de�ne its part of variance as,

V̂i =
∑

1≤|k|≤Nh

|cπm

kωi
|2 (33)

where Nh is the highest harmonic considered as non-negligible and with

cπm

kωi
=

1

N

N∑
n=1

f
(
x
π−1
m (n)

1 , . . . , x
π−1
m (n)

p

)
e−ikωi

2π(n−1)
N . (34)

Indeed, considering the sample points
(
x
π−1
m (j)

1 , . . . , x
π−1
m (j)

p

)
j=1...N

where m is

�xed, for 1 ≤ k ≤ p, we have,

(i) if Xk is associated with the couple (ωi, πm) then

x
π−1
m (j)

k = Gk

(
sin

(
ωisπm(π−1

m (j))

))
= Gk

(
sin

(
ωisj

))
(35)

(ii) if Xk is associated with a couple (ωi, πn), (n ̸= m) then

x
π−1
m (j)

k = Gk

(
sin

(
ωisπn(π

−1
m (j))

))
(36)

where πn ◦ π−1
m is almost surely a non-trivial permutation. As a consequence,

all the input variables outside the group associated with πm are sampled in a

chaotic way, and the other ones are sampled with respect to their frequencies.

Applying FAST's estimator, formulas (31)�(34) follow.

4.3. The bias

The phenomenon leading to positive biases described for the RBD method

occurs in the same way for RBD-FAST. As a consequence, parts of variance can

be corrected with an analogous technique.

Let Xm1 ,. . . ,Xmd
be the d input factors inside the mth group, and P be

a nonempty subset of {m1, . . . ,md}. We denote VP the part of variance due

to all the input variables (Xi)i∈P , i.e. the term due to the interaction of all

the (Xi)i∈P , if card(P ) > 1, or the term due to the only e�ect of Xi0 , if P =

{i0}. Let V̂P be the RBD-FAST classical estimator of VP , previously detailed

12



in formulas (31) and (33) for card(P ) = 1 or 2. We �rst de�ne the estimator of

the positive bias BP as

B̂P =
#P

N
V̂−G(P ) (37)

and the corrected estimator of VP as

V̂ c
P = V̂P − B̂P (38)

where #P is the number of frequencies taken into account to estimate VP � for

example, #P = 2Nh if card(P ) = 1 and #P = 2Nlc2(Nlc2 − 1) if card(P ) = 2

� and V̂−G(P ) is the part of variance not due to any subset of factors contained

in the group P belongs to, G(P ) = {m1, . . . ,md}. Assuming the bias correction,

it comes

V̂−G(P ) = V̂ −
∑

Q⊂G(P )
Q̸=∅

V̂ c
Q . (39)

As a consequence, we have

V̂ c
P = V̂P − #P

N

(
V̂ −

∑
Q⊂G(P )
Q ̸=∅

V̂ c
Q

)
, (40)

and dividing both sides of the equality by V̂ , we get

Ŝc
P = ŜP − #P

N

(
1−

∑
Q⊂G(P )
Q̸=∅

Ŝc
Q

)
, (41)

where ŜP and Ŝc
P are respectively the RBD-FAST estimator of the sensitivity

index SP and the corrected one. Then, setting

λP =
#P

N
, for any nonempty subset P ∈ {m1, . . . ,md} (42)

and

λ =
∑

Q⊂G(P )
Q̸=∅

λQ , (43)

we conclude with the explicit formula

Ŝc
P = ŜP − λP

1− λ

(
1−

∑
Q⊂G(P )
Q̸=∅

ŜQ

)
(see details in Appendix A). (44)
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Remark 4. This bias correction formula requires the knowledge of the biased

estimators ŜQ of any order relative to the input factors (Xi)i∈P . Unfortunately,

the estimation of the terms over a certain order is quite di�cult; so in practice, it

is necessary to neglect sensitivity indices over a certain degree δ and to consider

the following bias correction,

Ŝc
P = ŜP − λP

1− λ

(
1−

∑
Q⊂G(P ),Q̸=∅
card(Q)≤δ

ŜQ

)
(45)

where

λ =
∑

Q⊂G(P ),Q̸=∅
card(Q)≤δ

λQ . (46)

5. An economical strategy to estimate all the �rst-order and second

order sensitivity indices

Through this section, we develop a strategy using RBD-FAST to get all the

bias-corrected estimates of the �rst-order and second-order sensitivity indices of

a model in which we assume that the sensitivity indices over a certain order δ

are negligible. In this case, we can get the �rst-order and second-order indices

applying formulas (45) and (46).

However, contrarily to the RBD method in which all the main e�ects of

any model can be estimated using only one experimental design, the compu-

tation of all the �rst-order and second-order indices using RBD-FAST requires

a number of sample sets increasing with the number of factors p. Through an

example, Mara [17] observes that 5 sample sets are necessary to estimate all

the 15 second-order sensitivity indices � and naturally the �rst-order ones �

of a 6-dimensional model. In fact, in the case of 6 input factors, the number of

experimental designs can be restricted to 4. More generally, we establish that
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the required number of experimental designs is equal to:

1 + min√
p≤q

q prime

q for p ≥ 6

3 for p = 4 or 5

1 for p ≤ 3 ,

(47)

where p is the number of input factors. Low-dimensional models � p ≤ 3� can

be treated using FAST method with only one design of experiments; in the other

cases we implement a strategy based on elementary combinatory considerations.

5.1. Designs of experiments in the case p = q2 with q prime

In this particular case, the di�erent con�gurations of the designs of experi-

ments required to estimate all the �rst-order and second-order sensitivity indices

are quite natural. First, we divide the set of input variables {X1, . . . , Xp} into

q groups of q factors; for example, in the case p = 9, we can have,

con�guration 0 : X4X1X5︸ ︷︷ ︸
G0

1

X7X9X2︸ ︷︷ ︸
G0

2

X3X8X6︸ ︷︷ ︸
G0

3

. (48)

Following RBD-FAST approach, allocating free of interferences frequencies within

each group and applying a random permutation on each group, this con�gura-

tion allows to estimate the second-order indices S14, S15, S45, S27, S29, S79, S36,

S38 and S68, and all the �rst-order terms.

We then obtain the other con�gurations applying the following rules:

(R1) each of the new con�gurations is a partition of the input variables into q

groups of q factors,

(R2) each group in the new con�gurations is �lled with one factor of each orig-

inal group (G0
i )i=1...q,

(R3) if a set of two distinct variables {Xi, Xj} is already contained in a group

of a certain con�guration, Gk
n, then we are not allowed to de�ne a group

Gl
m in a next con�guration containing both Xi and Xj .
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As a consequence, in the case p = 9, it is only possible to create three new

con�gurations, for example,

con�guration 1 : X9X4X8︸ ︷︷ ︸
G1

1

X7X5X6︸ ︷︷ ︸
G1

2

X3X2X1︸ ︷︷ ︸
G1

3

con�guration 2 : X6X1X9︸ ︷︷ ︸
G2

1

X3X7X4︸ ︷︷ ︸
G2

2

X2X8X5︸ ︷︷ ︸
G2

3

con�guration 3 : X7X1X8︸ ︷︷ ︸
G3

1

X5X3X9︸ ︷︷ ︸
G3

2

X6X2X4︸ ︷︷ ︸
G3

3

(49)

Then, it is easy to notice that these four con�gurations 0, 1, 2 and 3 allow

to compute one estimate of all the second-order sensitivity indices and four

estimates of all the �rst-order terms.

More generally, we have the proposition below.

Proposition 1. In the case p = q2 with q prime, it exists an economical strategy

which, using q + 1 designs of experiments, allows to compute q + 1 estimates

of all the �rst-order sensitivity indices and one estimate of all the second-order

terms.

Proof. See Appendix B.

5.2. Experimental designs for any p

In the general case, we �rst de�ne

q∗ = min√
p≤q

q prime

q , (50)

and

p∗ =
(
q∗
)2

. (51)

Following the strategy detailed in the previous section, we can create q + 1

designs of experiments with p∗ factors, X1,. . . ,Xp,. . . ,Xp∗ . We then delete the

variables Xp+1,. . . ,Xp∗ in all the con�gurations. For example, considering an

8-dimensional model, we get q∗ = 3 and p∗ = 9. As a consequence, we can use

the designs of experiments presented in formulas (48) and (49), and delete the
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factor X9, it comes

con�guration 0 : X4X1X5︸ ︷︷ ︸
G0

1

X7X2︸ ︷︷ ︸
G0

2

X3X8X6︸ ︷︷ ︸
G0

3

con�guration 1 : X4X8︸ ︷︷ ︸
G1

1

X7X5X6︸ ︷︷ ︸
G1

2

X3X2X1︸ ︷︷ ︸
G1

3

con�guration 2 : X6X1︸ ︷︷ ︸
G2

1

X3X7X4︸ ︷︷ ︸
G2

2

X2X8X5︸ ︷︷ ︸
G2

3

con�guration 3 : X7X1X8︸ ︷︷ ︸
G3

1

X5X3︸ ︷︷ ︸
G3

2

X6X2X4︸ ︷︷ ︸
G3

3

(52)

With p = 5, this technique leads to use four designs of experiments; but we had

better consider the three following con�gurations

con�guration 1 : X1X2X3︸ ︷︷ ︸
G1

1

X4X5︸ ︷︷ ︸
G1

2

con�guration 2 : X1X2X4︸ ︷︷ ︸
G2

1

X3X5︸ ︷︷ ︸
G2

2

con�guration 3 : X1X2X5︸ ︷︷ ︸
G3

1

X3X4︸ ︷︷ ︸
G3

2

.

(53)

Finally, we have de�ned, for any p, an economical strategy in which the number

of experimental designs satis�es formula (47).

Remark 5. Elaborating economical strategies is also of major importance for

the Sobol' method in which the curse of dimensionality is clearly problematic. In

particular, one can cite the work of Saltelli [19] who provides an economical way

to estimate all the �rst-order, second-order and total sensitivity indices using the

Sobol' method.

6. Numerical tests

The accuracy of the proposed bias correction method is tested on the g-func-

tion introduced by Sobol' (see e.g. [20]). Considering uniformly distributed

independent input variables (Xi)i=1...,p on the unit hypercube, the function is

de�ned as

f(X1, . . . , Xp) =

p∏
i=1

gi(Xi) (54)
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where gi(Xi) is given by

gi(Xi) =
|4Xi − 2|+ ai

1 + ai
. (55)

We consider an 8-dimensional model and we �x the parameters ai as {0, 0, 0, 0.5,

0.5, 9, 9, 9}, so that the three �rst parameters are important, the two next ones

are less important, the three last ones are negligible and interactions are quite

important.

After testing the correction method on the estimation of the �rst-order sen-

sitivity indices by RBD, we focus on the estimation of both �rst-order and

second-order indices using the economical approach of RBD-FAST developed in

the previous section.

6.1. Test on RBD

The correction method is tested at increasing sample sizes, N = 501 and

N = 2001 (see �gure 4). In both con�gurations, we estimate all the �rst-order

sensitivity indices with the basic RBD method and with the corrected one. The

experience is replicated 150 times on di�erent random samples and boxplots are

presented.

We can observe that the corrected boxplots are centered on the analytical

values whatever the sample size. On the contrary, in the absence of correction

method, the estimates are considerably biased � even at large sample size �,

and we can notice that negligible input factors are not accurately identi�ed,

especially at low sample size (see X6, X7 and X8 in the case N = 501). More

generally, de�ning the total quadratic error,

εTQE =

√√√√ p∑
i=1

(Ŝi − Si)2 , (56)

we can observe the nonnegligible gain of accuracy due to the bias correction

method (see �gure 5).

[ Figures 3, 4 and 5 about here. ]
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6.2. Test on RBD-FAST

We now test the bias correction method on the estimation of the interaction

terms. Applying the economical approach of RBD-FAST detailed in the previ-

ous section, we estimate all the �rst-order and second-order sensitivity indices

using only 4 experimental designs � those presented in formula (52) � with a

sample size equal to 4001. Following Remark 4, we neglect the importance of

the third-order sensitivity indices � their part of variance is theoretically lower

than 10% �, so we apply formulas (45) and (46) with δ = 2.

We present the boxplots of 150 replicates (see �gures 6, 7 and 9); the result

show that, as in the previous test, the corrected indices are centered on their

respective theoretical value; but some di�erences exist between main e�ects and

interactions estimation. On the one hand, the �rst-order terms are accurately

evaluated, and the bias, in the absence of correction, is rather low; on the other

hand, the interactions estimates su�er from a more important variance and a

larger bias in the absence of correction. Two main reasons justify the di�erence

between the variance; �rstly, the �rst-order terms are evaluated thanks to 4

estimates per indices though the second-order ones are computed with only one

estimate, and secondly, the complexity of the sensitivity indices grows with the

order. In terms of bias, the lower performance of the interactions estimation

without correction is essentially due to the larger number of frequencies taken

into account to evaluate the second-order indices. Indeed, considering formula

(45), we can notice that the amplitude of the bias

λP

1− λ

(
1−

∑
Q⊂G(P ),Q̸=∅
card(Q)≤δ

ŜQ

)
(57)

is in proportion to λP = #P/N ; and, in this test, we have #P = 2Nh =

2 ∗ 10 = 20 for the �rst-order sensitivity indices, and #P = 2Nlc2(Nlc2 − 1) =

2 ∗ 9 ∗ (9− 1) = 144 for the second-order sensitivity indices.

[ Figures 6, 7, 8 and 9 about here. ]
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7. Conclusion

In this paper, we presented a bias correction method for the estimation of

sensitivity indices of any order by both RBD and RBD-FAST. In particular, as

we can notice through the numerical tests, this technique successfully overcomes

the over-estimation of the �rst-order and second-order indices whatever the

sample size.

We also introduced an economical strategy which, combined with the bias

correction method, provides an e�cient way to estimate all the �rst-order and

second-order indices using RBD-FAST. In particular, this kind of approach al-

lows to get a good overview of the sensitivity of a model at a low cost.

Finally, the source of error that remains is essentially due to the experimental

design, and a further work would be to improve RBD and RBD-FAST sampling

methods. In particular, optimization algorithms are commonly used for Latin

hypercube sampling, and an idea would be to transpose these techniques to

RBD experimental designs which are, as we have noticed in Section 3, very

close to Latin hypercube designs. But, this is beyond the scope of the present

paper.

Appendix A. Details on formula (44)

We denote (Pi)i=1...n the nonempty subsets of {m1, . . . ,md} where n is such

that

n =
d∑

k=1

(
d

k

)
= 2d − 1 , (A.1)
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and to simplify the notations, we denote λi the coe�cients λPi
. Applying for-

mula (41) to each of the Pi, we get the linear system,

ŜP1

ŜP2

...

ŜPn−1

ŜPn


=



1− λ1 λ1 · · · · · · −λ1

−λ2 1− λ2 −λ2 · · · −λ2

...
. . .

. . .
. . .

...

−λn−1 · · · · · · 1− λn−1 −λn−1

−λn · · · · · · −λn 1− λn





Ŝc
P1

Ŝc
P2

...

Ŝc
Pn−1

Ŝc
Pn


+



λ1

λ2

...

λn−1

λn


(A.2)

The determinant ∆ of the matrix of the system � denoted A � is easy to get.

Subtracting the �rst column to all other ones, it comes

∆ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1− λ1 − 1 · · · · · · − 1

−λ2 1 0 · · · 0

... 0
. . .

. . .
...

...
...

. . .
. . . 0

−λn 0 · · · 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(A.3)

and, using Laplace expansion, we get

∆ = 1− λ1 − λ2 · · · − λn . (A.4)

In practice, we �x N such that

n∑
i=1

#Pi < N (A.5)

so, with the de�nition in formula (42), it comes

n∑
i=1

λi < 1 . (A.6)

It implies that ∆ is positive and, as a consequence, the matrix A is invertible.
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We get A−1 using the formula based on the adjugate matrix,

A−1 =
tadj(A)

∆
. (A.7)

We easily obtain,

adj(A) =



∆+ λ1 λ2 · · · λn−1 λn

λ1 ∆+ λ2
. . .

. . .
...

...
. . .

. . .
. . .

...

...
. . .

. . . ∆+ λn−1 λn

λ1 λ2 · · · λn−1 ∆+ λn


. (A.8)

Finally, we invert the linear system (A.2), it comes

Ŝc
P1

Ŝc
P2

...

Ŝc
Pn−1

Ŝc
Pn


=



1 + λ1

∆
λ1

∆ · · · · · · λ1

∆

λ2

∆ 1 + λ2

∆
λ2

∆ · · · λ2

∆

...
. . .

. . .
. . .

...

...
. . .

. . .
. . .

...

λn

∆ · · · · · · λn

∆ 1 + λn

∆





ŜP1

ŜP2

...

ŜPn−1

ŜPn


−



λ1

∆

λ2

∆

...

λn−1

∆

λn

∆


(A.9)

and it allows to conclude to formula (44).

Appendix B. Proof of Proposition 1

Let p = q2 with q prime; it is obvious that if there exists q + 1 designs of

experiments satisfying the rules established in section 5.1, then these con�gu-

rations allow to compute q+1 estimates of all the �rst-order sensitivity indices

and one estimate of all the second-order terms. So, to show that the economical

strategy exists, it is su�cient to prove the existence of such con�gurations under

the rules (R1), (R2) and (R3) of section 5.1; let us give a constructive proof.
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First, renaming the factors (Xi)i=1...p, we de�ne an initial con�guration,

con�guration 0 : X1
1 · · ·X

q
1︸ ︷︷ ︸

G0
1

X1
2 · · ·X

q
2︸ ︷︷ ︸

G0
2

· · · X1
q · · ·Xq

q︸ ︷︷ ︸
G0

q

. (B.1)

We then obtain the q other experimental designs considering for i from 1 to q,

con�guration i : X
σ1
i (1)

1 · · ·Xσq
i (1)

q︸ ︷︷ ︸
Gi

1

X
σ1
i (2)

1 · · ·Xσq
i (2)

q︸ ︷︷ ︸
Gi

2

· · · X
σ1
i (q)

1 · · ·Xσq
i (q)

q︸ ︷︷ ︸
Gi

q

,

(B.2)

where for all 1 ≤ i, j ≤ q, σj
i is a permutation on the set {1, . . . , q}. These

con�gurations naturally satisfy rules (R1) and (R2); but (R3) is not always

completed. However, we can observe that, letting c a cyclic permutation of

order q, the permutations

σj
i = ci∗j (B.3)

allow to satisfy rule (R3). Indeed, following the formalism of formula (B.2), rule

(R3) reads as

∀1 ≤ i, i′, k, k′, j1, j2 ≤ q, i ̸= i′, j1 ̸= j2,


σj1
i (k) ̸= σj1

i′ (k
′)

or

σj2
i (k) ̸= σj2

i′ (k
′) .

(B.4)

So, assuming formula (B.3), let us prove

∀1 ≤ i, i′, k, k′, j1, j2 ≤ q, i ̸= i′, j1 ̸= j2,


ci∗j1(k) ̸= ci

′∗j1(k′)

or

ci∗j2(k) ̸= ci
′∗j2(k′) .

(B.5)

Let us suppose, by contradiction, that

ci∗j1(k) = ci
′∗j1(k′) and ci∗j2(k) = ci

′∗j2(k′) (B.6)

for a certain 6-uplet (i, i′, k, k′, j1, j2) with i ̸= i′ and j1 ̸= j2. It implies that

c(i−i′)∗(j1−j2)(k) = k . (B.7)

Then c being a cyclic permutation of order q with q prime and i being di�erent

from i′, we deduce that c(i−i′) is a cyclic permutation of order q. As a conse-

quence, it follows that j1 − j2 = q ∗ r for a certain integer r. But, assuming
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1 ≤ j1, j2 ≤ q, we conclude that r = 0 and j1 = j2, which is in contradiction

with our assumption j1 ̸= j2. The conclusion follows.
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Figure 1: Plot of a search curve with uniform marginals in a three-dimensional unit hypercube

with a sample size of 301.
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Figure 3: Boxplots of the �rst-order sensitivity indices by the RBD method with a sample

size of 501. the analytical values are S1 = S2 = S3 = 0.1546, S4 = S5 = 0.0687 and S6 =

S7 = S8 = 0.0015.
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Figure 4: Boxplots of the �rst-order sensitivity indices by the RBD method with a sample

size of 2001. The analytical values are S1 = S2 = S3 = 0.1546, S4 = S5 = 0.0687 and S6 =

S7 = S8 = 0.0015.
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Figure 5: Plots and boxplots (150 replicates) of total quadratic error against the sample size

N.

32



B1 C1 B2 C2 B3 C3 B4 C4 B5 C5 B6 C6 B7 C7 B8 C8

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Figure 6: Boxplots of the �rst-order sensitivity indices by the RBD-FAST method with a

sample size of 4001. The analytical values are S1 = S2 = S3 = 0.1546, S4 = S5 = 0.0687

and S6 = S7 = S8 = 0.0015.
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Figure 7: Boxplots of the second-order sensitivity indices by the RBD-FAST method with a

sample size of 4001. The analytical values are S12 = S13 = S23 = 0.0515, S14 = S15 =

S24 = S25 = S34 = S35 = 0.0229.
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Figure 8: Boxplots of the second-order sensitivity indices by the RBD-FAST method with a

sample size of 4001. The analytical values are S45 = 0.0102, S16 = S17 = S18 = S26 =

S27 = S28 = S36 = S37 = S38 = 0.0005.
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Figure 9: Boxplots of the second-order sensitivity indices by the RBD-FAST method with a

sample size of 4001. The analytical values are S46 = S47 = S48 = S56 = S57 = S58 =

0.0002, S67 = S68 = S78 = 5.10−6.
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