
HAL Id: hal-00507526
https://hal.science/hal-00507526v2

Submitted on 1 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bias correction for the estimation of sensitivity indices
based on random balance designs

Jean-Yves Tissot, Clémentine Prieur

To cite this version:
Jean-Yves Tissot, Clémentine Prieur. Bias correction for the estimation of sensitivity indices based
on random balance designs. Reliability Engineering and System Safety, 2012, 107, pp.205-213.
�10.1016/j.ress.2012.06.010�. �hal-00507526v2�

https://hal.science/hal-00507526v2
https://hal.archives-ouvertes.fr


Bias correction for the estimation of sensitivity indices

based on random balance designs

Jean-Yves Tissota,∗, Clémentine Prieura

aJoseph Fourier University, LJK/MOISE, BP 53, 38041 Grenoble cedex, France

Abstract

This paper deals with the random balance design method (RBD) and its hybrid

approach, RBD-FAST. Both these global sensitivity analysis methods originate

from Fourier amplitude sensitivity test (FAST) and are consequently faced with

the main problems inherent to discrete harmonic analysis. As some authors

pointed out in these methods, certain estimates of sensitivity indices are sys-

tematically over-evaluated. This positive bias has recently been identified in

the RBD method by Xu and Gertner [1]. Following their work, we propose

a bias correction method for first-order sensitivity indices estimates in RBD.

We then extend the correction method to the sensitivity indices of any order

in RBD-FAST. At last, we suggest an efficient strategy to estimate all the first

and second-order sensitivity indices using RBD-FAST.

Keywords: global sensitivity analysis, sensitivity indices, random balance

design, RBD-FAST, bias correction

1. Introduction

Global sensitivity analysis of model output consists in quantifying the re-

spective importance of input factors over their entire range of values. Many

techniques have been developed in this field (see [2, 3] for a review, see also

[4, 5] for recent developments on derivative based methods), the most well-
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known of which are methods of computing variance-based sensitivity indices [6]

using ANOVA decomposition [7, 8].

ANOVA decomposition and sensitivity indices. Let X = (X1, . . . , Xp) be a ran-

dom vector and Y = f(X) ∈ R, where f is a square-integrable function. Under

the assumption that X has independent components, the variance V of the

model output Y can be decomposed as:

V =

p∑

k=1

∑

1≤i1<···<ik≤p

Vi1...ik (1)

where

Vi1...ik ,
∑

J⊂{i1,...,ik}
(−1)k−#JVar

(
E(Y |Xj , j ∈ J)

)
(2)

where Var(·) and E(·|·) denote variance and conditional expectation, respec-

tively. Thus, if V 6= 0 (i.e. Y is not almost surely constant), dividing both sides

of (1) by V , yields a positive and normalized decomposition,

1 =

p∑

k=1

∑

1≤i1<···<ik≤p

Si1...ik (3)

where for each k,

Si1...ik ,
Vi1...ik

V
, 1 ≤ i1 < · · · < ik ≤ p (4)

are the so-called kth-order sensitivity indices — or Sobol’ indices —.

In the case of an additive model — i.e. f(X1, . . . , Xp) =
∑p

k=1 fk(Xk) —

all terms but the first-order sensitivity indices are zero and we obtain a full

decomposition with only S1, . . . , Sp. On the contrary, if f is a non-additive

function, it is necessary to evaluate higher-order terms to point out which inter-

actions are significant. In practice, it is sufficient to compute only the first and

second-order sensitivity indices to get a good overview of the global variations

of a model output.

FAST and its derived methods. Different methods have been developed to es-

timate sensitivity indices, and FAST, introduced in the 1970’s, is one of the
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earliest. The three introduction papers [9–11] describe how to compute main

effects — i.e. first-order sensitivity indices — exploiting Weyl’s ergodic theorem

[12]. Then, in a review article [13], the authors precise the underlying theory

considering multiple Fourier series, and suggest a decomposition of variance (see

Eq. (2.29) in [13]) which allows to consider higher-order sensitivity indices. But,

in practice, many sources of error occurs and it is generally impossible to get

accurate estimates at low computational cost. As a consequence, FAST has only

been applied to estimate first-order and total (see the EFAST method due to

Saltelli et al. [14]) sensitivity indices in small dimension.

The RBD and Hybrid FAST-RBD (HFR) methods, proposed in 2006 by

Tarantola et al. [15], partially overcome the inherent drawbacks of FAST using

a new sampling technique based on Satterthwaite’s random balance designs [16].

These methods have been introduced to estimate first-order sensitivity indices,

and as Mara [17] notices, it is also possible to estimate sensitivity indices of any

order or closed and total sensitivity indices, using the HFR method (renamed

RBD-FAST).

At last, Plischke [18] recently derived from FAST a method named Effective

Algorithm for computing global Sensitivity Indices (EASI) which estimates sen-

sitivity indices. The main advantage of this method is that, while FAST, RBD

and RBD-FAST use specific experimental designs, EASI can be applied to any

input sample.

In Section 2, we briefly recall the FAST method and discuss the different

sources of error that affect the accuracy of sensitivity indices estimates. In

Section 3, we present, the specific problem of interferences in RBD which leads

to the positive bias of the first-order sensitivity indices and we propose a bias-

correction method. In Section 4, we extend this technique to the sensitivity

indices of any order in RBD-FAST, and in Section 5, we describe an efficient

strategy to estimate all the first and second-order sensitivity indices using RBD-

FAST. Numerical examples are presented in Section 6 to illustrate the accuracy

of the proposed bias correction method. Conclusions and ideas for a future work
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are summarised in Section 7.

2. Sources of error in the FAST method

2.1. Description of the FAST method

The FAST method is based on a specific experimental design — the so-called

search curve — which allows to use discrete Fourier transform. The experimental

design (xk)k=1...N is such that

xk
i = Gi

(
sin(ωisk + ϕi)

)
, i = 1, . . . , p, k = 1, . . . , N (5)

where ωi are integer frequencies — free of interferences up to a certain order

(see Section 2.2.1) —, Gi are functions to be settled so as to impose probability

density functions on the input variables Xi, ϕi are random phase-shifts and

(sk)k=1...N is defined as

sk =
2π(k − 1)

N
. (6)

In particular, to get uniform marginal distributions on the interval [0, 1], one

shall use (see for example [14]),

Gi(·) =
1

π
arcsin(·) +

1

2
. (7)

The finite sequence
(
f
(
xj
1, . . . , x

j
p

))
j=1...N

obtained from the experimental

design defined by (5) is then considered as a uniformly sampled signal. Hence,

the Fourier spectrum of this discrete signal can be decomposed with respect to

the frequencies ω1, . . . , ωp, and we can define the estimators of the different

parts of variance,

V̂ =
∑

1≤|n|≤N/2

|ĉn|
2 , (8)

V̂i =
∑

1≤|k|≤Nh

|ĉkωi
|2 , (9)

V̂ij =
∑

2≤|k|+|l|≤Nlc2

|ĉkωi+lωj
|2 , (10)
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and so on; where Nh is the highest harmonic considered as non-negligible, Nlc2

is the value over which the linear combinations of ωi and ωj are considered as

negligible, and

ĉn =
1

N

N∑

j=1

f
(
xj
1, . . . , x

j
p

)
e−in

2π(j−1)
N , −

N

2
≤ n ≤

N

2
(11)

are discrete Fourier coefficients. Finally, dividing (9) (resp. (10)) by (8), we get

the estimator of a first-order (resp. second-order) sensitivity index:

Ŝi =

∑

1≤|k|≤Nh

|ĉkωi
|2

∑

1≤|n|≤N/2

|ĉn|
2

, (12)

Ŝij =

∑

2≤|k|+|l|≤Nlc2

|ĉkωi+lωj
|2

∑

1≤|n|≤N/2

|ĉn|
2

. (13)

2.2. Sources of error

The accuracy of these estimates naturally depends on the sample size and

we can observe an empirical convergence to the theoretical values as N tends

to +∞. But this dependence with respect to the sample size is intricate; we

distinguish three main sources of error.

2.2.1. Interferences

If there exists a linear combination of the frequencies ω1,. . . , ωp equal to

zero, some parts of variance could be attributed by error to another one in the

decomposition of the Fourier spectrum. For example, if −2ω1 + ω2 = 0, the

discrete Fourier coefficient ĉ2ω1
= ĉω2

contains information from both X1 and

X2, and should not be totally attributed to Ŝ1 and Ŝ2. These interferences

can lead to an over-evaluation of sensitivity indices estimates, and in order to

keep these positive biases low, we adopt the criterion proposed by Schaibly and

Shuler [10] to get a set of frequencies free of interferences up to a certain order

M ,
p∑

i=1

aiωi 6= 0 for

p∑

i=1

|ai| ≤ M + 1 . (14)
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2.2.2. Aliasing

Only the linear combinations ω =
∑p

i=1 aiωi lying inside the Fourier spec-

trum — i.e. between −N/2 and N/2 — are unambiguously represented by the

discrete sampled signal. If ω is out of this range, its spectral component is

falsely attributed to another frequency inside the Fourier spectrum. To avoid

this aliasing phenomenon, which can lead to positive biased estimators, it is

necessary to follow the Nyquist-Shannon theorem, i.e. to impose that the sam-

pling rate is large enough. As a consequence, the sample size is bounded from

below as follows:

N ≥ 2M max
1≤i≤p

ωi , (15)

where M is defined in the previous paragraph.

2.2.3. Truncation

The different finite sums defining the estimators of the total variance and

the partial variances in Eqs. (8), (9) and (10) should be infinite series. But,

as the spectrum only contains a finite number of frequencies, it is necessary

to consider truncated sums. As a consequence, all the estimators being sums

of squares, the truncations lead to an under-evaluation of all these quantities.

These negative biases naturally vanish as the spectrum becomes larger, i.e. as

N tends to +∞.

3. Random balance design method

As we noted in the previous part, using a distinct frequency per input factor

in the FAST method imposes restrictive constraints on the sample size. To

overcome this drawback, an alternative sampling method is employed in RBD.

3.1. Sampling method

Contrarily to FAST, in RBD, all the ωi are equal to a unique frequency

ω and input variables are distinguished by taking random permutations of the
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coordinates of the sample points. Let σ1, . . . , σp denote random permutations

on the set {1, . . . , N}, the experimental design (xk)k=1...N is such that

xk
i = Gi

(
sin(ωsσi(k))

)
, ∀i = 1, . . . , p and ∀k = 1, . . . , N . (16)

One shall choose an odd integer N to get a good space-filling design. In this

case, RBD technique is very close to Latin hypercube sampling introduced in

1979 (see [19]); the only difference is that, the RBD design points are located

in the center of the cells (see Fig. 1).

[ Fig. 1 about here. ]

3.2. Estimator

RBD sampling method can be used to estimate first-order sensitivity indices.

The estimator of the total variance is defined as in FAST and the part of variance

due to the factor Xi is estimated by

V̂i =
∑

1≤|k|≤Nh

|ĉσi

kω|
2 (17)

with

ĉσi

kω =
1

N

N∑

j=1

f
(
x
σ−1
i

(j)
1 , . . . , x

σ−1
i

(j)
p

)
e−ikω

2π(j−1)
N , (18)

where σ−1
i is the inverse permutation of σi. Indeed, considering a fixed i, the

design points
(
x
σ−1
i

(j)
1 , . . . , x

σ−1
i

(j)
p

)
j=1...N

are such that the ith coordinate is

sampled with respect to the frequency ω and the other ones are sampled in a

random way because

x
σ−1
i

(j)
k = Gk

(
sin

(
ωsσ

k
(σ−1

i
(j))

))

=





Gk

(
sin(ωsj)

)
if k = i

Gk

(
sin

(
ωsσi

k
(j)

))
if k 6= i ,

(19)

where σi
k = σk ◦ σ−1

i is almost surely a non-trivial permutation. Therefore, in

the Fourier spectrum of the signal

(
f
(
x
σ−1
i

(j)
1 , . . . , x

σ−1
i

(j)
p

))
j=1...N

, (20)
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the harmonics of ω are attributed to the part of variance of Xi. Thus, using

FAST estimator, we get Eqs. (17) and (18).

Remark 1. The choice of the frequency ω seems to be of secondary importance.

However, to avoid aliasing, the most efficient value is the smallest one, typically

ω = 1. In this case, the aliasing phenomenon is negligible and consequently,

there is no more restriction on the sample size as in Eq. (15).

3.3. Bias

As we explained in the last section, the RBD estimator is so defined because

the harmonics of ω of the signal
(
f
(
x
σ−1
i

(j)
1 , . . . , x

σ−1
i

(j)
p

))
j=1...N

are supposed to

be only related to the part of variance Vi due to Xi. But it is essential to notice

that, as the factors (Xk)k 6=i are randomly sampled, the remaining part of vari-

ance — denoted V−i — appears in the signal
(
f
(
x
σ−1
i

(j)
1 , . . . , x

σ−1
i

(j)
p

))
j=1...N

as

a random noise. Therefore, a random fraction of each harmonic of ω is related

to V−i and is falsely attributed to Vi. Xu and Gertner [1] quantified, in mean,

this interference between the harmonics of ω, and the random noise, showing

that for any harmonic of ω, ĉσi

kω, we have

E
(
|ĉσi

kω|
2
)
= |cσi

kω|
2 +

V−i

N
(21)

where cσi

kω denotes the theoretical unbiased kth harmonic of ω. Thus, following

Eq. (17), we define the bias-corrected estimator of Vi as

V̂ c
i = V̂i −

2Nh

N
V̂−i , (22)

where V̂−i is an estimator of V−i defined, assuming the bias correction, as

V̂−i = V̂ − V̂ c
i . (23)

Hence,

V̂ c
i = V̂i −

2Nh

N

(
V̂ − V̂ c

i

)
; (24)

and dividing both sides of the equality by V̂ , we obtain

Ŝc
i = Ŝi −

2Nh

N

(
1− Ŝc

i

)
, (25)
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where Ŝi et Ŝc
i are the RBD estimator of the first-order sensitivity index and

the corrected one, respectively. Finally, setting λ = 2Nh

N , we get the explicit

formula

Ŝc
i = Ŝi −

λ

1− λ

(
1− Ŝi

)
. (26)

Remark 2. It is important to observe that,

(i) the larger N is, the less significant the bias is,

(ii) the larger Si is, the less significant the bias is.

Remark 3. In his paper, Plischke [18] suggests to apply exactly the same bias

correction to the EASI estimates (see Eq. (7) in [18]). His approach is based

on a bias correction method for correlation ratios due to Kelley [20].

4. Hybrid approach: RBD-FAST

The underlying idea in RBD-FAST is to combine both RBD and FAST

sampling approaches. Therefore, this new method is naturally faced with the

classical drawbacks of FAST, but in a lesser extent. The main advantage of the

hybrid approach is that estimation of higher-order sensitivity indices is possible.

4.1. Sampling method

First, the p input variables are divided into groups of approximatively equal

size. Then free of interferences frequencies are allocated within each group of

factors and random permutations are applied on each group. For example, we
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can have the following configurations:

6 factors: X1 X2 X3 X4 X5 X6

ω1 ω2 ω3︸ ︷︷ ︸
σ1

ω1 ω2 ω3︸ ︷︷ ︸
σ2

6 factors: X1 X2 X3 X4 X5 X6

ω1 ω2︸ ︷︷ ︸
σ1

ω1 ω2︸ ︷︷ ︸
σ2

ω1 ω2︸ ︷︷ ︸
σ3

7 factors: X1 X2 X3 X4 X5 X6 X7

ω1 ω2 ω3︸ ︷︷ ︸
σ1

ω1 ω2︸ ︷︷ ︸
σ2

ω1 ω2︸ ︷︷ ︸
σ3

.

Remark 4. Tarantola et al. [15] and Mara [17] present RBD-FAST (or HFR)

in another way: the p input variables are partitioned in the same way but the

permutations are applied within the groups and a different frequency is associ-

ated to each group. Actually, the methods are strictly equivalent; it is just two

different points of view.

4.2. Estimators

This hybrid sampling method allows to define the estimator of sensitivity

indices of any order. In particular, considering two factors inside the mth group

respectively associated with the frequencies ωi and ωj , we can define the part

of variance of their interaction as,

V̂ij =
∑

2≤|k|+|l|≤Nlc2

|cσm

kωi+lωj
|2 (27)

where Nlc2 is the value over which the linear combinations of ωi and ωj are

considered as negligible and where

cσm

kωi+lωj
=

1

N

N∑

n=1

f
(
x
σ−1
m (n)

1 , . . . , x
σ−1
m (n)

p

)
e−i(kωi+lωj)

2π(n−1)
N . (28)

In the same way, considering a factor inside the mth group associated with the

frequency ωi, we can define its part of variance as,

V̂i =
∑

1≤|k|≤Nh

|cσm

kωi
|2 (29)
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where Nh is the highest harmonic considered as non-negligible and with

cσm

kωi
=

1

N

N∑

n=1

f
(
x
σ−1
m (n)

1 , . . . , x
σ−1
m (n)

p

)
e−ikωi

2π(n−1)
N . (30)

Indeed, considering the sample points
(
x
σ−1
m (j)

1 , . . . , x
σ−1
m (j)

p

)
j=1...N

where m is

fixed, for 1 ≤ k ≤ p, we have,

(i) if Xk is associated with the couple (ωi, σm) then

x
σ−1
m (j)

k = Gk

(
sin

(
ωisσm(σ−1

m (j))

))
= Gk

(
sin

(
ωisj

))
(31)

(ii) if Xk is associated with a couple (ωi, σn), for n 6= m, then

x
σ−1
m (j)

k = Gk

(
sin

(
ωisσn(σ

−1
m (j))

))
(32)

where σn ◦ σ−1
m is almost surely a non-trivial permutation. Therefore, all input

variables outside the group associated with σm are randomly sampled, and the

other ones are sampled with respect to their frequencies. Applying FAST’s

estimator, Eqs. (27)–(30) follow.

4.3. Bias

The phenomenon leading to positive biases described for the RBD method

occurs in the same way for RBD-FAST. Therefore parts of variance can be

corrected with an analogous technique.

Let Xm1
,. . . ,Xmd

be the d input factors inside the mth group, and P be a

nonempty subset of {m1, . . . ,md}. We denote VP the part of variance due to the

interaction between the input variables (Xi)i∈P (e.g. if P = {i}, VP is simply

Vi, and if P = {i, j}, VP is Vij). Let V̂P be the RBD-FAST classical estimator

of VP , previously described in Eqs. (27) and (29) for #P = 1 and 2. Following

RBD bias correction, we first define the estimator of the positive bias BP as

B̂P =
n(P )

N
V̂−P (33)

and the corrected estimator of VP as

V̂ c
P = V̂P − B̂P (34)

11



where n(P ) is the number of Fourier coefficients taken into account to estimate

VP and V̂−P is an estimate of the part of variance not due to any subset of

factors contained in {m1, . . . ,md} defined, assuming the bias correction, as

V̂−P = V̂ −
∑

Q⊂{m1,...,md}
Q 6=∅

V̂ c
Q . (35)

Hence,

V̂ c
P = V̂P −

n(P )

N

(
V̂ −

∑

Q⊂{m1,...,md}
Q 6=∅

V̂ c
Q

)
, (36)

and dividing both sides of the equality by V̂ , we get

Ŝc
P = ŜP −

n(P )

N

(
1−

∑

Q⊂{m1,...,md}
Q 6=∅

Ŝc
Q

)
, (37)

where ŜP and Ŝc
P are the RBD-FAST estimator of the sensitivity index SP and

the corrected one, respectively. Then, setting

λQ =
n(Q)

N
, for any nonempty subset Q ∈ {m1, . . . ,md} (38)

and

λ =
∑

Q⊂{m1,...,md}
Q 6=∅

λQ , (39)

we conclude with the explicit formula

Ŝc
P = ŜP −

λP

1− λ

(
1−

∑

Q⊂{m1,...,md}
Q 6=∅

ŜQ

)
(see details in Appendix A). (40)

Remark 5. This bias correction formula requires the knowledge of the biased

estimators ŜQ of any order relative to the input factors (Xi)i∈P . Unfortunately,

the estimation of the terms over a certain order is quite difficult; so in practice, it

is necessary to neglect sensitivity indices over a certain degree δ and to consider

the following bias correction,

Ŝc
P = ŜP −

λP

1− λ

(
1−

∑

Q⊂{m1,...,md}
Q 6=∅, #Q≤δ

ŜQ

)
(41)
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where

λ =
∑

Q⊂{m1,...,md}
Q 6=∅, #Q≤δ

λQ . (42)

Remark 6. An analagous formula for closed sensitivity indices can be deduced

from (40). Keeping the same notations as previously, such indices are defined

as,

Sclosed
P ,

∑

Q⊂P, Q 6=∅
SQ (43)

and we have

Ŝclosed,c
P = Ŝclosed

P −
λclosed
P

1− λ

(
1−

∑

Q⊂{m1,...,md}
Q 6=∅

ŜQ

)
(44)

where Ŝclosed
P and Ŝclosed,c

P are the RBD-FAST estimator of the sensitivity index

Sclosed
P and the corrected one, respectively, and

λclosed
P =

∑

Q⊂P, Q 6=∅
λQ . (45)

5. An efficient strategy to estimate all the first and second order

sensitivity indices

Throughout this section, we develop a strategy using RBD-FAST to get all

the bias-corrected estimates of the first and second-order sensitivity indices of

a model in which we assume that the sensitivity indices over a certain order δ

are negligible. In this case, we can get the first-order and second-order indices

by applying Eqs. (41) and (42).

However, contrarily to the RBD method in which all the main effects of

any model can be estimated using only one experimental design, the compu-

tation of all the first-order and second-order indices using RBD-FAST requires

a number of sample sets increasing with the number of factors p. Through an

13



example, Mara [17] observes that 5 sample sets are necessary to estimate all

the 15 second-order sensitivity indices — and naturally the first-order ones —

of a 6-dimensional model. In fact, in the case of 6 input factors, the number of

experimental designs can be restricted to 4. More generally, we establish that

the required number of experimental designs is equal to:

1 + min√
p≤q

q prime

q for p ≥ 4

1 for p ≤ 3 ,

(46)

where p is the number of input factors. Low-dimensional models — p ≤ 3 — can

be treated using FAST method with only one design of experiments; in the other

cases we implement a strategy based on elementary combinatory considerations.

It has to be noted that, in Mara’s paper [17], input variables are divided into

groups of 2 factors, while our configurations can contain subgroups of more than

2 factors. Thus, the constraints on the sample size that arise from FAST — see

Eqs. (14) and (15) — are more restrictive in our approach. Nevertheless, as we

can observe in Table 1, at the same computational cost, our strategy provides

second-order sensitivity indices estimates with smaller variance.

5.1. Designs of experiments in the case p = q2 with q prime

In this particular case, the different configurations of the designs of experi-

ments required to estimate all the first-order and second-order sensitivity indices

are quite natural. First, we divide the set of input variables {X1, . . . , Xp} into

q groups of q factors; for example, in the case p = 9, we can have,

configuration 0 : X4X1X5︸ ︷︷ ︸
G0

1

X7X9X2︸ ︷︷ ︸
G0

2

X3X8X6︸ ︷︷ ︸
G0

3

. (47)

Following RBD-FAST approach, each group receives a set of free of interferences

frequencies and is randomly permuted. This allows to estimate the second-order

indices S14, S15, S45, S27, S29, S79, S36, S38 and S68, and all the first-order

terms.

We then obtain the other configurations applying the following rules:
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(R1) each of the new configurations is a partition of the input variables into q

groups of q factors,

(R2) each group in the new configurations is filled with one factor of each orig-

inal group (G0
i )i=1...q,

(R3) if a set of two distinct variables {Xi, Xj} is already contained in a group

Gk
n, then we are not allowed to define a group Gl

m, with l 6= k and m 6= n,

in a next configuration containing both Xi and Xj .

For instance, in the case p = 9, it is only possible to create three new configu-

rations,

configuration 1 : X9X4X8︸ ︷︷ ︸
G1

1

X7X5X6︸ ︷︷ ︸
G1

2

X3X2X1︸ ︷︷ ︸
G1

3

configuration 2 : X6X1X9︸ ︷︷ ︸
G2

1

X3X7X4︸ ︷︷ ︸
G2

2

X2X8X5︸ ︷︷ ︸
G2

3

configuration 3 : X7X1X8︸ ︷︷ ︸
G3

1

X5X3X9︸ ︷︷ ︸
G3

2

X6X2X4︸ ︷︷ ︸
G3

3

(48)

Here, it is easy to notice that these four configurations 0, 1, 2 and 3 allow

to compute one estimate of all the second-order sensitivity indices and four

estimates of all the first-order terms.

More generally, we have the proposition below.

Proposition 1. In the case p = q2 with q prime, there exists an efficient strat-

egy using q + 1 designs of experiments and allowing to compute q + 1 estimates

of all the first-order sensitivity indices and one estimate of all the second-order

terms.

Proof. See Appendix B.

5.2. Experimental designs for any p

In the general case, we first define

q∗ = min√
p≤q

q prime

q , (49)
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and

p∗ =
(
q∗
)2

. (50)

Following the strategy presented in the previous section, we can create q + 1

designs of experiments with p∗ factors, X1,. . . ,Xp,. . . ,Xp∗ . We then delete

variables Xp+1,. . . ,Xp∗ in all configurations. For example, considering an 8-

dimensional model, we get q∗ = 3 and p∗ = 9, and we can use the designs of

experiments presented in Eqs. (47) and (48), and delete the factor X9, we get

configuration 0 : X4X1X5︸ ︷︷ ︸
G0

1

X7X2︸ ︷︷ ︸
G0

2

X3X8X6︸ ︷︷ ︸
G0

3

configuration 1 : X4X8︸ ︷︷ ︸
G1

1

X7X5X6︸ ︷︷ ︸
G1

2

X3X2X1︸ ︷︷ ︸
G1

3

configuration 2 : X6X1︸ ︷︷ ︸
G2

1

X3X7X4︸ ︷︷ ︸
G2

2

X2X8X5︸ ︷︷ ︸
G2

3

configuration 3 : X7X1X8︸ ︷︷ ︸
G3

1

X5X3︸ ︷︷ ︸
G3

2

X6X2X4︸ ︷︷ ︸
G3

3

(51)

Hence, for any p, we have an economical strategy for which the number of

experimental designs satisfies Eq. (46).

Remark 7. Elaborating economical strategies is also of major importance for

the Sobol’ method in which the curse of dimensionality is clearly problematic. In

particular, one can cite the work of Saltelli [21] who provides an economical way

to estimate all the first-order, second-order and total sensitivity indices using the

Sobol’ method.

6. Numerical tests

The accuracy of the proposed bias correction method is tested on the g-

function introduced by Sobol’ (see e.g. [22]). Considering uniformly distributed

independent input variables (Xi)i=1...,p on the unit hypercube, this function is

defined as

f(X1, . . . , Xp) =

p∏

i=1

gi(Xi) (52)
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where gi(Xi) is given by

gi(Xi) =
|4Xi − 2|+ ai

1 + ai
. (53)

We consider a 6-dimensional g-function where (ai) = (0, 0, 0, 0.5, 0.5, 0, 5), so

that the three first parameters are important, the others are less important and

interactions are quite important. We then add three dummy factors X7, X8

and X9 that don’t play any role in the model.

The bias correction method and the efficient strategy are tested on this 9-

dimensional model.

6.1. Test on RBD

The correction method is tested using increasing sample sizes, N = 501 and

N = 2001 (see Figs. 2 and 3). In both cases, we estimate all the first-order

sensitivity indices with the basic RBD method and with the corrected one. The

experiment is replicated 200 times using different random permutations.

We observe that the corrected boxplots are centered on the analytical values

whatever the sample size. On the contrary, in the absence of correction method,

the estimates are considerably biased, even for a large sample size. For a low

sample size, we can notice that the bias correction is of great importance because

a factor without any effect on the output can appears as a nonnegligible one

using the basic RBD method (see B7, B8 and B9 in Fig. 2).

[ Figs. 2 and 3 about here. ]

6.2. Tests on RBD-FAST

6.2.1. Computations using the efficient strategy

In this section, we test the bias correction method on RBD-FAST. Applying

the efficient strategy using RBD-FAST, we estimate all the first and second-

order sensitivity indices using only 4 experimental designs — those presented in

Eqs. (47) and (48) — with sample size 4001. Following Remark 5, we neglect

the third-order effects — their contribution in the variance is theoretically lower

than 10% —, so we apply Eqs. (41) and (42) with δ = 2.
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Here, designs are constructed using different random permutations and the

set of frequencies free of interferences is {ω1, ω2, ω3} = {177, 186, 193}. We

show on Figs. 4–6 boxplots of 200 replicates; all first-order sensitivity indices

are shown in Fig. 4, and a representative subset of the second-order sensitivity

indices is shown on Figs. 5 and 6. As in the previous test, the corrected indices

are centered on their respective theoretical value; but some differences exist

between main effects and interaction estimations. On the one hand, first-order

terms are accurately evaluated, and their bias, in the absence of correction,

are rather low; on the other hand, interaction estimates suffer from a more

important variance and a larger bias in absence of correction. Two main reasons

justify the difference between the variances. Firstly, the first-order terms are

evaluated thanks to 4 estimates per indices while the second-order ones are

computed with only one estimate, and secondly, the complexity of sensitivity

indices grows with the order. In terms of bias, the lower performance of the

interaction estimations without correction is essentially due to the larger number

of frequencies taken into account to evaluate the second-order indices. Indeed,

considering Eq. (41), we can notice that the amplitude of the bias:

λP

1− λ

(
1−

∑

Q⊂G(P ),Q 6=∅
#Q≤δ

ŜQ

)
(54)

is proportional to λP = n(P )/N . In this test, we have n(P ) = 2Nh = 2×10 = 20

for the first-order sensitivity indices, and n(P ) = 2Nlc2(Nlc2 − 1) = 2× 7× (7−

1) = 84 for the second-order sensitivity indices.

[ Figs. 4, 5 and 6 about here. ]

6.2.2. Comparison with Mara’s approach

We now estimate all the first and second-order sensitivity indices using the

strategy described in Mara [17]. With such an approach, input variables are

divided into 4 groups of 2 factors and 1 single term. Hence, 9 experimental

designs have to be employed. To keep the same computational cost as for the

previous experiment in Section 6.2.1, sample size is 1791 and we use the set of
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S1 S4 S7 S14 S17 S47 S12 S45 S78

Theoretical value 0.1288 0.0573 0 0.0191 0 0 0.0429 0.0085 0

Mean ES 0.1286 0.0573 0.0000 0.0187 −0.0002 −0.0001 0.0423 0.0083 −0.0001

Variance ES(×10−5) 1.1 0.8 0.1 2.5 0.9 1.0 1.9 1.9 1.1

Mean MS 0.1289 0.0568 0.0000 0.0189 −0.0004 −0.0002 0.0423 0.0078 0.0001

Variance MS(×10−5) 1.3 0.8 0.1 10.0 6.4 6.0 9.9 9 6

Table 1: Estimation of the first and second-order sensitivity indices using the RBD-FAST

method with sample size 4001 with Mara’s strategy (MS) and the proposed efficient strategy

(ES). We give, together with the theoretical value of the sensitivity index, the empirical means

and variances of a sample of 200 estimator replicates.

frequencies {ω1, ω2} = {79, 83}. The experiment is replicated 200 times using

different random permutations, and results (empirical mean and variance for

each strategy) are reported in Table 1. On the one hand, the accuracy of first-

order sensitivity indices estimates is the same, and on the other hand, we observe

that the efficient strategy provides second-order indices with lower variance. We

conclude that the choice of strategy seems to be important in terms of variance

reduction.

7. Conclusion

In this paper, we presented a bias correction method for the estimation of

sensitivity indices of any order by both RBD and RBD-FAST. In particular, as

we can notice through the numerical tests, this technique successfully avoids the

over-estimation of the first-order and second-order indices, for any sample size.

We also introduced a strategy which, combined with the bias correction

method, provides an efficient way to estimate all the first-order and second-

order indices using RBD-FAST. In particular, this kind of approach allows to

get a good overview of the sensitivity of a model output at a low cost.

Finally, this efficient strategy introduces the question of variance reduction

techniques (see Section 6.2.2), and a further work is to improve RBD and RBD-

FAST sampling methods. In particular, optimization algorithms commonly used
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for Latin hypercube sampling, could be adapted for RBD experimental designs

which are, as we have noticed in Section 3, very close to Latin hypercube designs.

Appendix A. Details on formula (40)

We denote by (Pi)i=1...n the nonempty subsets of {m1, . . . ,md} where n is

given by

n =
d∑

k=1

(
d

k

)
= 2d − 1 , (A.1)

and, to simplify the notations, we denote by λi the coefficients λPi
. Applying

Eq. (37) to each of the Pi, we get the linear system,




ŜP1

ŜP2

...

ŜPn−1

ŜPn




=




1− λ1 λ1 · · · · · · −λ1

−λ2 1− λ2 −λ2 · · · −λ2

...
. . .

. . .
. . .

...

−λn−1 · · · · · · 1− λn−1 −λn−1

−λn · · · · · · −λn 1− λn




︸ ︷︷ ︸
A




Ŝc
P1

Ŝc
P2

...

Ŝc
Pn−1

Ŝc
Pn




+




λ1

λ2

...

λn−1

λn




(A.2)

The determinant ∆ of the matrix of the system — denoted A — is easy to

compute. Subtracting the first column to all other ones, we get

∆ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1− λ1 − 1 · · · · · · − 1

−λ2 1 0 · · · 0

... 0
. . .

. . .
...

...
...

. . .
. . . 0

−λn 0 · · · 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(A.3)

and, using Laplace expansion,

∆ = 1− λ1 − λ2 · · · − λn . (A.4)
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In practice, we fix N so that

n∑

i=1

#Pi < N (A.5)

Hence, with the definition in Eq. (38), we have

n∑

i=1

λi < 1 . (A.6)

This implies that ∆ is positive, in particular A is invertible.

We get A−1 using the formula based on the adjugate matrix,

A−1 =
tadj(A)

∆
. (A.7)

We easily obtain,

adj(A) =




∆+ λ1 λ2 · · · λn−1 λn

λ1 ∆+ λ2
. . .

. . .
...

...
. . .

. . .
. . .

...

...
. . .

. . . ∆+ λn−1 λn

λ1 λ2 · · · λn−1 ∆+ λn




. (A.8)

Finally, we invert the linear system (A.2), it comes




Ŝc
P1

Ŝc
P2

...

Ŝc
Pn−1

Ŝc
Pn




=




1 + λ1

∆
λ1

∆ · · · · · · λ1

∆

λ2

∆ 1 + λ2

∆
λ2

∆ · · · λ2

∆

...
. . .

. . .
. . .

...

...
. . .

. . .
. . .

...

λn

∆ · · · · · · λn

∆ 1 + λn

∆







ŜP1

ŜP2

...

ŜPn−1

ŜPn




−




λ1

∆

λ2

∆

...

λn−1

∆

λn

∆




(A.9)

and we conclude that Eq. (40) holds.
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Appendix B. Proof of Proposition 1

Let p = q2 with q prime; it is obvious that if there exists q + 1 designs of

experiments satisfying the rules established in Section 5.1, then these configu-

rations allow to compute q+1 estimates of all first-order sensitivity indices and

one estimate of all second-order terms. So, to show that an efficient strategy

exists, it is sufficient to prove the existence of such configurations under the

rules (R1), (R2) and (R3) of Section 5.1. We give a constructive proof.

We begin by renaming the factors (Xi)i=1...p, and defining an initial config-

uration,

configuration 0 : X1
1 · · ·X

q
1︸ ︷︷ ︸

G0
1

X1
2 · · ·X

q
2︸ ︷︷ ︸

G0
2

· · · X1
q · · ·X

q
q︸ ︷︷ ︸

G0
q

, (B.1)

where Xj
i = X(i−1)q+j . We then obtain the q other experimental designs by

considering for i = 1, . . . , q

configuration i : X
σ1
i (1)

1 · · ·X
σq

i
(1)

q︸ ︷︷ ︸
Gi

1

X
σ1
i (2)

1 · · ·X
σq

i
(2)

q︸ ︷︷ ︸
Gi

2

· · · X
σ1
i (q)

1 · · ·X
σq

i
(q)

q︸ ︷︷ ︸
Gi

q

,

(B.2)

where for all i and j between 1 and q, σj
i is a permutation on the set {1, . . . , q}.

These configurations obviously satisfy rules (R1) and (R2) since each group

(Gi
j)j=1..q is filled with one factor of each original group (G0

k)k=1..q; but (R3)

is not always verified. However, we can observe that, letting c be a cyclic

permutation of order q, the permutations

σj
i = cij = c ◦ c ◦ · · · ◦ c︸ ︷︷ ︸

ij times

(B.3)

allow to satisfy rule (R3). Indeed, following the formalism of Eq. (B.2), rule

(R3) reads as: for all i, i′, k, k′, j1 and j2 between 1 and q, with i < i′ and

j1 6= j2, either the factor from G0
j1

inside Gi
k — i.e. X

σ
j1
i

(k)
j1

— is different from

the factor from G0
j1

inside Gi′

k′ — i.e. X
σ
j1
i′

(k′)

j1
— or the factor from G0

j2
inside

Gi
k — i.e. X

σ
j2
i

(k)
j2

— is different from the factor from G0
j2

inside Gi′

k′ — i.e.
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X
σ
j2
i′

(k′)

j2
—. That is to say

∀ 1 ≤ i, i′, k, k′, j1, j2 ≤ q, i < i′, j1 6= j2,





σj1
i (k) 6= σj1

i′ (k
′)

or

σj2
i (k) 6= σj2

i′ (k
′) .

(B.4)

So, assuming Eq. (B.3), let’s prove that

∀ 1 ≤ i, i′, k, k′, j1, j2 ≤ q, i < i′, j1 6= j2,





cij1(k) 6= ci
′j1(k′)

or

cij2(k) 6= ci
′j2(k′) .

(B.5)

Suppose, by contradiction, that

cij1(k) = ci
′j1(k′) and cij2(k) = ci

′j2(k′) (B.6)

for some (i, i′, k, k′, j1, j2) with i 6= i′ and j1 6= j2. It follows that

c(i−i′)(j1−j2)(k) = k . (B.7)

Then, c being a cyclic permutation of order q with q prime and i being different

from i′, we deduce that c(i−i′) is a cyclic permutation of order q. Hence, j1−j2 =

qr for a certain integer r. But, assuming 1 ≤ j1, j2 ≤ q, we conclude that r = 0

and j1 = j2, a contradiction to our assumption j1 6= j2. The conclusion follows.
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Figure 1: Comparison between Latin hypercube and RBD samples in two-dimensional unit

hypercube with sample size 15.

Figure 2: Estimation of the first-order sensitivity indices using RBD. We compare, for a fixed

sample size N = 501, the basic estimator (B1 to B9) with the bias-corrected one (C1 to C9).

In each column, we mark the theoretical sensitivity index with a blue asterisk and plot several

summaries of a sample of 200 estimator replicates: the red central mark is the median; the box

has its lower and upper edges at the 25th percentile q and the 75th percentile Q, respectively;

the whiskers extend between q − 1.5(Q− q) and Q+ 1.5(Q− q); the red crosses are outliers.

Figure 3: Estimation of the first-order sensitivity indices using RBD. We compare, for a fixed

sample size N = 2001, the basic estimator (B1 to B9) with the bias-corrected one (C1 to C9).

In each column, we mark the theoretical sensitivity index with a blue asterisk and plot several

summaries of a sample of 200 estimator replicates: the red central mark is the median; the box

has its lower and upper edges at the 25th percentile q and the 75th percentile Q, respectively;

the whiskers extend between q − 1.5(Q− q) and Q+ 1.5(Q− q); the red crosses are outliers.

Figure 4: Estimation of the first-order sensitivity indices using RBD-FAST. We compare, for

a fixed sample size N = 4001, the basic estimator (B1 to B9) with the bias-corrected one (C1

to C9). In each column, we mark the theoretical sensitivity index with a blue asterisk and

plot several summaries of a sample of 200 estimator replicates: the red central mark is the

median; the box has its lower and upper edges at the 25th percentile q and the 75th percentile

Q, respectively; the whiskers extend between q−1.5(Q−q) and Q+1.5(Q−q); the red crosses

are outliers.

Figure 5: Estimation of the second-order sensitivity indices using RBD-FAST. We compare,

for a fixed sample size N = 4001, the basic estimator (Bij) with the bias-corrected one (Cij).

In each column, we mark the theoretical sensitivity index with a blue asterisk and plot several

summaries of a sample of 200 estimator replicates: the red central mark is the median; the box

has its lower and upper edges at the 25th percentile q and the 75th percentile Q, respectively;

the whiskers extend between q − 1.5(Q− q) and Q+ 1.5(Q− q); the red crosses are outliers.
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Figure 6: Estimation of the second-order sensitivity indices using RBD-FAST. We compare,

for a fixed sample size N = 4001, the basic estimator (Bij) with the bias-corrected one (Cij).

In each column, we mark the theoretical sensitivity index with a blue asterisk and plot several

summaries of a sample of 200 estimator replicates: the red central mark is the median; the box

has its lower and upper edges at the 25th percentile q and the 75th percentile Q, respectively;

the whiskers extend between q − 1.5(Q− q) and Q+ 1.5(Q− q); the red crosses are outliers.
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