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SUMMARY & CONCLUSIONS 

A set of general formulas is proposed for the probability 
of failure on demand (PFD) assessment of MooN architecture 
(i.e. k-out-of-n) systems subject to proof tests.  The proof tests 
can be partial or full.  The partial tests (e.g. visual inspections, 
partial stroke testing) are able to detect only some system 
failures and leave the others latent, whereas the full tests refer 
to overhauls which restore the system to an as good as new 
condition.  Partial tests may occur at different time instants 
(periodic or not), up to the full test.  The system performances 
which are investigated are the system availability according to 
time, the PFD average in each partial test time interval, and 
the total PFD average calculated on the full test time interval. 

Following the given expressions, parameter estimations 
are proposed to assess the system failure rates and the partial 
test effectiveness according to feedback data from previous 
test policies.  Subsequently, an optimization of the partial test 
strategy is presented.  In the 2oo6 system given as example, an 
improvement of about 10% of the total PFD average has been 
obtained, just by a better (non-periodic) distribution of the 
same number of partial tests, in the full test time interval. 

1 INTRODUCTION 

The safety instrumented systems (SIS) play a major part 
in industrial risk management as safety barriers.  A SIS aims 
at performing at least one safety function to achieve or 
maintain a safe state of equipment under control (EUC), in 
respect of a specific hazardous event.  Due to the critical role 
of SIS for health, environment, and goods, functional safety 
standards have been developed as, for example, the IEC 61508 
[1] and the ANSI/ISA S84.00.01-2004 [2].  A framework is 
then introduced to consider the overall system and software 
safety lifecycle and some requirements aim at avoiding the 
systematic failures.  In the realization phase, the safety 
integrity level (SIL) is determined with respect to the random 
hardware failures.  For a SIS operating in a low demand mode 
(i.e. the safety function is only performed on demand, and not 
more than once per year), the used criterion is the average 
probability of system failure to perform its safety function on 
demand.  It corresponds to the mean system unavailability, 
calculated on the full test time interval, and denoted PFDavg. 

According to IEC 61508 [1] and to the assumptions given 
afterwards, different characteristics have to be taken into 
account for PFDavg assessment: system architecture, failure 
rates, proof test intervals and effectiveness.  In the present 
paper, a proof test is described as “partial” if it is imperfect, 
that is, it is able to detect only some system failures and leave 
the others latent.  Visual inspections and partial stroke testing 
are examples of such partial tests.  When a proof test is perfect 
(i.e. its effectiveness is equal to one), it is described as “full” 
and refers to overhauls which restore the system to an as good 
as new condition.  Even if partial tests are less effective, they 
can be preferred to the full tests for several reasons: 
 Full tests are generally physical (e.g. stimulation of 

sensing elements), costly and time consuming.  They may 
sometimes be substituted by electronic tests (e.g. 
electronic simulation) but do not cover all the failures. 

 Full tests often imply stopping production (e.g. power 
supply cut, flow stop by safety valves), sometimes 
unacceptable for industrialists.  Partial tests (e.g. quarter-
turn valve closure) are therefore preferred. 

 Some safety devices cannot be fully tested without 
degradations or destructions (e.g. one shot devices). 

 Only real conditions testing can pretend to be full and, in 
many cases, may provoke more hazards than prevention 
(e.g. fire, toxic gas, or overpressure detection). 
Methods for PFDavg assessment are mentioned in [1] 

(e.g. fault trees, reliability block diagrams, Markov models) 
but none of them is prescribed.  These techniques are 
compared and discussed in [3]-[5].  For example, a Markov 
model is used in [6] and reliability block diagrams in [7], but 
both of them ignore the partial tests.  The use of such tests can 
be regarded as a kind of imperfect preventive maintenance.  
Various methods and optimal policies for imperfect 
maintenance have been discussed in [8].  For example, some 
approaches set a constant probability that a preventive 
maintenance is perfect or imperfect [9]-[10].  More 
specifically, a probability that a failure remained undiscovered 
after testing is assumed in [11], but only for a single unit.  
References [3]-[4] claim that enhanced Markov analyses cover 
most aspects relevant for safety quantification.  The use of 
Markov models is also defended in [5].  Because partial and 



full tests usually occur at deterministic time instants (e.g. 
periodically), basic Markov models are not appropriate [12] 
and extended Markov models have been developed [12]-[14].  
Similar approaches have been used for cost optimization [15]. 

In the present paper, a set of general formulas, given in a 
neat form and easy to compute, has been obtained by 
analytical approaches.  These expressions are proposed to 
assess the availability of MooN architecture (i.e. k-out-of-n) 
systems made up by homogeneous components (i.e. 
components with identical failure rates), and subject to partial 
and full tests.  The partial tests may occur at different time 
instants (periodic or not), up to the full test.  Section 2 presents 
the assumptions, notations, and formulas.  An application is 
then given in Section 3 for parameter estimations, PFDavg 
assessment, and optimization of the partial test distribution. 

2 PFD ASSESSMENT 

2.1 General Assumptions 

 All failures taken into account are dangerous and only 
detected by partial or full tests. 

 The system is made up by N components which are 
independent and have identical and constant failure rates. 

 The system has a MooN architecture i.e. it is made up by 
N components and it is able to perform its safety function 
if any M or more components among N are in an 
operating state (i.e. M-out-of-N system). 

 The N components of the system are in an operating state 
at time t0. 

 The partial tests are able to detect only some specific 
failures of each component of the system. 

 The full tests are able to detect all the failures of each 
component of the system. 

 All components are tested together during any test. 
 When a failure is detected by a partial or a full test, it is 

repaired immediately.  During test and maintenance 
actions, measures are performed to maintain the EUC in a 
safe state in such a way that any test or maintenance 
duration is not included in the analyses. 

 After each full test, the system is restored to an as good as 
new condition.  The PFDavg can therefore be assessed 
according to the full test time interval. 
 

 
Figure 1 – Notation, example with n = 4 

 

2.2 Notations 

MooN system architecture, with M ≤ N 
λ failure rate of any of the N components which 

compose the system 
Ae(t) availability function of any of the N components 

which compose the system i.e. probability that the 
component is in an operating state at time t 

A(t) availability function of the system i.e. probability that 
the system is able to perform its safety function at 
time t 

U(t) unavailability function of the system i.e. U(t)=1-A(t) 
ti time instant of the ith test (which can be partial or 

full), with the initial condition t0=0 
Ti time interval between the (i-1)th and the ith test i.e. 

Ti=ti-ti-1 
E efficiency of partial tests i.e. a proportion equal to E 

of each component failure rate corresponds to failures 
which are detected by any partial test 

n total number of tests in the full test time interval i.e. 
(n-1) partial tests plus the nth test which is full 

τ full test time interval i.e. τ=tn 
PFDi average probability of the system failure to perform 

its safety function on demand (i.e. mean 
unavailability) in the time interval between the (i-1)th 
and the ith test (i.e. [ti-1, ti]) 

PFDavg average probability of the system failure to perform 
its safety function on demand (i.e. mean 
unavailability) in the full test time interval (i.e. [0, τ]) 

Obsi probability, for each component, to observe a failure 
during the ith test 

ki number of components observed in a failed state 
during the ith test 

K equivalent total number of components observed 
during each test 

Notations are reported in Figure 1.  A system is defined by the 
set {M, N, λ}, and a test policy can be either defined by the set 
{E, t1, t2, …, tn} or by the set {E, T1, T2, …, Tn}. 

2.3 General Formulas 

For each component, a part with a failure rate equal to E∙λ 
is testable by any partial or full test, and another part with 
failure rate equal to (1-E)∙λ is only testable by the full tests.  
The corresponding reliability block diagram (RBD) is then 
given in Figure 2, and (see proof in Appendix): 

ttE
e eetA i     1)(            for  ii ttt ,1  (1) 

The availability function of the system is therefore, (see 
proof in Appendix): 
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With the following time-independent sum (see Table I): 
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Figure 2 – Reliability Block Diagram (RBD) 

for any of the N components which compose the system 

The average probabilities of the system failure to perform 
its safety function on demand, in the time interval between the 
(i-1)th and the ith test, and in the full test time interval, are 
therefore (see proof in Appendix): 
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When λ∙τ is small (i.e. λ∙τ << 10-2), the following 
approximations can be done, using the Taylor’s theorem: 
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2.4 Special Case: Without Partial Test 

Without partial test, (2), (7), (5), and (9) become: 
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 N=1 N=2 N=3 N=4 
M=1 1 2 / -1 3 / -3 / 1 4 / -6 / 4 / -1 
M=2  1 3 / -2 6 / -8 / 3 
M=3   1 4 / -3 
M=4    1 

Table 1 – S(M,N,M) / S(M,N,M+1) / … / S(M,N,N) values 
for some MooN architectures 

2.5 Special Case: With Periodic Partial Tests 

Partial tests are periodic if Ti=T0 for i=1,…,n, then ti=i∙T0 
for i=1,…,n. Formulas (2), (7), (5), and (9) therefore become: 
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3 APPLICATION 

3.1 Case Study 

A system for oxygen concentration measurement is used 
as case study.  It takes part of an inerting system which aims 
to reduce the oxygen level in atmospheric air by introducing 
nitrogen in controlled amounts.  The oxygen concentration is 
maintained below a high level which does not allow the fire 
breaking out, and above a low level which remains the place 
accessible to people.  To control the oxygen concentration, six 
oxygen transmitters are used.  Because the nitrogen is quickly 
and heterogeneously distributed into the air space, these six 
transmitters are assumed redundant.  The safety function then 
consists in detecting a low or a high oxygen level, according 
to a 2oo6 architecture.  Two transmitter test procedures are 
recommended by the manufacturer: 
 Every year: control of the measurements and, if required, 

followed by adjustment i.e. full test. 
 Occasionally: visual inspections and some electronic 

checks i.e. partial test. 
For cost reasons, all the six transmitters are tested 

together during any test.  The basic test policy consists of a 
full test every year and a partial test every three months. 



 
Figure 3 – PFD for the case study, 
according to the basic test policy 

The first step of the application uses feedback data from 
the partial and full tests, in order to estimate the transmitter 
failure rates, and the partial test effectiveness.  Then, the 
probabilities of system failure are assessed according to this 
basic test policy.  Subsequently, the partial test distribution is 
optimized in order to reduce the PFDavg. 

3.2 Parameters Estimation and PFD Assessment 

During the ith test of each transmitter, the probability to 
observe a failure is, according to the RBD given in Figure 2: 

ii TEObs       for  1,...,1  ni  (18) 

    ETEObs ii 1       for ni   (19) 
Moreover, because a number of components ki among K 

have been observed in a failed state during the ith test, an 
intuitive and empirical estimator of Obsi is: 

KkÔbs ii                for ni ,...,1  (20) 
The following estimators for the failure rate λ and the 

partial test effectiveness E can be deduced from (18)-(20): 
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The observations ki follow a binomial distribution. 
Confidence intervals for the estimations given by (21) and 
(22) can therefore be obtained using Fisher distributions [16]. 

Assuming four installations, each of them using six 
oxygen transmitters, for a time period equal to four years, the 
equivalent total number of transmitters observed during each 
test is thus K=4∙6∙4=96.  A total number of k1+k2+k3=16 
transmitter failures have been observed during the partial tests, 
and k4=35 transmitter failures during the full tests.  According 
to (21) and (22), the transmitter failure rate λ is estimated at 
6.1∙10-5 hour-1, and the partial test effectiveness E at 0.42. 

According to (16), equivalent to (5) for periodic partial 
tests, the PFDavg is then equal to 2.06∙10-3.  For the present 
case study, the partial tests have reduced the PFDavg by a 
factor of five, compared to the result without partial test given 
by (12).  The probabilities of system failure, according to this 
basic test policy, are depicted in Figure 3. 

 
Figure 4 – PFD for the case study, 

according to the optimized test policy 

3.3 Optimization of the Partial Tests Distribution 

An optimization of the test policy consists in distributing 
the same number of partial tests, inside the full test time 
interval, in order to minimize the PFDavg.  When the costs 
related to the partial tests are independent of the time instants, 
this approach may improve the system safety without 
additional cost, provided that the test times are optimally 
chosen. 

The optimal partial test time instants are denoted ti* with 
i=1,…,(n-1), and the optimal partial test time intervals are 
denoted Ti

* with Ti
*=ti*-ti-1

*. The optimized test policy is then 
obtained by solving the following equation: 
   avgtttn PFDttt

n 121 ...

*
1

*
2

*
1 minarg,...,,

          (23) 

With the PFDavg as defined by (5). 
For the present case study, the optimal partial test time 

instants and the corresponding partial test time intervals, 
obtained by solving (23), are reported in Table 2 (last row). 

Using this optimized test policy, and according to (5), the 
PFDavg is now equal to 1.87∙10-3, that is a reduction of about 
10% compared to the result with the basic (periodic) test 
policy.  Moreover, further analyses show that the maximum 
system unavailability in the full test time interval has been 
reduced by more than 25%.  The probabilities of system 
failure, according to this optimized test policy, are depicted in 
Figure 4. 

 
Test Policy Partial Test Distribution PFDavg 

Without 
partial test τ=12.0 1.03∙10-2 

Basic test 
policy 

(periodic) 

t1=3.0 
t2=6.0 
t3=9.0 

t4=τ=12.0 

T1=3.0 
T2=3.0 
T3=3.0 
T4=3.0 

2.06∙10-3 

Optimized 
test policy 

t1
*=4.8 

t2
*=7.8 

t3
*=10.1 

t4*=τ=12.0 

T1
*=4.8 

T2
*=3.0 

T3
*=2.3 

T4
*=1.9 

1.87∙10-3 

Table 2 – Results summary 

 



4 CONCLUSION 

By introducing general formulas for the probability of 
failure on demand (PFD) assessments of MooN architecture 
systems subject to partial and full tests, the proposed work 
provides practical tools for risk management.  The neat form 
of the proposed exact and approximate expressions allows the 
system and test policy performances to be estimated and 
optimized quite simply and directly.  It has been particularly 
shown that the average probability of system failure to 
perform its safety function on demand (PFDavg) can be 
reduced, just by a better (non-periodic) distribution of an 
appointed number of partial tests.  Thus offering good 
prospects are for safety improvement without additional cost. 

Most of the general assumptions given in Section 2.1 are 
easily fulfilled when measures are performed to maintain the 
EUC in a safe state during test and maintenance actions.  
However, some other aspects should be generalized in order to 
be applicable to a wider field of applications, as for example: 
 Systems with heterogeneous components (i.e. components 

with different failure rates). 
 Systems subject to common cause failures. 
 Systems with extended MooN architectures (e.g. MooN 

architecture parts into each other, capacitated systems). 
 Aging systems. 
 Stochastic test policies, etc. 

Most of these previous cases can be solved using a similar 
reasoning as proposed in this paper (see Appendix), but make 
the general formulas sometimes much more difficult to grasp.  
Another prospect for development concerns the staggered tests 
which allow for reducing probabilities of system failure by 
testing the system components at different time instants [17]. 

APPENDIX 

The following results are for ti-1 ≤ t < ti with i=1, …, n. 
 Proof of (1): according to the RBD given in Figure 2: 
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 Proof of (2): according to [16]: 
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Using the Newton’s binomial theorem: 
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Using the Fubini’s theorem: 
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By substituting x=N-l: 
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Finally: 
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 Proofs of (4): 
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 Proof of (5): 
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