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Abstract In this paper we address the problem of deciding if either n consecu-
tive independent failure times have the same failure rate or if there exists some
k ∈ {1, . . . , n} such that the common failure rate of the first k failure times
is different from the common failure rate of the last n − k failure times. The
statistical tests we propose are based on mean ratio under the assumption that
lifetimes are exponentially distributed and on Mann-Whitney or precedence
test statistics when no parametric assumption on the underlying distribution
is done. Our statistics are free of the unknown underlying distribution under
the null hypothesis of homogeneity of the n failure times which allows to com-
pute critical values of our tests by Monte Carlo methods for small sample size.
These tests have been developed in order to perform sequential change-point
analysis of small sets of feedback data. They are applied to feedback data from
Alstom Transport in order to detect an early change-point of the failure rate
of an industrial equipment.
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1 Introduction

Most of manufacturer companies have to supervise materials in use. Gener-
ally feedback data about components failure times are available. These data
allow to compute the mean time to failure (MTTF) of the component lifetime.
However high reliable components have relatively small failure rates, leading
to small or moderate sample size. Hence one major problem is the on-line
monitoring and the early detection of a change-point in the hazard rate.

Figure 1 represents typical feedback data from Alstom Transport. Circles rep-
resent failure times. The time elapsed between two consecutive failure times
will be called inter-event duration. At calendar time t (in days), the failure
rate is estimated by λt = N(t)/t where N(t) is the number of observed fail-
ures over the time interval [0, t]. At first glance, one might legitimate ask if a
change in the hazard rate occurs from some dates (vertical lines).
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Fig. 1 Typical feedback data from Alstom Transport
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The aim of this paper is to provide some statistical tools to point out a
potential change in the hazard rate, or equivalently in the lifetime distribution
of inter-event durations. Since we will consider the case of small sample sizes,
we will assume that at most a single change-point may occur. For Alstom
Transport a change-point may occur due to two main reasons:

– environmental change for a system component: software modification, new
operating constraints, excessive exploitation of one component, exceptional
climatic conditions;

– change of the manufacturing process: assembly quality problem, minor
modification of the manufacturing process (not mentioned by the supplier)
with unexpected effect on the component reliability, quality slippage of the
manufacturing process.

In practice these statistical tools are used only as warning of a change in fail-
ure rate.

This statistical problem has been studied from several decades. It was first
treated half a century ago in a series of papers by Page [?,?,?]. Bayesian
analysis was then considered ten years later by Chernoff and Zacks [?]. Early
papers deal mainly with parametric distributions. The nonparametric case was
first considered by Bhattacharya and Johnson [?] and by Sen and Srivastava
[?]. Large sample studies of change-point detection methods have been paid
attention, see for instance the book by Csörgö and Horváth [?].

Many change-point detection methods are based on classical maximum type
statistic. To detect a change-point on a sample having small size we have to
face two problems. The first one is that it is difficult to base a decision on
large sample properties of involved statistics since it is well known that the
convergence rates of maximum type statistics is rather low. The second prob-
lem is that statistics are generally not free of the underlying distribution of
the sample (under the null hypothesis of ”no change-point”) which prevent
to determine test critical values through Monte Carlo methods. Here we pro-
pose several methods that overcome the later problem and that do not require
necessarily a parametric assumption on the underlying distribution. The first
one assumes that inter-event durations are exponentially distributed which
is equivalent to assume that failure times occur according to a homogeneous
Poisson process. The two other methods do not rely on any parametric as-
sumption. They are based respectively on Mann-Whitney test and precedence
test statistics. The next section is devoted to the description of these method-
ologies. In addition statistical tables associated to our change-point tests are
provided and computed using Monte Carlo simulations. Numerical illustra-
tions and power comparisons are provided in Section 3. Section 4 deals with
an application to a real data set from Alstom Transport.
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2 Change-point detection methods

Let us denote by X1, . . . , Xn the n inter-event durations available at the cal-
endar time t. These random variables are assumed to be independent, but one
wants to test whether they are identically distributed or not. In particular,
one can be interested in detecting a change-point in this sequence of random
variables. One says that a single change-point occurs if there exists an integer
k ∈ {1, . . . , n} such that X1, . . . , Xk are identically distributed according to
F and Xk+1, . . . , Xn are identically distributed according to G with F 6= G.
The main difficulty is that we do not know if there is a change-point and, if
it exists, where it occurs. Thus one has to consider all possible subsamples by
splitting the whole sample into two consecutive parts. The general methodol-
ogy for a procedure based on a homogeneity test will be detailed in the first
subsection. Then three methods will be presented. The first one assumes that
the inter-event lifetimes are exponentially distributed. The two other methods
do not require any parametric assumption. They are based respectively on
Mann-Whitney statistics and precedence tests [?].

2.1 General description of the methodology

The main scheme of the proposed methodology is as follows:

1. split the sample into two subsamples : (X1, . . . , Xk) and (Xk+1, . . . , Xn)
for k ∈ {m, . . . , n − m};

2. compute the homogeneity test statistic for each splitting;
3. use all homogeneity test statistics to take a decision.

Decision can be either that no change-point occurs or that a change-point
occurs at k∗ ∈ {m, . . . , n − m}.

For the two subsamples (X1, . . . , Xk) and (Xk+1, . . . , Xn), assume that one
can apply a given homogeneity test. We denote by Sn,k the corresponding
statistic that aims to measure the ”distance” between the two subsamples
parent distributions. From all these statistics, we suggest three types of global
test based on the n − 2m + 1 statistics:

1. maximum-type:

Mn = max
m6k6n−m

|Sn,k|
√

var(Sn,k)
;

2. χ2-type:

χ2
n =

n−m
∑

k=m

S2
n,k

var(Sn,k)
;

3. quadratic-type:

Qn = Sn

T Σ−1Sn,

where Sn = (Sn,m, . . . , Sn,n−m) and Σ is the covariance matrix of Sn.
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One can observe that we consider that subsamples should contain a minimal
number of observations. The choice of the value of m will be discussed later.
Quite similar statistics have been proposed in the literature, especially in the
nonparametric case when using Mann-Whitney tests (see below).

2.2 Exponential distribution case

In this first case, one assumes that X1, . . . , Xn are exponentially distributed.
For any subsamples {X1, . . . , Xk} and {Xk+1, . . . , Xn}, one would like to test
whether failure rates are equal (H0: no change-point) or not (H1: a single
change-point). To do so, one can compare the empirical average of the two
subsamples, i.e. the following statistics:

Tk

k
=

∑k

i=1 Xi

k
and

Tn − Tk

n − k
=

∑n

i=k+1 Xi

k
.

In order to remove the unknown parameter under the null, it rather is conve-
nient to consider the ratio of these two statistics:

Tn,k =
n − k

k

Tk

Tn − Tk

.

Notice that considering the ratio of the empirical averages is equivalent to
consider the ratio of the hazard rates. One can easily prove that (see appendix
for details):

E (Tn,k) =
n − k

k
E(Tk)E

(

1

Tn − Tk

)

= (n − k)E

(

1

Tn − Tk

)

=
n − k

n − k − 1
.

Therefore we can deduce from Tn,k an unbiased statistic Sn,k for the ratio of
hazard rates:

Sn,k =
n − k − 1

k

Tk

Tn − Tk

.

It follows that E(Sn,k) = 1 under the null hypothesis. This statistic tends to
be larger than 1 when the failure frequency increases. Notice that according
to the alternative hypothesis one could prefer to use a symetrized version of
the above statistic:

S∗

n,k =
n − k − 1

k

Tk

Tn − Tk

−
k − 1

n − k

Tn − Tk

Tk

.

The covariance matrix of Sn is given in the following proposition (details
for the proof are postponed in the appendix):

Proposition 1. For any k ∈ {m, . . . , n − m} with m > 2,

var(Sn,k) =
(k + 1)(n − k − 1)

k(n − k − 2)
− 1
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and for any (k, k′) ∈ {m, . . . , n − m}2 such that k′ > k and m > 3,

cov(Sn,k, Sn,k′) = −
k

k′
+

(k + 1)(n − k − 1)(n − k′ − 1)

k′

×

k′
−k−1
∑

j=0

(−1)k′
−k−j−1Γ (n − k − 2)

Γ (j + 1)Γ (n − k′)Γ (k′ − k − j)(n − k − j − 2)
.

Hence the value of m will be set to 3 in order to make the above expressions
accurate.

Using these results, one can use Monte Carlo simulations to compute any
quantile of the three statistics and then obtain the critical values that are
summarized in statistical tables. Tables 1–3 give critical values for sample
sizes between 7 and 30, and for α ∈ {20%, 10%, 5%}.

n α = 0.2 α = 0.1 α = 0.05
7 1.59 2.26 3.04
8 1.96 2.70 3.56
9 2.27 3.07 3.95
10 2.53 3.34 4.26
11 2.71 3.55 4.48
12 2.88 3.72 4.63
13 3.05 3.89 4.79
14 3.19 4.05 4.98
15 3.30 4.15 5.06
16 3.41 4.26 5.14
17 3.51 4.35 5.23
18 3.62 4.45 5.32
19 3.71 4.56 5.45
20 3.77 4.59 5.43
21 3.86 4.69 5.55
22 3.93 4.77 5.62
23 4.01 4.82 5.68
24 4.08 4.90 5.75
25 4.15 4.96 5.79
26 4.20 5.00 5.82
27 4.26 5.07 5.90
28 4.32 5.11 5.89
29 4.38 5.17 5.99
30 4.44 5.23 6.03

Table 1 Exponential case: critical values for the test based on Mn

2.3 Nonparametric approach based on Mann-Whitney test

Hereafter we still assume that random variables under consideration are inde-
pendent but we no longer do any parametric assumption on their distributions.
A way to compare nonparametrically the distribution of two subsamples is the
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n α = 0.2 α = 0.1 α = 0.05
7 3.46 6.88 12.45
8 6.64 12.31 21.08
9 10.66 18.97 30.69
10 15.31 26.24 41.57
11 20.51 33.92 52.39
12 26.07 42.03 63.36
13 32.50 51.61 75.52
14 39.46 61.19 89.24
15 46.18 70.25 100.26
16 53.74 80.51 113.86
17 61.76 91.94 127.51
18 70.46 103.24 141.83
19 79.94 116.23 159.23
20 88.75 126.45 170.43
21 98.65 140.37 189.31
22 108.73 153.79 204.83
23 119.67 167.11 222.74
24 131.63 182.67 239.56
25 142.98 196.76 255.60
26 154.31 211.07 273.69
27 167.02 226.40 292.55
28 179.88 241.44 309.45
29 192.57 260.23 333.01
30 206.57 276.58 351.37

Table 2 Exponential case: critical values for the test based on χ2
n

n α = 0.2 α = 0.1 α = 0.05
7 2.66 5.37 9.86
8 4.32 8.22 14.48
9 6.15 11.40 19.27
10 8.08 14.35 24.04
11 9.88 17.21 27.74
12 11.74 19.97 31.56
13 13.82 22.98 35.40
14 15.87 25.96 39.89
15 17.57 28.22 42.51
16 19.53 30.80 46.19
17 21.34 33.55 48.90
18 23.37 35.80 52.44
19 25.36 39.09 56.52
20 27.07 40.52 58.03
21 29.10 43.68 62.13
22 30.96 45.80 64.43
23 32.72 48.18 67.71
24 34.91 50.85 71.11
25 36.80 53.13 73.51
26 38.49 55.22 75.99
27 40.18 57.75 78.99
28 41.85 59.50 80.37
29 43.95 62.19 83.92
30 45.94 64.59 86.54

Table 3 Exponential case: critical values for the test based on Qn
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so-called Mann-Whitney test. Let us recall that the Mann-Whitney statistic
Sn,k computed over the two subsamples X1, . . . , Xk and Xk+1, . . . , Xn is de-
fined by

Sn,k =

k
∑

i=1

n
∑

j=k+1

IXj<Xi
,

where IA = 1 if A is true and 0 otherwise. Let us recall the expressions of the
expectation and the variance of Sn,k:

E[Sn,k] =
k(n − k)

2
,

and

var[Sn,k] =
k(n − k)(n + 1)

12
.

The distribution of Sn,k is not tractable explicitly, but recurrence formulae can
be derived [?]. From these statistics, one can compute the three global statistics
described previously: Mn, χ2

n and Qn. For the last one, the covariances of Sn,k

and Sn,k′ is required.

Proposition 2. For any k ∈ {1, . . . , n} such that k′ > k,

cov(Sn,k, Sn,k′) =
k(n − k′)(n + 1)

12
.

This result was early mentioned by Pettitt [?]. Such statistical tests were
already considered in the literature. A maximum-like statistic have been sug-
gested briefly by Sen and Srivastava [?]. Their statistic is slightly different
from ours. Indeed they consider the maximum of the standardized the Mann-
Whitney statistics while here we do not center Mann-Whitney statistics. Maxi-
mum of non standardized Mann-Whitney statistics was preferred by Pettitt [?]
for which he derived the asymptotic distribution (see also [?]) where the pres-
ence of ties is discussed. Less frequently, other functionals of Mann-Whitney
statistics have been considered in the literature. For instance, Bhattacharya
and Johnson [?] considered the sum of these statistics. Sen and Srivastava
[?] discussed briefly the power of their test and the one suggested by Bhat-
tacharya and Johnson [?] using simulations. It appears that the power of these
tests depend on the location of change-point in the whole sample. Lombard
[?] proposed a kind of quadratic-like statistic (moreover he considered both
the case of an abrupt change or a smooth one).

As for the previous case, we use Monte Carlo simulations to obtain a statistical
table for the three types of statistics. Tables 4–6 give critical values for sample
sizes between 7 and 30, and for α ∈ {20%, 10%, 5%}.
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n α = 0.2 α = 0.1 α = 0.05
7 3.18 3.54 3.89
8 3.58 3.88 4.33
9 3.87 4.16 4.41
10 3.97 4.33 4.60
11 4.16 4.54 4.75
12 4.25 4.64 4.93
13 4.39 4.78 5.09
14 4.53 4.93 5.20
15 4.65 5.05 5.32
16 4.77 5.15 5.44
17 4.91 5.27 5.56
18 4.98 5.34 5.69
19 5.10 5.47 5.78
20 5.22 5.59 5.86
21 5.30 5.69 5.99
22 5.41 5.79 6.08
23 5.49 5.88 6.20
24 5.60 5.97 6.27
25 5.66 6.05 6.35
26 5.77 6.15 6.46
27 5.86 6.23 6.54
28 5.94 6.31 6.63
29 6.02 6.41 6.72
30 6.11 6.49 6.79

Table 4 Nonparametric tests using Mann-Whitney statistics: critical values for the test
based on Mn

2.4 Nonparametric approach using precedence tests

Precedence tests have been proposed to compare the distribution of a small
sample to the distribution of a sample of moderate size (control group). A
booklength account of these developments is due to Balakrishnan and Ng [?].
Hence, these tests can be used to detect an early change-point in a sequence
of random variables. For convenience of notations, we set (Y1, . . . , Yn−k) =
(Xk+1, . . . , Xn). Then we define the random variables counting the number of
observations of the second sample in each interval induced by the partition
coming from the order statistics X1:k, . . . , Xk:k of the first part of the sample

∀j ∈ {1, . . . , k + 1}, Nj =

n−k
∑

l=1

IYl∈[Xj−1:k,Xj:k[,

with X0:k = 0 and Xk+1:k = ∞. Precedence test statistics are based on the
sum of the r-th first random variables among N1, . . . , Nk+1, say

Pn,k(r) =

r
∑

j=1

Nj =

r
∑

j=1

n−k
∑

l=1

IYl∈[Xj−1:k,Xj:k[.

There is no heuristic for the best choice for r, but simulations studies in [?]
prove that it should be rather small than large. Under the null hypothesis (i.e.
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n α = 0.2 α = 0.1 α = 0.05
7 18.13 23.13 28.13
8 28.44 35.98 42.76
9 41.03 51.33 59.63
10 54.58 67.41 77.93
11 69.23 84.57 97.81
12 85.16 103.36 118.93
13 102.65 124.11 142.54
14 121.14 145.33 166.2
15 140.97 168.1 191.54
16 162.13 192.66 218.55
17 182.88 216.55 245.5
18 206.19 242.72 273.8
19 230.16 270.94 305.72
20 256.29 300.31 337.12
21 282.56 329.59 369.8
22 310.82 361.17 403.69
23 339.49 394.09 440.29
24 370.06 427.85 477.88
25 401.32 463.33 515.37
26 431.48 498.02 554.69
27 466.62 535.93 594.51
28 501.75 574.15 638.45
29 535.03 611.49 677.84
30 574.44 656.16 728.56

Table 5 Nonparametric tests using Mann-Whitney statistics: critical values for the test
based on χ2

n

when the underlying distributions of the two subsamples are identical), the
distribution of Pn,k(r) is known (see [?]) and given by

∀x ∈ {0, . . . , n − k}, P(Pn,k(r) = x) =

(

r+x−1
x

)(

n−r−x
k−x

)

(

n
n−k

) .

In order to compute the two first global statistics described above, one has to
compute the expectation and the variance of Pn,k(r). Let us set

Mn(r) = max
m6k6n−m

Pn,k(r)
√

var(Pn,k(r))

and

χ2
n(r) =

n−m
∑

k=m

Pn,k(r)2

var(Pn,k(r))
.

Proposition 3. Under the null hypothesis, for 1 6 r 6 k 6 n, we have

E(Pn,k(r)) =
(n − k)r

k + 1
,

and

var(Pn,k(r)) =
r(k + 1 − r)(n − k)(n + 1)

(k + 1)2(k + 2)
.
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n α = 0.2 α = 0.1 α = 0.05
7 10.57 13.14 18.00
8 13.78 16.78 19.56
9 16.18 19.56 22.40
10 18.69 22.11 25.02
11 21.15 24.67 27.58
12 23.44 27.03 30.05
13 25.80 29.45 32.53
14 28.08 31.92 34.97
15 30.33 34.17 37.37
16 32.59 36.53 39.68
17 34.77 38.77 42.07
18 37.03 41.17 44.51
19 39.24 43.43 46.97
20 41.47 45.75 49.28
21 43.62 47.98 51.57
22 45.83 50.28 53.96
23 48.06 52.59 56.39
24 50.25 54.77 58.57
25 52.41 57.14 60.97
26 54.52 59.28 63.24
27 56.66 61.42 65.47
28 58.98 63.84 67.88
29 61.15 66.13 70.19
30 63.22 68.29 72.47

Table 6 Nonparametric tests using Mann-Whitney statistics: critical values for the test
based on Qn

In particular, for r = 1, we have

var(Pn,k(1)) =
k(n − k)(n + 1)

(k + 1)2(k + 2)
.

As for the previous tests, one can use Monte Carlo simulations to ob-
tain statistical tables for the two first global statistics for r = 1 and r = 2.
Tables 7–8 give critical values for sample sizes between 7 and 30, and for
α ∈ {20%, 10%, 5%}.

3 Numerical illustrations

For the two first approaches considered above, we have computed the power of
the three tests under several alternative hypothesis. Two samples, with respec-
tive length n1 and n2 such that n = n1 + n2 = 20, exponentially distributed
with respective failure rates λ1 and λ2 were simulated. Three couples of pa-
rameters were considered: (i) (λ1, λ2) = (1/2, 1), (ii) (λ1, λ2) = (1/3, 1) and
(iii) (λ1, λ2) = (1/5, 1).

The power of the three global tests in the parametric case are represented on
Figure 2. We observe that the higher the ”difference” between the distribu-
tions is, the most powerful the three tests are. For each situation and for each
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r = 1 r = 2
n α = 0.2 α = 0.1 α = 0.05 α = 0.2 α = 0.1 α = 0.05
7 2.19 3.29 3.29 3.79 5.06 5.06
8 2.60 3.90 5.20 6.00 7.50 7.50
9 4.50 6.00 6.00 8.66 8.66 10.39
10 5.10 6.80 8.50 9.81 11.77 13.73
11 7.59 9.49 11.38 13.15 15.34 17.53
12 8.38 10.47 12.57 16.93 19.35 19.35
13 11.46 13.75 16.04 21.17 23.81 23.81
14 12.44 14.92 19.90 22.98 25.85 28.72
15 13.42 18.78 21.47 27.89 30.98 34.08
16 17.27 20.15 25.91 33.24 36.57 39.89
17 18.44 24.59 27.67 35.50 42.60 46.15
18 22.88 29.42 32.69 41.52 49.07 52.85
19 24.25 31.18 38.11 48.00 56.00 60.00
20 25.61 36.59 40.25 50.70 59.15 63.37
21 30.83 38.54 46.24 57.85 66.75 71.20
22 32.39 44.53 52.63 65.44 74.79 79.46
23 38.18 46.67 55.15 73.48 83.28 88.18
24 39.93 53.24 62.12 76.85 87.10 97.35
25 41.68 55.58 64.84 85.57 96.26 106.96
26 48.26 62.73 72.39 94.73 105.87 117.02
27 50.20 70.28 80.32 104.34 115.93 121.73
28 57.36 73.00 83.43 108.37 126.44 132.46
29 59.49 75.72 91.94 118.65 137.39 143.63
30 61.63 84.04 100.84 129.38 142.32 155.26

Table 7 Nonparametric tests using precedence test statistics: critical values for the test
based on Mn(r) with r ∈ {1, 2}

global test, the power is larger when the change-point occurs at the middle of
the sample (which seems quite natural). The power of the three statistics are
relatively comparable. In general the quadratic-type statistic gives the best
performance compared to the two others if the change-point occurs before the
twelfth failure. If the change-point occurs later, then the maximum-type and
the χ2-type tests are more powerful.
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Fig. 2 Parametric test: power comparisons of the three tests for three alternatives
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r = 1 r = 2
n α = 0.2 α = 0.1 α = 0.05 α = 0.2 α = 0.1 α = 0.05
7 5.44 10.80 13.36 18.24 26.56 34.24
8 12.73 24.36 30.84 48.96 62.47 72.64
9 22.84 42.59 60.97 94.27 121.84 142.04
10 46.20 76.16 107.47 165.81 215.97 256.68
11 74.62 128.32 176.13 276.69 361.60 425.55
12 115.46 187.53 262.09 433.61 559.67 662.82
13 177.28 279.29 389.96 639.69 823.71 976.50
14 254.69 402.68 546.05 936.56 1209.00 1412.16
15 333.81 557.06 761.17 1321.83 1699.31 2003.80
16 477.44 764.68 1047.58 1811.42 2313.01 2732.65
17 615.42 998.40 1373.51 2340.87 3018.62 3566.47
18 865.69 1367.71 1839.10 3135.33 4040.79 4800.16
19 1058.24 1690.82 2318.27 4009.86 5136.13 6028.49
20 1344.06 2159.25 2854.65 5089.34 6535.66 7749.84
21 1661.28 2648.45 3630.44 6422.21 8202.64 9723.21
22 2008.16 3254.69 4355.95 7768.82 10035.01 12054.86
23 2476.97 3956.43 5491.69 9561.39 12267.25 14754.67
24 3018.32 4755.00 6381.55 11790.04 15098.63 17896.07
25 3598.05 5605.62 7840.47 14188.24 18102.13 21641.41
26 4344.18 6783.52 9011.05 16840.48 21531.24 25879.22
27 5050.47 8114.30 10669.47 19623.49 25211.01 29954.94
28 5843.74 9390.99 12465.42 23135.77 29701.95 34904.56
29 6996.68 10933.94 14985.69 27130.24 34534.58 40959.99
30 7894.21 12669.31 17181.05 31450.16 41054.62 48355.42

Table 8 Nonparametric tests using precedence test statistics: critical values for the test
based on χ2

n(r) with r ∈ {1, 2}

The results for the three global tests in the nonparametric setup using
Mann-Whitney statistics are represented on Figure 3. As previously, for all
cases, the power is larger when the change-point occurs at the middle of the
sample. Powers are naturally lower than the ones obtained with the parametric
tests. If the change-point occurs at the begin or at the end (resp. middle) of the
sample, then the quadratic-type (resp. maximum-type) statistic is the most
powerful. At the contrary to the parametric case, we observe symmetric shapes
of the power curves.

Finally we computed the power for three global statistics based on the
precedence test. Figure 4 represents power computations when r = 1. Here the
situation is quite different from the two previous cases. These tests are powerful
for detecting an early change-point. Thus if the change-point occurs early, it
is more powerful than the previous nonparametric test (but less powerful than
the parametric test). Figure 5 represents the power computations when r = 2.
Indeed for r = 2 tests are more powerful than for r = 1, especially when the
two distributions are well separated. Again these tests are really competitive to
detect an early change-point and can overcome the performance of parametric
tests. The power is not increased when r = 3 (figures are not shown here).
Similar behaviors have been already observed for the precedence test for the
comparison of two samples [?].
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Fig. 3 Nonparametric test using Mann-Whitney statistics: power comparisons of the three
tests for three alternatives
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Fig. 4 Nonparametric test using precedence tests with r = 1: power comparisons of the
two tests for three alternatives
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Fig. 5 Nonparametric test using precedence tests with r = 2: power comparisons of the
two tests for three alternatives

4 Application to real data

Here we come back to the application example from Alstom Transport. Table 9
contains inter-event durations (in days).

The sample size is thus equal to n = 13. It corresponds to the data plotted
on Figure 1 in the introduction. In Table 10 the values of all the test statistics
applied to the above dataset are reported (within parenthesis are the critical
values from the previous tables).
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Failure number 1 2 3 4 5 6 7
Inter-events duration 147 62 198 314 29 33 2

Failure number 8 9 10 11 12 13
Inter-events duration 189 42 40 28 224 38

Table 9 Alstom Transport dataset

Parametric tests MW test Preced. test (r = 1) Preced. test (r = 2)

Mn 3.52 4.78 16.04 18.52
(4.79) (5.09) (16.04) (23.81)

χ2
n 36.18 108.7 436.78 732.26

(75.52) (142.54) (389.96) (976.50)
Qn 17.03 26.81

(35.40) (32.53)

Table 10 Test statistics applied to Alstom Transport dataset

Except for precedence test with the χ2
n-type statistic and r = 1, the null

hypothesis is never rejected with a first-type error equal to 5%.

5 Conclusion

In this paper we proposed several statistical methods to detect a single change-
point in the failure rate of a renewal process when the number of available
failure times is small. The statistical tests we developed are applied by Alstom
Transport in order to detect components whose the reliability becomes weaker
(due for example to a change of technology). The main advantage of our tests
is that they are easy to implement and that they can be applied even if the
sample size is small which is quite common in industrial situations. Alternative
methods to the usual maximum type statistics are developed and simulation
results show that tests based on quadratic type statistics can overcome the
performances of tests based on maximum type statistics. Our methods could
also be applied to propose new nonparametric control charts and the study of
the distribution of quadratic-type tests for moderate or large sample sizes is
also of interest.

A Proofs

A.1 Proof of Proposition 1

In the case of the exponential distribution, the statistic Sn,k involves ratio of independent
Erlang distributed random variables. Recall that random variable X follows the Erlang
distribution with parameters k ∈ N

∗ and α > 0 if its probability density function f is
defined by

f(x; k, α) =
xk−1

αkΓ (k)
exp(−x/α)Ix>0,
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where Γ (k) = (k−1)!. We note X ∼ Erl(k, α). In particular notice that Erl(k) ≡ Erl(k, 1).

Calculation of the covariance matrix of Sn requires the calculation of E[1/(X(X +Y )] where
X and Y are two independent Erlang distributed random variables.

Lemma 1. Let X ∼ Erl(l) and Y ∼ Erl(k) being independent. If l > 2 and k > 1, then

E

»

1

X(X + Y )

–

=

k−1
X

j=0

(−1)k−j−1Cj

k−1

1

k + l − j − 2

Γ (k + l − 2)

Γ (l)Γ (k)

=

k−1
X

j=0

(−1)k−j−1 Γ (k + l − 2)

Γ (l)Γ (k − j)Γ (j + 1)(k + l − j − 2)
.

Proof.

E

»

1

X(X + Y )

–

=
1

Γ (l)Γ (k)

Z +∞

0

Z +∞

0

1

x(x + y)
xl−1yk−1 exp(−(x + y))dxdy

=
1

Γ (l)Γ (k)

Z +∞

0
xl−2

„

Z +∞

x

(z − x)k−1

z
exp(−z)dz

«

dx

=
1

Γ (l)Γ (k)

k−1
X

j=0

(−1)k−1−jCj

k−1

Z +∞

0
xk+l−j−3

„

Z +∞

x

zj−1 exp(−z)dz

«

dx

=
1

Γ (l)Γ (k)

k−1
X

j=0

(−1)k−1−jCj

k−1

 

»

xk+l−j−2

k + l − j − 2

Z +∞

x

zj−1 exp(−z)dz

–+∞

0

+

Z +∞

0

xk+l−j−2

k + l − j − 2
xj−1 exp(−x)dx

«

=

k−1
X

j=0

(−1)k−j−1Cj

k−1

1

k + l − j − 2

Γ (k + l − 2)

Γ (l)Γ (k)
.

This ends the proof of the lemma. ⊓⊔

Now let us achieve the proof of Proposition 1. We have

Sn,k =
n − k − 1

k

Tk

Tn − Tk

=
n − k − 1

k

Tk

Rk

,

where Rk = Tn − Tk =
Pn

j=k+1 Xj . Let (k, k′) ∈ {3, . . . , n − 3}2, we obtain

cov(Sn,k, Sn,k′ ) =
(n − k − 1)(n − k′ − 1)

kk′
E

»

TkTk′

RkRk′

–

− 1.

Assume that 3 6 k < k′ 6 n − 3, we write

Rk = Xk+1 + · · · + Xk′ + Xk′+1 + · · · + Xn

= Xk+1 + · · · + Xk′ + Rk′

≡ Uk,k′ + Rk′ ,

and Tk′ = Uk,k′ + Tk. Then we need to calculate the following expectation

E

»

TkTk′

RkRk′

–

= E

"

Tk(Tk + Uk,k′ )

Rk′ (Rk′ + Uk,k′ )

#

= E

»

X(X + Z)

Y (Y + Z)

–

,
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where
8

<

:

X = Tk ∼ E(k) with k > 3,
Y = Rk′ ∼ E(n − k′) with l = n − k′ > 3,
Z = Uk,k′ ∼ E(k′ − k) with q = k′ − k > 1.

These three random variables are independent and since

X(X + Z)

Y (Y + Z)
=

X2

Y (Y + Z)
+

X

Y
−

X

Y + Z

we have

E

»

X(X + Z)

Y (Y + Z)

–

= E[X2]E

»

1

Y (Y + Z)

–

+ E[X]E

»

1

Y

–

− E[X]E

»

1

Y + Z

–

=
Γ (k + 2)

Γ (k)

k′−k−1
X

j=0

(−1)k′−k−j−1Cj

k′−k−1
Γ (n − k − 2)

Γ (k′ − k)Γ (n − k′)(n − k − j − 2)

+
k

n − k′ − 1
−

k

n − k − 1

= k(k + 1)

k′−k−1
X

j=0

(−1)k′−k−j−1Γ (n − k − 2)

Γ (j + 1)Γ (k′ − k − j)Γ (n − k′)(n − k − j − 2)

+
k(k′ − k)

(n − k − 1)(n − k′ − 1)
.

Then we obtain

cov(Sn,k, Sn,k′ ) = −
k

k′
+

(k + 1)(n − k − 1)(n − k′ − 1)

k′

×

k′−k−1
X

j=0

(−1)k′−k−j−1Γ (n − k − 2)

Γ (j + 1)Γ (n − k′)Γ (k′ − k − j)(n − k − j − 2)
.

Similarly we calculate the variance

var(Sn,k) = E((Sn,k − 1)2)

=

„

n − k − 1

k

«2

E(T 2
k )E

 

1

R2
k

!

− 2

„

n − k − 1

k

«

E(Tk)E

„

1

Rk

«

+ 1

=
(k + 1)(n − k − 1)

k(n − k − 2)
− 1 .

This ends the proof of Proposition 1.

A.2 Proof of Proposition 3

The following calculations are carried out under the null hypothesis: X1, . . . , Xn are assumed
to be independent and identically distributed random variables. We will denote by f and
F their common probability distribution function and cumulative distribution function.
Hereinafter we need the distributions of single order statistic and couple of order statistics.
For these expressions, we refer e.g. to [?].
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First we have

E(Pn,k(r)) =

r
X

j=1

n−k
X

l=1

E
`

F (Xj:k) − F (Xj−1:k)
´

= (n − k)
r
X

j=1

`

E
`

F (Xj:k)
´

− E
`

F (Xj−1:k)
´´

= (n − k)E (F (Xr:k)) , (1)

since F (X0:k) = F (0) = 0 (we only consider positive random variables). Moreover

E (F (Xr:k)) =

Z ∞

0
F (x)fXr:k

(x)dx

=
k!

(r − 1)!(k − r)!

Z ∞

0
F (x)rf(x)(1 − F (x))k−rdx

=
k!

(r − 1)!(k − r)!

Z 1

0
ur(1 − u)k−rdu

=
k!

(r − 1)!(k − r)!
B(r + 1, k − r + 1)

=
k!

(r − 1)!(k − r)!

Γ (r + 1)Γ (k − r + 1)

Γ (k + 2)

=
k!

(r − 1)!(k − r)!

r!(k − r)!

(k + 1)!

=
r

k + 1
.

Hence, this with (1) gives

E(Pn,k(r)) =
(n − k)r

k + 1
.

Then we can calculate the second moment of Pn,k(r)

E
`

Pn,k(r)2
´

=
r
X

j=1

n−k
X

l=1

r
X

j′=1

n−k
X

l′=1

E

“

IYl∈[Xj−1:k,Xj:k[IYl′∈[Xj′−1:k,Xj′:k[

”

.

We have to distinguish four cases: (i) j = j′ and l = l′; (ii) j 6= j′ and l = l′; (iii) j = j′ and
l 6= l′; (iv) j 6= j′ and l 6= l′. Let us begin with case (i): it is exactly the same term as in the
expectation. Case (ii) is also quite simple. Indeed, we have

r
X

j=1

n−k
X

l=1

r
X

j′=1
j′ 6=j

IYl∈[Xj−1:k,Xj:k[IYl∈[Xj′−1:k,Xj′:k[ = 0,

since any Yl cannot belong to two non-overlapping intervals. Next we consider case (iii)

r
X

j=1

n−k
X

l=1

n−k
X

l′=1
l′ 6=l

E

“

IYl∈[Xj−1:k,Xj:k[IYl′∈[Xj−1:k,Xj:k[

”

=

r
X

j=1

n−k
X

l=1

n−k
X

l′=1
l′ 6=l

E

“

`

F (Xj:k) − F (Xj−1:k)
´2
”

= (n − k)(n − k − 1)

r
X

j=1

E

“

`

F (Xj:k) − F (Xj−1:k)
´2
”

.
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We have

E

“

`

F (Xj:k) − F (Xj−1:k)
´2
”

=
k!

(j − 2)!(k − j)!

Z ∞

0

Z ∞

x1

(F (x1) − F (x2))2F (x1)2(1 − F (x2))k−jf(x1)f(x2)dx1dx2

=
k!

(j − 2)!(k − j)!

(j − 2)!2!(k − j)!

(k + 2)!

=
2k!

(k + 2)!

=
2

(k + 2)(k + 1)
.

Finally we obtain

r
X

j=1

n−k
X

l=1

n−k
X

l′=1
l′ 6=l

E

“

IYl∈[Xj−1:k,Xj:k[IYl′∈[Xj−1:k,Xj:k[

”

=
2(n − k)(n − k − 1)r

(k + 2)(k + 1)
.

Last we consider the fourth case where all indices are different

r
X

j=1

n−k
X

l=1

r
X

j′=1
j′ 6=j

n−k
X

l′=1
l′ 6=l

E

“

IYl∈[Xj−1:k,Xj:k[IYl′∈[Xj′−1:k,Xj′:k[

”

= (n − k)(n − k − 1)
r
X

j=1

r
X

j′=1
j′ 6=j

E

h

`

F (Xj:k) − F (Xj−1:k)
´ `

F (Xj′:k) − F (Xj′−1:k)
´

i

= (n − k)(n − k − 1)
r
X

j=1

E

"

`

F (Xj:k) − F (Xj−1:k)
´

r
X

j′=1
j′ 6=j

`

F (Xj′:k) − F (Xj′−1:k)
´

#

= (n − k)(n − k − 1)

r
X

j=1

E

h

`

F (Xj:k) − F (Xj−1:k)
´ `

F (Xr:k) − (F (Xj:k) − F (Xj−1:k))
´

i

= (n − k)(n − k − 1)

r
X

j=1

E

h

`

F (Xj:k) − F (Xj−1:k)
´

F (Xr:k)
i

−(n − k)(n − k − 1)

r
X

j=1

E

h

`

F (Xj:k) − F (Xj−1:k)
´2
i

.

The second term on the right hand-side is exactly the one appearing in case (iii) with
opposite sign; thus it cancels. Hence we focus our attention on the calculation of the first
term

r
X

j=1

E[
`

F (Xj:k) − F (Xj−1:k)
´

F (Xr:k)] = E[F (Xr:k)

r
X

j=1

`

F (Xj:k) − F (Xj−1:k)
´

]

= E[F (Xr:k)2]

=
k!

(r − 1)!(k − r)!

Z 1

0
ur+1(1 − u)k−rdu

=
k!

(r − 1)!(k − r)!

(r + 1)!(k − r)!

(k + 2)!

=
r(r + 1)

(k + 2)(k + 1)
.

Joining all the above results, we obtain the following expression for the second moment

E
`

Pn,k(r)2
´

=
(n − k)r

k + 1

»

(r + 1)(n − k − 1)

k + 2
+ 1

–

.
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Thus the variance can be derived from the two first moments.


