

Design of complex safety-related systems in accordance with IEC 61508

<u>F. Brissaud</u>, A. Barros, C. Bérenguer, D. Charpentier French National Institute for Industrial Environment and Risk & Troyes University of Technology

ESREL 2009 Annual Conference 7-10 September 2009, Prague, Czech Republic

Overview

I. Introduction & IEC 61508

- safety systems & IEC 61508 framework
- introduction to design & development of complex systems

II. Design of complex systems

- reliability issues for complex systems
- fault tree based approach to deal with complex systems

III. Application

- case study on infrared gas transmitter
- reliability and uncertainty analyses

IV. Discussion & conclusion

I. Introduction & IEC 61508

université de technologie Troyes

- Safety instrumented systems (SIS)
 - play a major part in industrial risk management
- IEC 61508
 - generic functional safety standard for SIS design
 - considers the overall system and software life cycle
 - introduces safety requirements (SR)
 - safety function: to achieve a safe state of equipment under control
 - safety integrity: probability of a SIS performing the safety function
 - safety integrity level (SIL)

	SIL	Average probability of SIS failure to perform its safety function on demand (PFD_{avg})	
	SIL 4	$10^{-5} \le PFD_{av\sigma} < 10^{-4}$	
	SIL 3	$10^{-4} \le PFD_{avg} < 10^{-3}$	
	SIL 2	$10^{-3} \le PFD_{avg} \le 10^{-2}$	
	SIL 1	$10^{-2} \le PFD_{avg} \le 10^{-1}$	INF-RIS
Florent Brissaud • 07/08/2009 • 3 / 15		· · · · · · · · · · · · · · · · · · ·	

I. Introduction & IEC 61508

• IEC 61508 framework

- development of the overall SR
- SR allocation to the SIS
- SR specification for each SIS
- SIS design & development
- installation, validation
- operation, maintenance
- Other requirements
 - documentation
 - management
 - verification
- Informative guidelines

I. Introduction & IEC 61508

- Requirements for SIS design & development
 - hardware fault tolerance (HFT)
 - safe failure fraction (SFF)
 - average probability of SIS failure on demand (PFD_{ava})

université de tech

INE-RIS

3/3

- avoidance of the systematic faults, proven in use
- some other specific requirements
- Complex system (IEC 61508)
 - not well defined failure mode for at least one component
 - or undetermined system behaviour under faulty conditions
- "Type B" system (IEC 61508)
 - insufficient data to support claims for failure rates
 - or complex system

II. Design of complex systems 1/3

- Reliability issues for "type B" systems
 - many references deal with uncertainty on failure rates
 - e.g. comparison of data sources, Monte Carlo, fuzzy sets, etc.

université de tec

- fewer analyses regarding uncertainty into system behaviour
- Limitations of reliability models
 - system responses to events have to be strictly defined...
 - ...according to architectural constraints of discrete nature
 - e.g. fault tree gates, Markov graph states and transitions
 - random changes in models could yield unrealistic configurations
- Proposal
 - system behaviour should be parameterised so that the system part architectures can be continuously graduated

II. Design of complex systems 2/3

université de techno

EN

TOP

Logie

INF-RIS

Ε,

E

TOP

Sub E_N

Direct

Sub E₂

- Continuous gate for fault tree based approach
 - the TOP-event of a "C-gate" occurs if
 - any basic event E_i occurs and causes, with a probability equal to p_i, the TOP-event occurrence
 - or all the basic events E_i occur
 - a "C-gate" is equivalent to a fault tree with fictitious events P_i which occur with a probability equal to p_i

Sub E₁

p_i are called "weights"

II. Design of complex systems 3/3

- Continuous gate properties
 - $F_i(t)$ probability of occurrence of basic event E_i at time t
 - **p**_i constant probability of occurrence of fictitious event P_i
 - F_{top}(t) probability of occurrence of C-gate TOP-event at time t

université de tech

$$F_{top}(t) = 1 - \prod_{i=1}^{N} \left(1 - p_i \cdot F_i(t) \right) + \prod_{i=1}^{N} \left((1 - p_i) \cdot F_i(t) \right)$$

- Case study on infrared gas transmitter
 - to measure gas concentration by infrared absorption
 - the use of a working and a reference infrared units allows corrections of the optics clogging up and power fluctuations
 - heating elements aim to prevent steam from building up on optics
 - redundant temperature sensors are used for digital compensation
 - a data processing unit carries out all processing and calculations
 - off-set and gain drift parameters are defined by self-adjustments

- Fault tree analyses
 - input data:
 - $\{p_L, p_M, p_H\}$ weigh value according to type
 - $F_i(t) = exp(-\lambda_i \cdot t)$ probability of fault or failure occurrence *i* at time *t*

université de technolog

3/5

 analyses are performed using equivalent fault trees and SimTree from Aralia WorkShop software tool

- Uncertainty analyses: input data
 - failure rate uncertainties are represented by lognormal distributions with error factors equal to 5
 - system behaviour uncertainties are translated into weight value uncertainties and are represented by uniform distributions
 - variances are greater for weight values than for failure rates

Name	Uncertainty analysis			Type N	Name	Uncertainty analysis		
	law	mean	variance			law	mean	variance
λ1	log-Normal	4.0-10-7	3.2-10-14	low	p_L	U[0.0, 0.2]	0.10	3.3-10-3
λ_2	log-Normal	1.0·10 ⁻⁷	2.0-10-15	medium	p_{M}	U[0.2, 0.8]	0.50	3.0·10 ⁻²
λ3	log-Normal	4.0·10 ⁻⁷	3.2-10-14	high	$p_{\rm H}$	U[0.8, 1.0]	0.90	3.3·10-3
λ_4	log-Normal	1.0-10-6	2.0-10-13		•			
λ_5	log-Normal	3.0-10-6	1.8-10-12					
λ_6	log-Normal	5.0·10 ⁻⁷	4.9-10 ⁻¹⁴					
λ_7	log-Normal	1.5-10-7	4.5-10-15					
λ_8	log-Normal	5.0·10 ⁻⁷	4.9·10 ⁻¹⁴					
λο	log-Normal	5.0-10-7	4.9-10-14					

5/5

- Uncertainty analyses: results
 - three configurations are compared
 - each analysis is performed by 1,000,000 Monte Carlo simulations
 - variances are much lower for results than for any input
 - uncertainties into system behaviour are not significant

IV. Discussion & conclusion

- Uncertainties into system behaviour
 - can be taken into account by continuous fault tree gates
 - can be translated into equivalent fault trees using fictitious events

Discussion of results

- taking the system behaviour uncertainties into account leads to *PFD_{avg}* evaluation with a relatively small variance
- uncertainties into inputs, especially for weight values, are partially mitigated through the proposed model
- assuming uncertainties into failure rates, the addition of system behaviour uncertainties does not have a significant effect
- the lack of knowledge in system behaviour can be accounted for and partially compensated for by the proposed approach to evaluate PFD_{avg}

Florent Brissaud • 07/08/2009 • 14 / 15

Thanks for your attention

Questions & Comments are Welcome

florent.brissaud@ineris.fr

ESREL 2009 Annual Conference 7-10 September 2009, Prague, Czech Republic

