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We studied both experimentally and numerically the sedimentation velocity of small solid particles
through liquid channels merging at the intersection of three soap films. The wall mobility induces
a nontrivial behavior for the particle drag coefficient, providing particular transport properties that
are not observed for channels with rigid walls. It is shown that for sufficiently small particles, slow
and fast motions are observed for the particle along the channel, depending on the particle position
within the channel cross section and the sphere/channel size ratio. The velocity corresponding to fast
motions can be as high as twice the Stokes velocity in an unbounded fluid. Moreover, the fast
motions are not observed anymore when the size ratio exceeds a critical value, which has been
found to be approximately equal to 0.5. As another major difference with the solid wall channel, the
sphere velocity does not vanish when the size ratio reaches unity. Instead, the smallest value is found
to be 1

4 of the Stokes velocity. © 2009 American Institute of Physics. �doi:10.1063/1.3253408�

I. INTRODUCTION

Stokes law provides the drag force on a solid particle
falling at low Reynolds number in an unbounded fluid:1,2

F=3��dV, where V is the sphere velocity, d is the particle
diameter, and � is the shear viscosity of the bulk. It is well
known that the particle velocity can be drastically modified
by the presence of a confining wall. Expressions for the re-
sistance coefficients have been derived for a solid sphere
translating parallel to a solid plane.3 This is the consequence
of the no-slip boundary condition for the fluid flow at the
wall. Results have also been obtained as a sphere moves
between two plane walls4,5 or through a channel.6,7 In the
reference case of a sphere in settling motion along the axis of
a vertical tube, the channel wall is known to exert an addi-
tional retardation effect arising from the upward motion of
the fluid through the gap between the sphere and the wall.
Obviously, considering a more general situation, boundary
conditions are likely to differ from this reference, and one
can expect some deviations from this old and well estab-
lished result. For example, slip or apparent slip has been
reported for flows over hydrophobic surfaces8,9 due to the
presence of trapped liquid/gas interfaces. Moreover, wall
mobility can result from the fluid nature of the wall
itself.10–12 The motion of particles in such confined geom-
etries is of great interest and it is relevant to microfluidic
applications.13 The problem of particle motion through the
liquid channels formed between the bubbles of a froth is
moreover a major element in the modeling of the froth flo-
tation process of mineral ores.14

In the present paper, we report the first observation of
the settling motion of a sphere through a channel with fluid
interfaces. As shown below, the antagonistic effects of the

interface mobility and the liquid backflow give rise to
interesting features for the motion of particles in confined
geometries.

II. EXPERIMENT

The channel is obtained by withdrawing a dedicated
frame from a reservoir containing a solution of sodium dode-
cyl sulfate �SDS� at a concentration C=3 g /L �see Fig.
1�a��. The frame consists of a vertical metallic tube on which
three rods �1 mm in diameter� are arranged as a tripod. Due
to capillary forces, the cross section of the resulting vertical
liquid channel �also called Plateau border� is almost an equi-
lateral triangle except that the three segments joining the
vertices are circular arcs of radius R �see Figs. 1�b� and 2�a��.
Each vertex is connected to a thin vertical liquid film—of
negligible thickness—attached to the holder and stabilized
with the surfactants. The resulting SDS interface is known
to exhibit extremely low values of surface viscosity
��10−5 g /s�.11 The frame is accurately positioned above the
reservoir to easily adjust the length of the channel �typical
lengths are in the range of 5–15 mm�. After generation, the
channel and the adjoining films are allowed to freely drain
until the system reaches its static equilibrium �this can be
verified by imaging the interference fringe pattern in the
films�. A closed cell covers the above setup ensuring the
water vapor saturation of the chamber surrounding the chan-
nel. In this manner, liquid flow resulting from evaporation is
avoided and channels were found to be stable for hours or
more. The inner diameter of the holder is 10 mm and a
circular outlet of 1 mm in diameter is opened at its lower
part: it is used to deliver the particles through the channel.
Particles are calibrated glass beads �Duke Scientific
Corporation� with density �S=2.45 and diameter
d=30�2.1, 52.6�3.2, 72.6�4.4, 90.3�4.5, 120�6, and
140�7 �m. A dedicated delivery system was developed to
introduce the particles into the channel without additional
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liquid flow. The particles are first mixed with the foaming
solution and placed in a modified three-path gate, ensuring
their transfer to the channel holder where they are allowed to
settle. Images of the channel during the experiments were
grabbed through windows in the cell cover. The successive
positions occupied by a sphere along the channel axis are
then determined using simple image processing procedures.
Another window was also placed at the bottom of the liquid
reservoir. In illuminating the channel from the top �through
the holder� and using a high speed camera equipped with an
appropriate lens, pictures of the channel cross section could
be obtained during particle motion. The pictures are then
used to determine the particle position within the channel
cross section. Unfortunately, we were only able to distin-
guish between typical positions: particle in a corner �position
x2 in Fig. 2�a�� at the opposite interface �position x1� or at the
center �position x0�. Note also that the size of the channel
holder is far larger than the channel cross section, so that
particles are very likely to enter the channel in contact with
one or two interfaces. However, we performed a lot of
experiments in order to measure the velocity of particles lo-
cated at the center of the channel. We introduce the param-
eter �=d /dlim that compares the size of the particle with the
maximum diameter of the circle inscribed in the channel
cross section, dlim=2R�2 /�3−1�, as illustrated in Fig. 2�a�.
During experiments, dlim has been kept constant and equal to
140�10 �m; the corresponding range of values for � is
�0.2; 1�.

III. NUMERICAL SIMULATION

Particulate Reynolds numbers are estimated to be
small:Re�0.1. The only hydrodynamic force acting on the
sphere is thus the viscous drag FD=3��dVf , where f is a
correction factor due to the presence of the channel walls.
The sphere velocity is made dimensionless using the Stokes
velocity, VStokes= ��S−��gd2 /18� : Ṽ=V /VStokes=1 / f .

The problem is solved numerically by the finite
element method using the commercial software COMSOL

MULTIPHYSICS. The dimensionless Stokes equation is used

for calculations. The software performs the numerical inte-
gration of the stress on the sphere surface, thus providing a
value for the drag force for a given dimensionless sphere
velocity. Slip condition �free boundary condition� is imposed
at the walls of the channel. Zero velocity is imposed at the
three corners of every cross section. The viscous stress is set
to zero at the channel end in order to obtain a fast decrease in
the disturbed flow in this region. In addition, the length of
the channel was increased in such a way that obtained results
do not depend on the particular value chosen for this study:
L /R=8. The mesh is refined near the corners and close to the
sphere to properly solve the flow in these regions �see
Fig. 2�b��. Calculations are performed with several sphere
diameters and corresponding size ratio is within the range
0.1���0.99. The particle position is measured along the
median x axis within the cross section �Fig. 2�a�� with the
center of the channel as origin, x0=0. Coordinates corre-
sponding to the geometrical limits for the sphere inside the
cross section are x2=R��1+��2 /�3−1��2−1	1/2−�3R /3 and
x1=R���3−1�−��2 /�3−1��−�3R /3. As a limitation of the
numerical method, we were not able to perform the calcula-
tions for particles in contact with the interface. Thus, a mini-
mum distance was imposed between the sphere surface and
the free interface of the channel. As a result, the positions of
a sphere in a corner or at the opposite interface correspond to
coordinates given by a ratio �x−x2� / �x1−x2� equal to 0.01 or
0.99, respectively.

IV. RESULTS AND DISCUSSION

Maximum and minimum dimensionless velocities �Ṽmax

and Ṽmin, respectively� are reported as a function of � in Fig.
3. Note that the experimental values for the sphere velocity
are made dimensionless with the Stokes velocity calculated
from the average particle diameter. Although extremely
small, the particle polydispersity of the sample thus induces
an experimental error. This effect has been found to be the
main part of the experimental error and corresponding
error bars are presented in Fig. 3. The plot reveals a large

FIG. 2. �Color online� �a� Channel cross section; the sphere position is
determined with the coordinate x. dlim is the maximum diameter of the circle
inscribed in the Plateau border cross section. �b� Example of mesh used to
compute the velocity of a sphere in settling motion through the fluid channel
�the channel has been inclined for clarity�. Note that the mesh is refined near
the corners and close to the sphere to properly solve the flow in these
regions.

FIG. 1. �a� Scheme of the setup used to study the settling velocities of solid
spheres through fluid channels �not at scale�. The channel is obtained by
withdrawing a dedicated frame from a reservoir containing a foaming solu-
tion. �b� Sketch of the sphere in settling motion in the fluid channel
�so-called Plateau border�. Note that the cross section of the liquid channel
is almost an equilateral triangle except that the three segments joining the
vertices are circular arcs.
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deviation �Ṽ= Ṽmax− Ṽmin for low values of �. Moreover,

Ṽmax and Ṽmin are, respectively, higher and lower than unity.
More quantitatively, with respect to the Stokes velocity, the
velocity of the sphere in the fluid channel can be reduced by
a factor of 0.7—slow motion—as well as increased by a fac-

tor of 2—fast motion. It can be seen that �Ṽ is reduced as �

increases, and Ṽmax� Ṽmin for ��0.8. The reduction in �Ṽ is
accompanied with an overall decrease in the values of the
sphere velocity, so that the fast motion is no more observed
at high �. This transition occurs for the critical value
�crit�0.5. In spite of the decrease in the velocity as a func-

tion of �, it seems that Ṽ does not vanish for �=1. Note that
for the fluid channel, this geometrical limit does not repre-
sent a physical jamming of the sphere inside the channel.
Indeed, additional observations have revealed that spheres
with a diameter larger than dlim could also move along the
channel. Dimensionless velocities are plotted against the cor-
responding sphere positions within the channel cross section
�Fig. 4� for the smallest size ratio �=0.2. Figure 4 provides
some understanding of the large deviation observed between

Ṽmax and Ṽmin. More precisely, it shows up that the velocity
is maximum as the sphere locates in the corner of the chan-
nel cross section �position x2 in Fig. 2�a�� and minimum as it
locates in the central area of the cross section �position x0�,
whereas intermediate values are obtained for spheres in con-
tact with one interface �position x1�. Thus, the settling veloc-
ity increases as the sphere is closer to the walls. A velocity

Ṽ
 Ṽ2�2 is measured as the sphere is in contact with two

walls �corner�, Ṽ
 Ṽ1�1.2 when it is in contact with one

wall, and Ṽ
 Ṽ0�0.7 as there is no wall close to the sphere.
This experimental result is supported by the numerical curve
plotted for comparison in Fig. 4. In particular, the extrapo-
lated numerical value for the sphere in contact with the two
interfaces is close to 2. Figure 5 presents all numerical re-
sults as a function of both x and �. First of all, fast and slow

motions are observed. Fast motions are characterized by ve-
locities as high as twice the Stokes velocity when �	0.2.
For �=0.2, the numerical value for the velocity of spheres

located at x2 is close to Ṽmax. Actually, this good agreement
is found for every value of the size ratio, as observed in
Fig. 3. Moreover, the numerical value for the deviations

Ṽ�x2�− Ṽ�x0� is found to decrease as � increases from 1.36

for �=0.1 to 0.017 for �=0.9. The sphere velocity Ṽ�x0�
decreases from the expected Stokes velocity as �→0 to a
nonvanishing value, in strong contrast to channels with solid

FIG. 3. Experimental values for the maximum and minimum sphere veloci-
ties as a function of the size ratio parameter. The numerical values for the
maximum and minimum velocities �lines� are presented for comparison. FIG. 4. �Color online� Experimental values for the sphere velocity as a

function of the sphere position within the channel cross section for �=0.2.
Shaded areas account for experimental error. The line represents the corre-
sponding numerical results.

FIG. 5. �Color online� Numerical values obtained for the sphere velocity as
a function of the coordinate and for several values of the size ratio within
the range of 0.1–0.99. The dashed-line represented the smallest dimension-

less velocity for a sphere in a fluid channel Ṽ=0.25.
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walls. The value obtained at �=0.99 is 0.2547, and the ex-
trapolated value at �=1 is very close to 0.25. This result is
in agreement with the corresponding experimental value:
Ṽmax� Ṽmin�0.3 �see Fig. 3�. This effect can be attributed �i�
to the geometry of the channel cross section, enabling the
liquid backflow to proceed through the corners, and �ii� to
the interface mobility, allowing the movement to proceed
even as the sphere is touching the three confining interfaces.
On the other hand, at small �, the motion of the sphere is
only weakly influenced by the nature of the wall. For
�=0.2, the numerical value Ṽ�x0�=0.79 compares well with
the experimental value �see Fig. 4�. This value is also close
to that published for a sphere in settling motion along the
axis of a vertical tube with rigid walls, whatever the geom-
etry of the cross section: cylindrical6,7 or triangular.6 More-
over, a numerical calculation with the present cross-section
geometry and no-slip boundary condition provided a value
slightly below 0.7.15 Both experimental and numerical values

of the velocity for a settling sphere close to one wall of the

channel are Ṽ1�1.1–1.2. In Refs. 16–18 the settling veloc-
ity of a particle close to a planar free interface was calculated

and found equal to Ṽplane�1.36. The observed deviation be-

tween Ṽplane and Ṽ1 can be attributed to backflow experi-
enced by the sphere in the three-dimensional confined geom-
etry. As the backflow is amplified when � increases, the

deviation between Ṽplane and Ṽ1 increases as � increases. A

similar discussion can be made about Ṽ2. The main differ-
ence lies in the value itself, which reflects the influence of
the two interfaces confining the sphere in the corner. A com-
parison can be made to a previous numerical study of sphere
motions confined between two fluid walls.19 Their calcula-
tions predicted that for sufficiently low values of the surface
viscosity, an efficient fast motion regime can be obtained.
The reported values are fully consistent with Ṽ2, although in
the two plane configuration, the slow motion regime is not

FIG. 6. �Color online� Flow induced by the motion of a sphere along the fluid channel and located at position x2 �see Fig. 2�a�� for �=0.19. �Left� Velocity
field �the arrows� and the vertical velocity �colors/shades� within the channel cross section passing through the center of the sphere. �Right� Velocity field and
streamlines within a vertical median slice along x axis.

FIG. 7. �Color online� Flow induced by the motion of a sphere along the fluid channel and located at position x2 �see Fig. 2�a�� for �=0.65. �Left� Velocity
field �the arrows� and the vertical velocity �colors/shades� within the channel cross section passing through the center of the sphere. �Right� Velocity field and
streamlines within a vertical median slice along x axis.
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observed because the sphere is confined only along one di-
rection. Actually, the slow motions observed with the present
geometry result from the drag effect associated with the
backflow as � increases. As already said, the backflow effect
is all the more pronounced as the size ratio is high, so that a
critical value can be identified above which only slow mo-
tions are observed. Figure 5 provides a numerical evaluation
for this critical value: �crit=0.5. This value is in very good
agreement with the experimental one. Thus, at high size ra-
tio, the backflow effect appears to be responsible for the
increase in the drag force in the fluid channel. This is in
contrast to channels with rigid walls, where the shearing of
the liquid layer between the sphere and the closest interface
becomes the dominant effect at high size ratio. Figures 6 and
7 illustrate the effect of the backflow in the present situation.
For �=0.19, the backflow takes place in the large free area
with the cross section. For �=0.65, the free area is signifi-
cantly decreased so that the effect of the backflow and the
associated drag force are more pronounced. In this respect,
note the difference for the flow within the corner area: the
liquid velocity is downward for �=0.19, whereas it is up-
ward for �=0.65. This transition as a function of � consti-
tutes a major difference with previously reported laws of
motion in wall-confined liquids.

V. CONCLUSION

New experimental and numerical results have been pre-
sented for the motion of solid particles in confined geom-
etries with free surfaces. It has been shown that in such ge-
ometries, the deviation from the classical nonslip boundary
condition at the confining wall induces a nontrivial behavior
for the particle drag coefficient. For sufficiently small par-
ticles, slow and fast motions are observed for the particle
along the channel, depending on the particle position within
the channel cross section and the sphere/channel size ratio �.
The velocity corresponding to fast motions can be as high as
twice the Stokes velocity when �	0.2. Moreover, the fast
motions are not observed anymore when the size ratio ex-
ceeds a critical value �=0.5. As another major difference
with the solid wall channel, for �
0.5 the sphere velocity is
reduced only due to the backflow effect. As an interesting
result, the sphere velocity is never smaller than 1

4 of the
Stokes velocity, even for a size ratio equal to unity.
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