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Synopsis

We study the local flow properties of various materials in a vane-in-cup geometry. We
perform velocity and particle concentration measurements through MRI techniques during
the flows of a Newtonian fluid, a yield stress fluid, and a dense suspension of noncolloidal
particles in a yield stress fluid. In the Newtonian fluid, we observe that the θ-averaged strain
rate component drθ decreases as the inverse squared radius in the gap, in agreement with
a Couette analogy. However, this results in a torque significantly higher (by 12%) than the
Atkinson and Sherwood (1992) prediction, which is strictly valid only for blades of negligible
thickness embedded in an infinite medium. We also observe that the flow enters deeply the
region between the blades, leading to a significant extensional flow. In the yield stress fluid,
in contrast with the usually accepted picture based on simulation results from the literature,
we find that the layer of material that is sheared near the blades at low velocity is not
cylindrical. There is thus a significant extensional component of shear that should be taken
into account in the analysis. Finally and surprisingly, in the suspension, we observe that a
thin non-cylindrical slip layer made of the pure interstitial yield stress fluid appears quickly
at the interface between the sheared material and the material that moves as a rigid body
between the blades. This feature can be attributed to the non-symmetric trajectories of the
noncolloidal particles around the edges of the blades. This new important observation is in
sharp contradiction with the common belief that the vane tool prevents from slippage and
tends to preclude the use of the vane tool for studying the flows of pasty materials.

I Introduction

Experimental investigations of the rheological behavior of concentrated suspensions often involve
a vane-in-cup geometry (see Barnes and Nguyen (2001) for a review). As compared to other
classical geometries, the vane tool offers two main advantages. First, it allows studying the
properties of structured materials with minimal disturbance of the material structure during
the insertion of the tool [Dzuy and Boger (1983); Alderman et al. (1991)]. It is thus widely
used to study the properties of gels and thixotropic materials [Alderman et al. (1991); Stokes
and Telford (2004)] and for in situ study of materials as e.g. in the context of soil mechanics
[Richards (1988)]. Second, it is supposed to avoid wall slip [Keentok (1982); Dzuy and Boger
(1983); Saak et al. (2001)], which is a critical feature in dense suspensions [Coussot (2005)]; the
reason for this belief is that the material sheared in the gap of the geometry is sheared by the
(same) material that is trapped between the blades. Consequently, it is widely used to study the
behavior of pasty materials containing large particles as fresh concrete [Koehler et al. (2006);
Estelle et al. (2008); Wallevik (2008); Jau and Yang (2010)] and foodstuff [Stokes and Telford
(2004); Mart́ınez-Padilla and Rivera-Vargas (2006)].

The constitutive law of materials can be obtained from a rheological study with the vane-
in-cup geometry provided one knows the coefficients – called “geometry factors” – that allow
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translating the raw macroscopic data (torque, rotational angle or velocity) into local data (shear
stress, shear strain or shear rate). However, in contrast with other classical geometries, even
the a priori simple linear problem (for Hookean or Newtonian materials) is complex to solve
with a vane tool. This linear problem was studied theoretically by Sherwood and Meeten (1991)
and Atkinson and Sherwood (1992) in the general case of a n-bladed vane tool embedded in an
infinite linear medium. The analytical expression found for the torque vs. rotational velocity is
in rather good agreement with macroscopic experimental data [Sherwood and Meeten (1991)].
Note however two possible shortcomings of this theoretical approach for its use in practice: the
blades are infinitely thin and there is no external cylinder.

There is no such approach in the case of nonlinear media (i.e. complex fluids). A practical
method used to study the flow properties of non-linear materials, known as the Couette analogy
[Bousmina et al. (1999); Aı̈t-Kadi et al. (2002); Estelle et al. (2008)], consists in calibrating the
geometry factors with Hookean or Newtonian materials. One defines the equivalent inner radius
Ri,eq of the vane-in-cup geometry as the radius of the inner cylinder of a Couette geometry that
would have the same geometry factors for a linear material. For any material, all macroscopic
data are then analyzed as if the material was sheared in a Couette geometry of inner cylinder
radius Ri,eq. The nonlinearity (that effects the flow field) is sometimes accounted for as it is in a
standard Couette geometry [Estelle et al. (2008)]. This approach may finally provide constitutive
law measurements within a good approximation [Baravian et al. (2002)].

However, simulations and observations show that Ri,eq is not a universal parameter of the
vane tool independent of the properties of the studied material. While the streamlines go into the
virtual cylinder delimited by the blades in the case of Newtonian media [Baravian et al. (2002)],
yielding an equivalent radius lower than the blade radius [Sherwood and Meeten (1991); Atkinson
and Sherwood (1992)], it was found from simulations [Barnes and Carnali (1990); Savarmand
et al. (2007)] that the streamlines are nearly cylindrical everywhere for shear-thinning fluids if
their index n is of order 0.5 or less, and thus that Ri,eq = Ri in these cases. Moreover, for yield
stress fluids, simulations and photographs of the shearing zone around a 4-bladed vane rotating
in Bingham fluids [Keentok et al. (1985)], simulations of Herschel-Bulkley and Casson fluids
flows in a 4-bladed vane-in-cup geometry [Yan and James (1997)], and simulations of Bingham
fluids flows in a 6-bladed vane-in-cup geometry [Savarmand et al. (2007)], all show that at yield
(i.e. at low shear rates), the material contained in the virtual cylinder delimited by the blades
rotates as a rigid body, and that it flows uniformly in a thin cylindrical layer near the blades.
This is now widely accepted [Barnes and Nguyen (2001)] and used to perform a Couette analogy
with Ri,eq = Ri; the yield stress τy is then simply extracted from torque T measurements at low
velocity thanks to τy = T/(2πHR2

i ), where H is the vane tool height (neglecting end effects)
[Nguyen and Boger (1992)].

The flow field in a vane-in-cup geometry and its consequences on the geometry factors have
thus led to many studies. However, only theoretical calculations, macroscopic measurements
and simulation data exist in the literature: there are no experimental local measurements of the
flow properties of Newtonian and non-Newtonian materials induced by a vane tool except the
qualitative visualization of streamlines made by Baravian et al. (2002) for Newtonian media,
and the photographs of Keentok et al. (1985) for yield stress fluids. Moreover, while the main
advantage of the vane tool is the postulated absence of wall slip, as far as we know, this widely
accepted hypothesis was neither investigated in depth nor criticized. In order to provide such
local data, we have performed velocity measurements during the flows of a Newtonian medium
and of a yield stress fluid in both a coaxial cylinder geometry and a vane-in-cup geometry. We
have also performed particle concentration measurements in a dense suspension of noncolloidal
particles in a yield stress fluid, which is a good model system for complex pastes as fresh concrete
[Mahaut et al. (2008a,b)]. Our main results are that:

(i) in the Newtonian fluid, the θ-averaged strain rate component drθ decreases as the inverse
squared radius in the gap, in agreement with the Couette analogy, although our results
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differ significantly from the Atkinson and Sherwood (1992) theory; the flow enters deeply
the region between the blades, leading to a significant extensional flow;

(ii) in the yield stress fluid, in contrast with results from the literature, the layer of material
that is sheared near the blades at low velocity does not have a cylindrical shape;

(iii) in the suspension of noncolloidal particles in a yield stress fluid, the noncolloidal particles
are quickly expelled from a thin zone near the blades, leading to the development of a thin
slip layer made of the pure interstitial yield stress fluid, in sharp contradiction with the
common belief that the vane tool prevents from slippage.

In Sec. II, we present the materials employed and the experimental setup. We present the
experimental results in Sec. III: velocity profiles obtained with a Newtonian oil and with a yield
stress fluids are presented in Sec. IIIA and Sec. IIIB, while Sec. IIIC is devoted to the case of
suspensions, with a focus on the slip layer created by a shear-induced migration phenomenon
specific to the vane tool.

II Materials and methods

A Materials

We study three materials: a Newtonian fluid, a yield stress fluid, and a dense suspension of
noncolloidal particles in this yield stress fluid.
The Newtonian fluid is a silicon oil of 20 mPa.s viscosity.
The yield stress fluid is a dense water in oil emulsion. The continuous phase is dodecane oil in
which Span 80 emulsifier is dispersed at a 7% concentration. A 100 g/l CaCl2 solution is then
dispersed in the oil phase at 6000 rpm during 1 hour with a Sliverson L4RT mixer. The droplets
have a size of order 1 µm from microscope observations. The droplet concentration is 75%, and
the emulsion density is ρf = 1.01 g cm−3. The emulsion behavior, measured through coupled
rheological and MRI techniques described in Ovarlez et al. (2008), was well fitted to a Herschel-
Bulkley behavior τ = τy + ηHB γ̇

n of yield stress τy = 22.5 Pa, consistency ηHB=5.3 Pa s0.5, and
index n = 0.5.
The suspension is a suspension of monodisperse polystyrene beads (density ρp = 1.05 g cm−3,
diameter d = 250 µm) suspended at a 40% volume fraction in the dense emulsion described
above. The density matching between the particles and the yield stress fluid is sufficient to
prevent from shear-induced sedimentation of the particles in the yield stress fluid [Ovarlez et

al. (2010)]; in all experiments, we check that the material remains homogeneous in the vertical
direction thanks to MRI density measurements.

B Rheometry

The rheometric experiments are mainly performed within a 6-bladed vane-in-cup geometry (inner
cylinder radius Ri = 4.02 cm, outer cylinder radius Ro = 6 cm, height H =11 cm). The blades
thickness is 6 mm. Other experiments are performed with a wide-gap Couette geometry of
slightly different inner cylinder radius Ri = 4.15 cm, due to the presence of sandpaper (the
other dimensions were identical). The inner cylinder of the Couette geometry, and the outer
cylinder of both geometries are covered with sandpaper of roughness equivalent to the size of
the largest elements of the materials studied in order to avoid wall slip.
In the rheometric experiments presented here, we control the rotational velocity of the inner
cylinder, with values ranging from 0.1 to 100 rpm.
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C MRI

Proton MRI [Callaghan (1991)] was chosen as a non-intrusive technique in order to get measure-
ments of the local velocity and of the local bead concentration inside the sample. Experiments
are performed on a Bruker 24/80 DBX spectrometer equipped with a 0.5T vertical supercon-
ductive magnet with 40 cm bore diameter and operating at 21 MHz (proton frequency). We
perform our experiments with a home made NMR-compliant rheometer, equipped with the ge-
ometries described in the previous section. This device was already used in a number of previous
rheo-nmr studies [Raynaud et al. (2002); Rodts et al. (2004); Ovarlez et al. (2006)], and is fully
described in Raynaud et al. (2002). The volume imaged is a (virtual) rectangular portion of
40 mm in the axial (vertical) direction with a width (in the tangential direction) of 10 mm and a
length of 70 mm (in the radial direction, starting from the central axis). This volume is situated
at the magnet center (so as to damp the effects of field heterogeneities) and sufficiently far from
the bottom and the free surface of the rheometer so that flow perturbations due to edge effects
are negligible. We checked that the velocity and concentration profiles are homogeneous along
the vertical direction in this slice.

Details on the sequence used to obtain velocity profiles can be found in [Raynaud et al. (2002);
Rodts et al. (2004)]. While it is possible to get 2D or 3D maps of 2D or 3D velocity vectors [Rodts
et al. (2004)], such measurements may actually take minutes and imply complex synchronization
of the MRI sequences and of the geometry position. However, although there is generally no
orthoradial invariance of flow with the vane-in-cup geometry, we will show in the following that
the orthoradial velocity alone provides a valuable information that can be sufficient for most
analyses; in particular it allows computing the θ-averaged strain rate component d̄rθ and thus the
θ-averaged shear stress τ̄rθ (and the torque T ) in the case of the Newtonian oil. That is why we
have chosen to limit ourselves to 1D profiles of 1D velocity measurements, namely the orthoradial
velocity Vθ(r, t) as a function of the radius r and time t, for which a single measurement may
take as less as 1s; this has allowed us to perform a sufficient amount of experiments, with
various materials, geometries, and rotational velocities. Depending on the time over which
this measurement is averaged as compared to 2π/(NΩ) where N = 6 is the number of blades
and Ω is the rotational velocity, this measurement may provide either a time (or θ)-averaged
orthoradial velocity V̄θ(r) = (1/2π)

∫

2π

0
Vθ(r, θ)dθ or an instantaneous (transient) orthoradial

velocity Vθ(r, t). In this latter case, the θ dependence of the orthoradial velocity Vθ(r, θ) at a given
radius r can then be easily reconstructed by simply replacing the time t dependence by an angular
θ dependence with θ = Ω t. It should also be noted that due to incompressibility of the materials
we study, the Vr(r, θ) field can be reconstructed thanks to (1/r)∂r(rVr) + (1/r)∂θ(Vθ) = 0 with
Vr(Ro, θ) = 0; however, this derivation from the experimentally measured values of Vθ(r, θ)
cannot be very accurate. Finally, from Vr(r, θ) and Vθ(r, θ), we are also able to evaluate the strain
rate components drr(r, θ) = −dθθ(r, θ) = ∂rVr and drθ(r, θ) = (1/2)

[

(1/r)∂θ(Vr) + r∂r(Vθ/r)
]

.
The NMR sequence used in this work to measure the local bead concentration is a modified

version of the sequence aiming at measuring velocity profiles along one diameter in Couette
geometry [Hanlon et al. (1998); Raynaud et al. (2002)], and is described in full details in Ovarlez
et al. (2006). The basic idea is that during measurements, only NMR signal originating from
those hydrogen nuclei belonging to the liquid phase of the sample (i.e. both the oil and water
phase of the emulsions) is recorded: the local NMR signal that is measured is thus proportional
to 1 − φ where φ is the local particle volume fraction. A rather low absolute uncertainty of
±0.2% on the concentration measurements values was estimated in Ovarlez et al. (2006).

III Experimental results

In this section, we study successively the flow properties of the Newtonian oil, the yield stress
fluid, and the suspension.
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A Newtonian fluids

In this section, we study the flows observed with a Newtonian fluid. We first present a basic
theoretical analysis of the flows in a vane-in-cup geometry as compared to flows in a standard
Couette geometry, which provides the basis for a Couette analogy. The θ-averaged orthoradial
profiles V̄θ(r) are then shown, and are compared to predictions of the Couette analogy. The full
velocity field Vθ(r, θ), Vr(r, θ) is finally presented and analyzed.

1 Couette analogy: theoretical analysis

Throughout this paper, we use cylindrical coordinates (r, θ, z). All flows are supposed to be z
invariants (i.e. there are no flow instabilities). We define the θ-average f̄(r) of a function f(r, θ)
as f̄(r) = (1/2π)

∫

2π

0
f(r, θ) dθ.

The stress balance equation projected along the orthoradial axis reads:

(1/r)∂r(r
2τrθ) + ∂θ(τθθ)− ∂θp = 0 (1)

where τij is the deviatoric stress tensor and p the pressure.
The strain rate tensor component drθ reads:

drθ(r, θ) =
1

2

(

(1/r)∂θ(Vr) + r∂r(Vθ/r)
)

(2)

We recall that the constitutive law of a Newtonian fluid of viscosity η reads:

τij = 2ηdij (3)

.

Couette geometry

In a standard – coaxial cylinders – Couette geometry, due to cylindrical symmetry, Eq. 1 reads
∂r(r

2τrθ) = 0 which means that the whole shear stress distribution τrθ(r) in the gap is known
whatever the constitutive law of the material is. If a torque T (Ω) is exerted on the inner cylinder
driven at a rotational velocity Ω, τrθ(r) reads:

τrθ(r) =
T (Ω)

2πHr2
(4)

For a Newtonian fluid of viscosity η, it follows that the strain rate component drθ(r) reads:

drθ(r) =
T (Ω)

η4πHr2
(5)

As Eq. 2 reads drθ(r) = (1/2) r ∂r(Vθ/r) with cylindrical symmetry, due to the boundary

conditions Vθ(Ri) = ΩRi and Vθ(Ro) = 0, from
∫ Ri

Ro
drθ(r)/r dr = Ω, one gets alternatively

drθ(r) = ΩR2

iR
2
o/[r

2(R2
o −R2

i )]. The orthoradial velocity profile then reads:

Vθ(r) = Ω
R2

i

r

R2
o − r2

R2
o −R2

i

(6)

Finally, the viscosity η of a Newtonian fluid is obtained from the measured torque/rotational
velocity relationship T (Ω) through

η =
T (Ω)

Ω

R2
o −R2

i

4πHR2
oR

2

i

(7)

These equations will be used for the comparison with the flows observed in a vane-in-cup
geometry, in particular to determine the radius Ri,eq of the equivalent Couette geometry.
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Vane-in-cup geometry

In a vane-in-cup geometry, there is a priori no cylindrical symmetry and all quantities a priori

depend on θ. However, averaging Eq. 1 over θ yields (1/r2)∂r(r
2τ̄rθ) = 0. This means that what

is true in a Couette geometry, τrθ(r) = τrθ(Ri)R
2

i /r
2, is still true on average with a vane-in-cup

geometry: τ̄rθ(r) = τ̄rθ(Ri)R
2

i /r
2 independently of the material’s constitutive law. Note that

this derivation is true only between Ri and Ro; this is not true for the material between the
blades as the unknown τij distribution in the blades contributes to the θ-average. The link
between this stress distribution and the torque T (Ω) exerted on the vane tool may then seem
difficult to build. However, it can be equivalently computed on the outer cylinder where it
reads T =

∫

2π

0
τrθ(Ro, θ)HR2

o dθ = 2πHR2
oτ̄rθ(Ro). This means that Eq. 4 is still valid for the

θ-averaged shear stress in the vane-in-cup geometry:

τ̄rθ(r) =
T (Ω)

2πHr2
(8)

From the θ-averaged Eq. 3, this means that the θ-averaged strain rate distribution in a
Newtonian fluid reads:

d̄rθ(r) =
T (Ω)

η4πHr2
(9)

As the θ-averaged Eq. 2 reads d̄rθ = (1/2) r ∂r(V̄θ/r), this means that the θ-averaged orthoradial
velocity profile of a Newtonian fluid of viscosity η in a vane-in-cup geometry, with a boundary
condition V̄θ(Ro) = 0 reads:

V̄θ(r) =
T (Ω)

η

R2
o − r2

4πHR2
oR

2

i

(10)

Finally, the only difference with a standard Couette flow, as regards these θ-averaged quan-
tities, is that we do not know the value of V̄θ(Ri); we only know that Vθ(r, 2πk/n) = ΩRi, for k
integer, where n is the number of blades. This means in particular that d̄rθ(r) and V̄θ(r) do not
follow the same scaling with Ω as in the standard Couette geometry, whereas they follow the
same scaling with r.

Nevertheless, these equations provide a new insight in the Couette analogy. The usual way
of performing the Couette analogy consists in defining the radius of the equivalent Couette
geometry Ri,eq as the radius that allows measuring the viscosity η of a Newtonian fluid with
the standard Couette formula. From Eq. 7, η should then be correctly obtained from the
torque/rotational velocity relationship T (Ω) measured in a vane-in-cup geometry with:

η =
T (Ω)

Ω

R2
o −R2

i,eq

4πHR2
oR

2

i,eq

(11)

Here, from Eqs. 10 and 6, we see that from the local flow perspective, there is a Couette analogy
in the sense that the θ-averaged orthoradial velocity (and shear) profiles will be exactly the same
as in a Couette geometry. This defines a radius Ri,eq of the equivalent Couette geometry, such
that V̄θ(r) and d̄rθ(r) read:

V̄θ(r) = Ω
R2

i,eq

r

R2
o − r2

R2
o −R2

i,eq

(12)

d̄rθ(r) = Ω
R2

i,eqR
2
o

r2(R2
o −R2

i,eq)
(13)

This point of view provides an additional meaning to the Couette analogy, namely the similarity
of the average flows, and offers a more accurate experimental mean to determine Ri,eq than
calibration: in rheological measurements, the T (Ω) relationship has to be corrected from end
effects [Sherwood and Meeten (1991)] whereas the V̄θ(r) or d̄rθ(r) measurements provide directly
the value of Ri,eq without any correction. This will be illustrated in the following.
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2 θ-averaged profiles

We first study the θ-averaged orthoradial velocity profiles V̄θ(r) observed during the flows of
a Newtonian oil (Fig. 1). As shown above, these profiles can be used to check the validity
of the Couette analogy and to determine the Couette equivalent radius Ri,eq. The orthoradial
dependence of the velocity profiles between two adjacent blades of the vane tool will be considered
after.
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Figure 1: a) Dimensionless velocity profile Vθ(r,Ω)/ΩRi of a Newtonian oil in a Couette geometry
(Ri = 4.15 cm), at various rotational velocities Ω ranging from 2 to 20 rpm; the solid line
is the theoretical profile for a Newtonian fluid. b) Dimensionless θ-averaged velocity profile
V̄θ(r,Ω)/ΩRi of a Newtonian oil in a 6-bladed vane-in-cup geometry (Ri = 4.02 cm) for Ω
ranging from 1 to 9 rpm; the dashed line shows the radius of the blades; the dotted line is the
theoretical profile for a rigid body rotation (for r < Ri); the solid lines are the theoretical profiles
for a Newtonian fluid in Couette geometries of radii, from right to left: (i) Ri = 4.02 cm, (ii)
Ri,eq = 3.88 cm, and (iii) Ri,th = 3.67 cm corresponding to the Atkinson and Sherwood (1992)
theory.

In Fig. 1a we observe that the velocity profiles in the gap of a Couette geometry are, as ex-
pected, in perfect agreement with the theory for a Newtonian flow (Eq. 6). This first observation
can be seen as a validation of the display.

In the vane-in-cup geometry (Fig. 1b), we first note that the θ-averaged dimensionless ortho-
radial velocity profiles V̄θ(r,Ω)/ΩRi measured for several rotational velocities Ω are superposed,
as expected from the linear behavior of the material. We also remark that the material between
the blades rotates as a rigid body only up to r ≃ 3.1 cm, indicating that the shear flow enters
deeply the region between the blades (the blades radius is 4.02 cm). The whole limit between
the sheared and the unsheared material in the (r, θ) plane will be determined in Sec. IIIA3
(Fig. 3b). We finally observe that the theoretical velocity profile for a Newtonian fluid in a
Couette geometry of radius equal to that of the blades falls above the data, as expected from
the literature. This is also consistent with the observation that the shear flow enters the region
between the vane blades.

In order to test the Couette analogy and determine the radius Ri,eq of the equivalent Couette
geometry, we have chosen to plot the θ-averaged strain rate d̄rθ vs. the radius r in Fig. 2. This
allows distinguishing more clearly the difference between the experimental and theoretical flow
properties than the velocity profiles, because in any case the velocity profile tends towards the
same limit (V (Ro) = 0) at the outer cylinder whereas the strain rate profile does not. Note that
velocity measurements could not be performed at proximity of the blades, which explains why
strain rate data are missing from 4 to 4.2 cm.
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Figure 2: θ-averaged strain rate d̄rθ vs. radius r for a Newtonian oil sheared at 1 rpm in a
6-bladed vane-in-cup geometry. The dashed line shows the radius of the blades. The solid lines
are the theoretical strain rate profiles for a Newtonian fluid in Couette geometries of radii: (i)
Ri = 4.02 cm (light grey), (ii) Ri,eq = 3.88 cm (black), and (iii) Ri,th = 3.67 cm (dark grey)
corresponding to the Atkinson and Sherwood (1992) theory in a infinite medium.

In Fig. 2, we first note that d̄rθ is naught up to ≃ 3 cm, which corresponds to the limit of
the rigid motion of the material; d̄rθ then increases when r tends towards Ri as the material
is more and more sheared between the blades. In the gap of the geometry, d̄rθ decreases when
r increases. As expected, the theoretical strain rate profile for a Couette geometry of radius
equal to that of the blades falls well above the data at any radius r (it was less obvious on the
velocity profiles). We then observe that the data are well fitted to the theoretical profile Eq. 13
that would be observed in a Couette geometry of radius Ri,eq = 3.88 cm. This confirms that the
θ-averaged strain rate d̄rθ decreases as the inverse squared radius in the gap, in agreement with
the Couette analogy. From Eq. 8, it means that the torque exerted by the vane tool is decreased
by a factor R2

i,eq/R
2

i = 0.93 as compared to the torque exerted by the inner cylinder of a Couette
geometry of radius Ri = 4.02 cm at a same rotational velocity. This is significantly different
from the Atkinson and Sherwood (1992) prediction, namely that the torque should be decreased
approximately by a factor 1 − 1/n for an infinite n-bladed vane-in-cup geometry (let us recall
that we do not need to consider end effects here because we measure only the contribution to
the torque from the material sheared in the gap). For a 6-bladed vane tool, this would imply
a theoretical decrease of the torque by a factor 0.83, corresponding to a theoretical “equivalent
radius” Ri,th = 3.67 cm. We observe in Fig. 2 that the strain rate profile corresponding to
this theory falls well below the data. We also plot the velocity profiles corresponding to Eq. 12
with Ri,eq and Ri,th in Fig. 1 for illustration; they lead to the same conclusion. Note that the
comparison between velocity profiles is discriminant only near the blades.

Finally, for a given rotational velocity, the torque with our vane tool is significantly higher
(by 12%) than that predicted by the theoretical approach, and is thus much closer to that of a
Couette geometry of same radius as the vane blades than expected. The difference between our
results and the Atkinson and Sherwood (1992) theory may be due to two features that are absent
from the theory: the finite blades thickness and the presence of the outer cylinder. Sherwood
and Meeten (1991) actually found a very good agreement between the theory and experimental
torque measurements on oils, with a geometry of inner radius 13.4 mm and thickness 1 mm,
and of outer cylinder radius 102.5 mm. Sherwood and Meeten (1991) argue that, as the stress
distributions varies as 1/r2 in a Couette geometry, (Ri/Ro)

2 should be of the order of 1% or less
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to consider that the presence of the outer boundary can be neglected; this is clearly the case
in their experiments and in field experiments where the vane is embedded e.g. in a soil; this is
clearly not the case in our experiments and in most rheological experiments that make use of a
vane-in-cup geometry. Note that, due to non-zero thickness, the distance from the center of the
geometry to the blade end varies between 4.02 cm at the middle and 4.05 cm at the edges; this
ambiguity on the geometry radius has negligible impact on our observations. However, this does
not rule out the blades thickness as a possible origin of this difference as it may change the flow
field. Whatever the real reason of this difference is, this shows that the Atkinson and Sherwood
(1992) theory is probably of no use if the gap is not that large as compared to the vane radius
and/or when the blades thickness is not negligible (in this later case, a criterion is not easy to
formulate although it probably involves the thickness to radius ratio, which is of order 0.2 in our
experiments and of order 0.08 in the Sherwood and Meeten (1991) experiments). In such case,
it seems that numerical investigations are still needed, and that, at this stage, a calibration has
to be performed to get the geometry factors.

3 θ dependent profiles

To better characterize the flow field, we now study the dependence of the velocity profiles on
the angular position θ. We have performed experiments in which we measure one orthoradial
velocity profile per second while the vane tool is rotated at 1 rpm, yielding 10 profiles between
two adjacent blades.
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Figure 3: a) Orthoradial velocity profile Vθ(r, θ) of a Newtonian oil sheared at 1 rpm in a 6-
bladed vane-in-cup geometry, for various angular positions θ, from a blade (θ = 0˚) to midway
between adjacent blades (θ = 30˚). The dashed line shows the radius of the blades. The
dotted line is the profile for a rigid body rotation (for r < Ri) and the theoretical profile for a
Newtonian fluid in a Couette geometry of radius Ri (for r > Ri). b) Two-dimensional plot of the
limit between rigid motion and shear (empty circles) for a Newtonian material in the 6-bladed
vane-in-cup geometry; the grey rectangles correspond to the blades.

In Fig. 3a, we plot the velocity profiles Vθ(r, θ) measured at different angles θ. We first
observe that the velocity profile which starts from a blade tip (corresponding to θ = 0˚by
definition) is very different from the velocity profile in a Couette geometry of same radius: it
starts with a much steeper slope, which means that the blades tips neighborhoods are regions
of important shear as already observed by Barnes and Carnali (1990). We then observe that,
as expected from the θ-averaged velocity profiles, the shear flow enters more and more deeply
the region between the blades as θ tends towards 30˚(corresponding to midway between two
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adjacent blades); at this angular position, the rigid rotation stops at Rl ≃ 3.05 cm. From all the
velocity profiles, we finally extract a 2D map of the limit Rl(θ) between rigid rotation and shear,
which is depicted in Fig. 3b. This provides an idea of the deviation from cylindrical symmetry,
and will be compared in the following to the case of yield stress fluids.
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Figure 4: Radial velocity profile Vr(r, θ) of a Newtonian oil sheared at 1 rpm in a 6-bladed vane-
in-cup geometry, for various angular positions θ between two adjacent blades (from θ = 0˚to
θ = 60˚).

As explained in Sec. II, from the Vθ(r, θ) measurement and from the material incompress-
ibility, we are able to reconstruct the radial velocity profile Vr(r, θ) (see Fig. 4). This also allows
us to compute the strain rate components drθ(r, θ) and drr(r, θ) = −dθθ(r, θ), which are plotted
in Fig. 5. Of course, due to the limited amount of profiles between two adjacent blades, such
method provides only a rough estimate of these quantities. In addition to their interest for future
comparison with modelings and simulations, these data allow us to evaluate the contribution of
the extensional flow to dissipation; here, in a Newtonian medium, the local power density reads:
pd(r, θ) = 2η(d2rθ + 2d2rr).
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Figure 5: Strain rate profiles drθ(r, θ) (left) and drr(r, θ) (right) vs. radius r for various angular
positions θ between two adjacent blades (from θ = 0˚to θ = 60˚).

In Fig. 4, we first observe that Vr(r, θ) ≃ 0 for θ = 0˚and θ = 30˚; there is thus no
extensional flow in these regions of space, as seen in Fig. 5. This is actually expected from the
fore-aft symmetry of the flow around these angular positions. Vr and its spatial variations (i.e.
drr) are maximal at θ ≃ 15˚. Meanwhile, we observe that drθ is maximal near the blades: at
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r ≃ Ri it is more than 4 times larger at θ = 0˚than at θ = 30˚. We then find that drθ (and thus
the shear stress τrθ) decreases more rapidly from the blades (at θ = 0˚) than the 1/r2 scaling of
the Couette geometry, whereas it does not vary much with r midway between adjacent blades
(it even seems to slightly increase with r as already observed in simulations by Savarmand et al.

(2007)). It is also worth nothing that at r ≃ Re, in contrast with what is observed at r ≃ Ri,
the shear stress value is of order two times lower at θ = 0˚than at θ = 30˚.

From the whole drθ and drr measurements (Fig. 5), we finally find that in regions where drr
is maximal, the contribution of the extensional flow to dissipation is of order 25%. Over the
whole gap, we then evaluate its average contribution to dissipation to be rather important, of
order 5 to 10%. This significant value may be a reason why the torque that has to be exerted
to enforce flow is higher than expected from the theory of Atkinson and Sherwood (1992). The
confinement effect induced by a close boundary at a radius Re likely increases the contribution
of the extensional flow to dissipation as compared to the case of an infinite medium.

B Yield stress fluid

In this section, we study the flows induced by the vane tool on a yield stress fluid (a dense
emulsion). We focus on the behavior near the yielding transition, i.e. on low rotational velocities
Ω.
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Figure 6: Dimensionless θ-averaged velocity profile V̄θ(r,Ω)/ΩRi of a yield stress fluid (dense
emulsion) in a 6-bladed vane-in-cup geometry for Ω ranging from 0.1 to 9 rpm; the dashed line
shows the radius of the blades; the dotted line is the theoretical profile for a rigid body rotation
(for r < Ri).

In Fig. 6, we plot the θ-averaged orthoradial velocity profiles V̄θ(r) measured at several Ω
ranging from 0.1 to 9 rpm, corresponding to macroscopic shear rates varying between 0.02 and
2 s−1. We first observe that flow is localized: the material is sheared only up to a radius Rc < Ro.
Rc is found to decrease when decreasing Ω. This is a classical feature of flows of yield stress
fluids in heterogeneous stress fields. It has been observed in Couette geometries [Coussot (2005);
Ovarlez et al. (2008)], where it is attributed to the 1/r2 decrease of the shear stress τrθ, which
passes below τy at some Rc(Ω) < Ro at low Ω. In this case, when Ω tends to 0, Rc tends to Ri

and the torque T at the inner cylinder tends to τy ∗ 2πR
2

iH. In the vane-in-cup geometry, the
same argument holds qualitatively thanks to Eq. 8. It implies that the flow has to stop inside
the gap at low Ω. However, in contrast with the case of the Couette geometry, as the whole

11



stress field a priori depends on θ, this θ-averaged equation does not provide the position of the
limit between the sheared and the unsheared material (it will determined in the sequel).

We then observe that, although this effect is less pronounced than with a Newtonian material,
the shear flow still enters the region between the blades, even at the lowest studied Ω. Close
examination of the profiles shows that the material trapped between the blades rotates as a rigid
body only up to Rl ≃ 3.65 cm at Ω = 9 rpm, Rl ≃ 3.75 cm at Ω = 1 rpm, and Rl ≃ 3.85 cm at
Ω = 0.1 rpm. We recall that Rl ≃ 3.05 cm with a Newtonian fluid in the same geometry.
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Figure 7: Orthoradial velocity profile Vθ(r, θ) of a yield stress fluid (dense emulsion) sheared
at 0.1 rpm in a 6-bladed vane-in-cup geometry, for various angular positions θ, from a blade
(θ = 0˚) to midway between adjacent blades (θ = 30˚). The dashed line shows the radius of
the blades.

As in Sec. IIIA3, to better characterize the flow field, we have performed experiments in
which we have measured 10 orthoradial profiles between two adjacent blades at 0.1 rpm. In
Fig. 7, as for a Newtonian fluid, we observe that there is a strong θ-dependence of the velocity
profiles. The velocity profile that starts from a blade tip (at θ = 0˚) has a much steeper slope
that the profile measured midway between adjacent blades (at θ = 30˚); again, this shows that
the blades tips neighborhood are regions of high shear. Meanwhile the flow stops at a radius
Rc which is larger at θ = 30˚(4.5 cm) than at θ = 0˚(4.3 cm). From these velocity profiles, we
have reconstructed a 2D map of the flow field (Fig. 8), with both the limit between rigid motion
between the blades and shear, and the limit between shear and rest (i.e. the position where the
yield criterion is fulfilled).

Flow is found to occur in a layer of complex shape which is far from being cylindrical even at
this very low velocity. These observations are in contradiction with the usually accepted picture
for yield stress fluid flows at low rates [Barnes and Nguyen (2001)], namely that the material
contained in the virtual cylinder delimited by the blades rotates as a rigid body, and that it
flows uniformly in a thin cylindrical layer near the blades. Our results contrast in particular
with previous numerical works which showed that the yield surface is cylindrical at low rates
for Bingham fluids, Casson fluids, and Herschel-Bulkley materials with n = 0.5 [Keentok et al.

(1985); Yan and James (1997); Savarmand et al. (2007)]. With apparently similar conditions as
some of the Yan and James (1997) simulations, we find an important departure from cylindrical
symmetry. This means that further investigation on the exact conditions under which this
symmetry can be recovered have to be performed. Possible difference between our work and
that of Yan and James (1997) is that the blade thickness is naught in this last study.

It is particularly striking and counterintuitive that Rc is the larger at the angular position
(θ = 30˚) where shear at Ri is the less important. As in Sec. IIIA3, this points out the
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importance of the extensional flow in this geometry, with θ-dependent normal stress differences
which have to be taken into account in the yield criterion, and which thus impact the yield
surface. It thus seems that the link between the yield stress τy and the torque T measured
at yield with a vane-in-cup geometry is still an open question, although the classical formula
probably provides a sufficiently accurate determination of τy in practice.
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Figure 8: Two-dimensional plot of the limit between rigid motion and shear (circles) and between
shear and rest (triangles) for a yield stress fluid (dense emulsion) sheared in the 6-bladed vane-
in-cup geometry at 0.1 rpm (left) and 1 rpm (right). The grey rectangles correspond to the
blades.

The same 2D map as above is plotted for Ω = 1 rpm in Fig. 8; the same phenomena are
observed, with enhanced departure from cylindrical symmetry, consistently with the observation
that Rl decreases when increasing Ω. This result was also unexpected, as simulations find uni-
form flows for shear-thinning material of index n ≤ 0.5 [Barnes and Carnali (1990); Savarmand
et al. (2007)]; we would have expected the same phenomenology in a Herschel-Bulkley material
of index n = 0.5 (and thus Rl to tend to Ri when increasing Ω). This observation shows that
a Couette analogy can hardly be defined for studying the flow properties of such materials in
a vane-in-cup geometry because the equivalent Couette geometry radius Ri,eq would probably
depend also on Ω.

Let us finally note that this departure from cylindrical symmetry has important impact on
the migration of particles in a yield stress fluid (see below).

C Dense suspension

In this section, we investigate the behavior of a dense suspension of noncolloidal particles in a
yield stress fluid (at a 40% volume fraction).

A detailed study of their velocity profiles would a priori present here limited interest: such
materials present the same nonlinear macroscopic behavior as the interstitial yield stress fluid,
and their rheological properties (yield stress, consistency) depend moderately on the particle
volume fraction [Mahaut et al. (2008a); Chateau et al. (2008)].

On the other hand, noncolloidal particles in suspensions are known to be prone to shear-
induced migration, which leads to volume fraction heterogeneities. This phenomenon is well
documented in the case of suspensions in Newtonian fluids [Leighton and Acrivos (1987b);
Abbott et al. (1991); Phillips et al. (1992); Corbett et al. (1995); Shapley et al. (2004); Ovarlez
et al. (2006)] but is still badly known in yield stress fluids (some studies exist however in
viscoelastic fluids [Tehrani (1996); Huang and Joseph (2000); Lormand and Phillips (2004)]).
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In the model of Leighton and Acrivos (1987b) and Phillips et al. (1992), migration is related
to shear-induced diffusion of the particles [Leighton and Acrivos (1987a); Acrivos (1995)]. In a
wide gap Couette geometry, the shear stress heterogeneity is important (Eq. 4); the shear rate
gradients then generate a particle flux towards the low shear zones, which is counterbalanced
by a particle flux due to viscosity gradients. A steady state, which results from competition
between both fluxes, may then be reached, and is characterized by an excess of particles in the
low shear zones of the flow geometry (near the outer cylinder in a wide-gap Couette geometry
[Phillips et al. (1992); Corbett et al. (1995); Ovarlez et al. (2006)]). Note that there are other
models [Nott and Brady (1994); Mills and Snabre (1995); Morris and Boulay (1999); Lhuillier
(2009)] in which particle fluxes counterbalance the gradients in the particle normal stresses, and
which can be used directly for non-Newtonian media.

As the development of migration depends on the spatial variations of shear, one may wonder
how the orthoradial heterogeneities of shear introduced by the vane tool effect migration; a
related question is that of the relevance of the Couette analogy for this phenomenon. In the
following, we thus focus on the particle volume fraction distribution evolution when the material
is sheared.

Behavior at high shear rate

We first study the behavior at high shear rate, in the absence of shear localization. We shear the
suspension in both the standard Couette geometry and the vane-in-cup geometry at a rotational
velocity Ω = 100 rpm. In this first set of experiments, we only study the steady-state of
migration. At Ω = 100 rpm, this steady-state is reached in less than 30 min (which corresponds
to a macroscopic strain of order 50000, consistently with strainscale evaluations from data of
the literature [Ovarlez et al. (2006)]). In Fig. 9 we plot the steady state volume fraction profiles
observed after shearing the suspension at Ω = 100 rpm during 1h.
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Figure 9: a) Steady-state volume fraction vs. radius at Ω = 100 rpm in both the Couette
geometry (empty circles) and the vane-in-cup geometry (squares). In the vane-in-cup geometry,
the profile is performed in a 1 cm thick slice situated exactly between two adjacent blades (see
Fig. 10b). The inset is a zoom; the line is a fit of the data measured in the Couette geometry to
the Phillips et al. (1992) model with Kc/Kµ = 0.42. b) θ-averaged orthoradial velocity profile
V̄θ(r); the dotted line is the theoretical rigid motion induced by the rotation of the vane tool;
the dashed line shows the radius of the blades.

As expected, we first observe that the material is strongly heterogeneous in the Couette
geometry: the volume fraction varies between 37% near the inner cylinder and 43% near the
outer cylinder (note that the NMR technique we use do not allow for quantitative measurements
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near the walls). This heterogeneity is quantitatively similar to that observed in Couette flows of
Newtonian suspensions at a same 40% particle volume fraction [Corbett et al. (1995)]; the profiles
are actually well fitted to the Phillips et al. (1992) model (see Eq. 16 of Ovarlez et al. (2006))
with a dimensionless diffusion constant Kc/Kµ = 0.42 which is close to that found by Corbett
et al. (1995) (Kc/Kµ = 0.36), although this model is not expected to hold in non-Newtonian
suspensions.

In the vane-in-cup geometry, the volume fraction profile shows very different features; note
that the profile is performed in a 1 cm thick slice situated exactly between two adjacent blades
(see Fig. 10). In Fig. 9, we first observe that there is a strong particle depletion in a wide zone
between the blades. A homogeneous volume fraction of 40% is observed for radii inferior to
3.1 cm. At a radius Rl = 3.1 cm, there is a strong drop in the volume fraction down to 5%
within 1 mm (corresponding to 4 particle diameters). Close inspection of the velocity profile
Fig. 9 shows that this radius Rl corresponds to the transition between rigid motion and shear
between the blades. The volume fraction then increases basically linearly with the radius up to
a 40.5% volume fraction at a radius r = 3.85 cm which is close to the blades radius. The volume
fraction then increases only slightly (between 40.5% and 42.5%) in the gap of the geometry: the
heterogeneity is here much less important than in a standard Couette geometry.

To get further insight in the new strong depletion phenomenon we have evidenced, we have
performed 2D magnetic resonance images of the material. Such images provide a qualitative
view of the spatial variations of the particle volume fraction as only the liquid phase is imaged.
Images are coded in grey scales; a brighter zone contains less particles. In Fig. 10b, we first
see an image of the homogeneous material. Before any shear, as expected, the light intensity
is homogeneous in the sample (intensity variations correspond to noise). After a 1h shear at
Ω = 100 rpm, we observe very bright and thin curves on the image: they correspond to zones
where the volume fraction suddenly drops down to a value close to zero. These curves are not
cylindrical. More precisely, between two adjacent blades, a depleted zone goes from the edge of
one blade (at θ = 0˚, r = 4.02 cm) to the edge of another blade (at θ = 60˚, r = 4.02 cm),
and describes a concave r(θ) curve whose minimum is r = 3.1 cm at θ = 30˚. Note that as the
volume fraction profile is averaged over a slice which is 1 cm thick in the orthoradial direction
(see Fig. 10b), the fact that we measure a minimum of 5% at r = 3.1 cm in the slice probably
means that the volume fraction minimum is actually equal to zero in the depletion zone.

As pointed out above, this curve also likely marks the transition between the unsheared
material (which rotates as a rigid body) and the sheared material. Note in particular the
similarity with Fig. 3b, the data of which are reported in Fig. 10a for illustration. A first
interpretation of the phenomenon would then simply be that migration is caused by shear and
naturally stops at this transition zone. Indeed, as shear is maximum near the blades, particles
tends to migrate out of this zone; moreover, there is no source of particle flux from the unsheared
zone between the blades to balance the migration towards the outer cylinder. However, this does
not explain why the volume fraction drops down to zero: heterogeneities observed at steady-
state in the literature are usually moderate and do not lead to zones free of particles. A better
understanding of the phenomenon can be gained by zooming on the previous image (Fig.10c).
We now see that while the depletion phenomenon seems symmetric around both sides of the
blades at a macroscopic scale, it is clearly asymmetric at a local scale near the blades and depends
on the direction of rotation: depletion is more pronounced at the back of the blade (note that the
vane tool rotates counterclockwise). This would mean that the noncolloidal particles trajectories
are asymmetric around the blade: a particle that is found at a radius r ≃ 4.02 cm just before
the blade is necessarily found at a radius slightly higher than 4.02 cm after the blade as there
are no particles at r = 4.02 cm. This feature is reminiscent of the fore-aft asymmetry that is
observed in the bulk of noncolloidal suspensions [Parsi and Gadala-Maria (1987)] and that leads
to their non-Newtonian properties [Brady and Morris (1997)]. It thus seems that, in addition to
the shear-induced migration mechanism intrinsic to suspensions, the vane tool induces a specific
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Figure 10: 2D magnetic resonance image of a suspension of particles in a yield stress fluid in
a vane-in-cup geometry: (a) after a 1h shear at Ω = 100 rpm (corresponding to a macroscopic
strain of order 75000), and (b) before any shear. The crosses in Fig. 10a correspond to the limit
between rigid motion and shear for the Newtonian oil of Fig. 3b. The white rectangle in Fig. 10b
shows the slice in which the volume fraction profiles of Figs. 9a and 11 are performed. (c) is a
zoom of image (a) near the edges of a blade. The images are taken in the horizontal plane of
the geometry, at middle height of the vane tool, and correspond to vertical averages over 2 cm.
The vane tool rotates counterclockwise.
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migration mechanism which has its origin in the direct interactions between the particles and
the blades; this effects leads to the full depletion that is observed at the transition between the
sheared and the unsheared material. Such direct effect of a flow geometry on migration have
also been observed in microchannel flows of colloidal suspensions [Wyss et al. (2006)], and also
led to full particle depletion. The kinetics of the phenomenon will be briefly discussed below.

The rest of the volume fraction profile results from a complex interplay between shear-induced
migration and the fore aft asymmetry around the blades; this leads to the rapid increase of the
volume fraction between 3.1 cm and 4.02 cm. After 4.02 cm the flow lines do not meet the blade
edges, and the phenomenon evidenced above should have basically no effect on the heterogeneity
that develops in the gap of the geometry. On the other hand, the mean volume fraction should
be slightly higher due to mass conservation; it is indeed observed to be equal to around 42%.
Nevertheless, as the mean radial shear rate heterogeneity is basically similar to that observed in
a standard Couette geometry (see previous sections), we would apriori expect the heterogeneity
to be somehow similar. However, we observe that the volume fraction profile is only slightly
heterogeneous: there is less than 5% variation of the volume fraction in the gap, to be compared
to the 15% variation observed in the Couette geometry. Clearly, this means that the Couette
analogy is irrelevant as regards this phenomenon, and that the details of shear matter. Here,
the extensional flow that adds to shear may be at the origin of this diminution of migration. A
more detailed analysis is out of the scope of this paper.

Behavior at low shear rate

Let us now study the behavior at low shear rate. Low shear rates are typically imposed in the
end of measuring the yield stress of such materials. Starting from a homogeneous suspension
at rest, we apply a rotational velocity Ω = 1 rpm (without any preshear), and we measure the
evolution of the particle volume fraction in time. The corresponding volume fraction profiles are
depicted in Fig. 11.
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Figure 11: Volume fraction vs. radius at Ω = 1 rpm measured in the vane-in-cup geometry after
different times of shear: 5min, 1h, 14h. The material is homogeneous at the beginning of shear.
The inset presents the θ-averaged orthoradial velocity profile V̄θ(r) measured in the first stages
of shear; the dotted line is the theoretical rigid motion induced by the rotation of the vane tool;
the dashed line shows the radius of the blades.

In Fig. 11, we observe that, although shear is much less important than in the previous
experiments, particle depletion also appears between the blades. Comparison of the velocity
profile and the volume fraction profile shows that depletion also appears between the blades at
the transition zone between the sheared and the unsheared materials. This phenomenon appears
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with a very fast kinetics: the lower volume fraction value in the measurement zone is 36% after
only a 5 minutes shear (corresponding to a macroscopic strain of order 50). Afterwards, it
continues evolving slowly: the minimum observed volume fraction is of order 33% after a 1h
shear and of order 32% after a 14h shear (corresponding to a 10000 macroscopic strain). Note
that the radial position of the minimum value of the volume fraction slightly decreases in time; it
likely corresponds to progressive erosion of the material between the blades (we did not measure
the velocity profiles to check this hypothesis).

We also note that migration is negligible in the rest of the sheared material as expected
from the theory of migration briefly described above (a larger strain would be needed to observe
significant migration). Nevertheless, we note some particle accumulation (with a volume fraction
value of 43%) at Rc=4.7 cm after a very long time. This corresponds to the yield surface as flow
is localized at low velocity (see velocity profile Fig. 11). Migration profiles usually result from an
equilibrium between various sources of fluxes. On the other hand, the unsheared material does
not produce any particle flux while it receives particles from the sheared region. This particle
accumulation is thus the signature that the migration phenomenon is indeed active, although
not observable on the profile measured in the sheared zone. It is probable that this accumulation
process would stop only (after a very long time) when there are no more particles in the sheared
region.

Figure 12: 2D magnetic resonance image of a suspension of particles in a yield stress fluid in the
horizontal plane of a vane-in-cup geometry after a 14h shear at Ω = 1 rpm (a). (b) is a zoom
of image (a) between two adjacent blades. The image is taken in the horizontal plane of the
geometry, at middle height of the vane tool, and corresponds to a vertical average over 2 cm.
The vane tool rotates counterclockwise.

As above, 2D magnetic resonance images of the material provide an insight in the phe-
nomenon. In Fig. 12, we observe again that particle depletion is enhanced at the rear of the
blades; this confirms that this phenomenon is likely due to direct interactions between the blades
and the particles, leading to the asymmetry of the particles trajectory around the blades. This
a priori occurs with any particle whose trajectory is close to the blades, explaining why particle
depletion appears so rapidly. There is probably no way to avoid it. Note that the images are
here much brighter very close to the blades than midway between two adjacent blades; this
would mean that the particle volume fraction is probably close to 0 near the blades, although
we observe volume fraction of order 32% between two blades.
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Finally, let us note that the bright line provides a good idea of what the limit between the
sheared material and the material that moves as a rigid body. We see as in Sec. IIIB that this
is far from being cylindrical even at this low velocity.

Consequences

We finally present some consequences of this phenomenon. From the above observations, our
conclusion is that depletion sets up quickly and is probably unavoidable. Then two situations
have to be distinguished. If viscoelastic properties of a material are measured at rest on the
homogeneous material in its solid regime, without any preshear, then these measurements pose
no other problem than that of the relevant Couette analogy to be used (see Sec. IIIA). If a
yield stress measurement is performed at low imposed rotational velocity, starting from the
homogeneous material at rest, then this measurement is likely valid as long as only the peak
value or the plateau value at low strain (of order 1) is recorded. On the other hand, any
subsequent analysis of the material behavior will a priori be misleading: irreversible changes
have occurred and the material cannot be studied anymore. More generally, any measurement
performed after a preshear will be uncorrect and any flow curve measurement will lead to wrong
evaluation of the materials properties. In these last cases, the consequence of the new particle
depletion phenomenon we have evidenced is a kind of wall slip near the blades, whereas there
are no walls. Here the “slip layer” is made of the (pure) interstitial yield stress fluid in a zone
close to the blades, as would be observed near a smooth inner cylinder. This contrasts with the
common belief that the vane tool prevents from slippage.

In order to illustrate this feature, we present some results of Mahaut et al. (2008a): Mahaut
et al. (2008a) have performed classical upward/downward shear rate sweeps with a vane-in-cup
geometry in a pure dense emulsion, and in the same emulsion filled with 20% of 140 µm PS
beads. In these experiments, constant macroscopic shear rates increasing from 0.01 to 10 s−1

and then decreasing from 10 to 0.01 s−1 were applied during 30s, and the stationary shear stress
was measured for each shear rate value. The results are shown in Fig. 13.
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Figure 13: Shear stress vs. shear rate for upward/downward shear rate sweeps in a pure
dense emulsion (open squares) and for the same emulsion filled with 20% of 140 µm PS beads
(filled/open circles). Figure from Mahaut et al. (2008a).

While the same curve is observed for the upward/downward shear rate sweeps in the case of
the pure emulsion (as expected for a simple non-thixotropic yield stress fluid), the shear stress
during the upward shear rate sweep differs from the shear stress during the downward shear rate
sweep in the case of the suspension. Moreover, any measurement performed on the suspension
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after this experiment gives a static yield stress equal to the dynamic yield stress observed during
the downward sweep. This means that there has been some irreversible change. This irreversible
change is actually the particle depletion near the blades we have observed in this paper. As the
flow of the suspension is localized near the inner tool at low shear rate, it means that after
the first upward sweep that has induced the particle depletion, during the downward shear rate
sweep, only the pure emulsion created by migration near the blades remains in the sheared layer
at sufficiently low rotational velocity. This explains why the same apparent value of the yield
stress is found in the suspension during the downward sweep as in the pure emulsion with this
experiment. On the other hand, the yield stress at the beginning of the very first upward sweep
is that of the suspension as migration has not occurred yet.

The conclusion is that the vane tool is probably not suitable to the study of flows of suspen-
sions.

IV Conclusion

As a conclusion, let us summarize our main findings:

• In the case of Newtonian fluid flows, our experimental measurements of the velocity field
support the Couette equivalence approach: the θ-averaged strain rate component drθ de-
creases as the inverse squared radius in the gap. However, the value of the Couette equiv-
alent radius we find with our display is higher than the theoretical prediction of Atkinson
and Sherwood (1992) (it is here 6% higher). Equivalently, for a given rotational velocity,
the torque with our vane tool is significantly higher than that predicted by the theoretical
approach (there is a 12% difference). It is thus much closer to that of a Couette geometry
of same radius as the vane blades than expected. A key observation may be that there is
a significant flow between the blades which adds an important extensional component to
shear, thus increasing dissipation. The main shortcomings of the theoretical approach for
its use with common rheometers are that the blades are supposed to be infinitely thin and
that the outer cylinder radius is infinitely large, in contrast with our (and most) display.
These two features may be at the origin of this discrepancy; however, the conditions (as
regards the blade thickness and the gap size) in which the theoretical predictions can be
used still have to be found.

• In the case of yield stress fluid flows, we find that the thin layer of material which flows
around the vane tool at low velocity is not cylindrical, in contrast with what is usually
supposed in the literature from simulation results. Consequently, a non negligible exten-
sional component of shear has probably to be taken into account in the analysis. At this
stage, there are too few experimental and simulation data to understand the origin of this
discrepancy. It thus seems that progress still has to be performed, in particular through
simulations, which allow studying a wide range of parameters. This may help understand-
ing how the torque is linked to the yield stress of a material at low velocity, depending in
particular on the geometry parameters.

• An important and surprising result is the observation of particle depletion near the blades
when the yield stress fluid contains noncolloidal particles. This phenomenon is thus likely
to occur when studying polydisperse pastes like coal slurries, mortars and fresh concrete.
It has to be noted that the phenomenon is very rapid, irreversible, and thus probably
unavoidable when studying flows of suspensions. It results in the creation of a pure inter-
stitial yield stress fluid layer and thus in a kind of wall slip near the blades. It contrasts
with the classical assumption that is made in the field of dense suspensions rheology where
the vane tool is mainly used to avoid this phenomenon.
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Consequently, we would say that, in the case of pasty materials, if accurate measurements are
needed, the vane tool may finally be suitable only for the study of the solid (elastic) properties
of materials and for the static yield stress measurements; as the yield stress measurement may
induce irreversible particle depletion near the blades, any new measurement then requires a
new sample preparation. Furthermore, the vane can be used as a very accurate tool without
any hypothesis nor any calibration to measure the relative increase of the elastic modulus of
materials as a function of their composition [Alderman et al. (1991); Mahaut et al. (2008a)]. In
order to study accurately the flows of pasty materials, our results suggest that a coaxial cylinders
geometry with properly roughened surfaces is preferable when possible. If the use of a vane tool
cannot be avoided, one should keep in mind our observations in order to carefully interpret any
result.
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