N

N
N

HAL

open science

Parametric families on large binary spaces
Christian Schafer

» To cite this version:

‘ Christian Schéfer. Parametric families on large binary spaces. 2011. hal-00507420v2

HAL Id: hal-00507420
https://hal.science/hal-00507420v2

Preprint submitted on 24 Feb 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00507420v2
https://hal.archives-ouvertes.fr

Parametric families on large binary spaces

Christian Schafet

February 24, 2011

Abstract 1.2 Data from the target distribution
In the context of adaptive Monte Carlo algorithms, we can!n the sdequel, Iedd> 0 den_ote the dimenlsionl of t.hhe binary
not directly generate independent samples from the distrib spaceB® = {0,1}". Adaptive Monte Carlo algorithms are

tion of interest but use a proxy which we need to be close tgenerally able to produce a, not necessarily independeint an
the target possibly weighted, sample

Generally, such a proxy distribution is a parametric fam- w = (wy,...,wy) € [0,1]", X = (Xg,...,Xn)T € B™¢
ily on the sampling spaces of the target distribution. Forf
continuous sampling problems in high dimensions, we Ofbinary model. We define the index ®t= {1,...,d} and
ten use the multivariate normal distribution as a proxy fer w denote by T
can easily parametrise it by its moments and quickly sample

. — def — def .o
fromit. X = YRoaWidiis  Xij = YpoqWiXiXej, 1,j€D (1)

r objective i nstr imilarly flexibl rametri . ,
O.u. ObJeCt. eistoco .St uct similarly flexible paramet Cthe weighted first and second sample moments. We further
families on binary sampling spaces too large for exhaustiv efine by

enumeration. The binary sampling problem seems more dit- def X j — X%

rom the target distributiont we want to emulate using a

ficult than its continuous counterpart since the choice of a Mj = N TS AT e el iLjeb.  (2)
suitable proxy distribution is not obvious. ! ] ]
the weighted sample correlation.
1 Parametric familiesand Monte Carlo 1.3 Suitable parametric families
1.1 Adaptive Monte Carlo We first frame some properties making a parametric family
suitable as sampling distribution in adaptive Monte Carlo

A Monte Carlo algorithm is said to be adaptive it is able
to adjust, sequentially and automatically, its samplirg di ]
tribution to the problem at hand. Precisely, the algorithmg@) For reasons of parsimony, we want to construct a fam-
are able to incorporate information obtained from past sim-  ily of distributions with at most dirfg) < d(d+1)/2

algorithms.

ulations to improve the sampling distributiopin terms of parameters.

nearness o the target distribution (b) Given a sampl& = (xq,...,X,)T from the target distri-
Some important classes of adaptive Monte Carlo algo-  puytion 7, we need to estimat@* such that the binary

rithms are Adaptive Importance Sampling (eCgppé et a). modelqg- is close tor.

2009, Adaptive Markov chain Monte Carlo (e.gndrieu .
and Thoms 2009, Sequential Monte CarloDel Moral ~ (€) We needto generate samp¥es: (y1,...,ym)T from the

et al, 2006 and the Cross-Entropy methadi(binstein and modelqge. We need the rows of to be independent.

Kroese 2004). (d) For some algorithms, we need to evaluate the probabil-
For the sampling distribution, we usually select a suitable ity gg(y). For instance, we neegh(y) to compute im-

parametric familyg = gg and adjust its parametérduring portance weights or acceptance ratios in the context of

the course of the adaptive algorithm. In continuous sam-  |mportance Sampling or Markov chain Monte Carlo, re-
pling spaces, good results are often achieved using normal  spectively.

distributions 4" (u, ), for they reproduce the marginals and

covariance structure of the target (e) Analogously to the multivariate normal, we need our

calibrated binary modejg- to reproduce the marginals
*CREST and Université Paris Dauphinehristian.schafe@ensae.fr and covariance structure af
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2 Digributionson binary spaces Constraints The general constraints on binary data are

Before we embark on the discussion of binary models, we  (Yietm —[I|+1)vO<m <min{mk [KC I}, (5)
make some observations which hold true for every binar
distribution. The notation and results introduced in tleis-s

tion will be used throughout the rest of this work. Here, we

%vhere the upper bound is the monotonicity of the measure,
and the lower bound follows from

. - . . d
denote byrr some generic distribution dif N-1= 5 et (1| - 1) m(y)
Moments We use the short notation, 2 ¥ yepd (Zier ¥ — () 7(y)
=Y M—m.
def
U|(V) i |_|i€| M7 I g D7

In fact,m, is a|l|-dimensional copula with respect to the ex-

for the product of all components index byvith [;co = 1.  pectationsn for i € |, seeNelsen(2006 p.45), and the in-
Sinceu(y) = 1 iff yy =1 for alli €1, u, is the indicator equalities §) correspond to the Fréchet-Hoeffding bounds.

function for the unit vectof;. We can characterize every
distribution onBY by 29 — 1 full probabilities Sampling For sampling from a binary distributior, we
apply the chain rule factorization

def
p=Pr(yi=1ypy=0), ICD
nl o =0) mi(y) =y (va) M2 iy (Vi | vaio1) ©)
or by 2 — 1 cross-moments, that is marginal probabilities, =1y (y1) ne, M1y (Yai-1)/ Ty (Vai),
m def En(u(y)) =Pr(yi = 1) | CD. which permits to sample a random vector component-wise,

conditioning on the entries we already generated. We do not
In the following, we assume that; € (0,1) for alli € D,  even need to compute the full decompositiéh put only
since form; € {0, 1}, the componeng = m is constantand the conditional probabilities; s, (v = 1| y1; 1) defined by
therefore not part of the sampling problem.

For the product of components normalized to have zero My (Vii-1,1) ' 7)
mean and unit variance, we write M1y (Yri-1,1) + M1y (Vai-1,0)
def ili ' -
vi(y) le Mier (% — m)/\/m7 | CD. The full probability ri(y) is then computed as a by-product

of the sampling Procedute

Note thatEx(vij) is the correlation betweel and y;.
Therefore, we call Procedure 1 Sampling via chain rule factorization

def yZ(O,,O), p(—l
o = Ex(vi(y) fori=1....ddo
M My (=1 vii-1)
sample y; ~ %,

the correlation of ordet |.

Marginals We use the notation pe P if yi=1
p-(1-1) if y=0
(V) =Ygcpa-1 TV, €), 1 CD. end for
for the marginal distributions. Note the connection to the return y, p
cross-moments
T (1) = Yecpan T(L1:&) = 3 yepa Ui (Y) TI(Y) @) 3 Product models
=m. The simplest non-trivial distributions oB® are certainly

those having independent components.
Representations For any functionf: (0,1) — R, we can

write 3.1 Definition

f(11(y)) = Sico Miel ¥ Mieoy (L= ) f(pr). For a vectom € (0,1)% of marginal probabilities, we define
the product model
If f has an inversd 1, there are thus coefficients such dor
e
that 1 am(Y) = [Mieo my(lf m)liy (8)
)= Zicoa w(y)- @ = Mico(1—m) exp(Ficologit(m)) .
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The second representation using the logit function 4 Linear models

logit: (0,1) -+ R, logit(p) =logp—log(1—p) (9) Takingf the identity mapping in4), we obtain a full linear
representation
is useful to identify the product model as special case of
more complex models. Later, we rather wrig, instead of m(y) =Y coa u(y).

gm for the product model, since) is the generalization of
the Bernoulli distribution tal dimensions. However, we cannot give a useful interpretation of the coef-

ficientsa . Bahadur(19617) derived the following represen-

] tation:
3.2 Properties

. . . Proposition 1. Define the index set
We check the requirement list from Sectibrs:

def
(a) The product model is parsimonious with i = d. # = Ukep{l CD[[I| =k}.
(b) The maximum likelihood estimatan* is the sample Then we can write any binary distribution as

mean (). m(y) = Bm(y)(1+Sieqi(y) C),

(c) We easily sample fromp,, since €) holds trivially. . -
wherem = (my,...,my) are the marginal probabilities.

(d) We easily evaluate the probability of a product of inde-

pendent components Proof. For convenience, we give the proof proposedlay

hadurin Appendix10.1 O

(e) The model, does not reproduce any dependencies we

might observe in the daté. This decomposition, first discovered by Lazarsfeld, is a

special case of a more general interaction theStye(tberg

The last point is a weakness which makes this simple modéi®90 and allows for a reasonable interpretation of the pa-
impractical when adaptive Monte Carlo algorithms are ap/@meters. Indeed, we have a product model times a correc-
plied to challenging sampling problems. The product modefion €M 1+ 3¢ 4 Vi (y) & where the coefficients are higher
gm is often not flexible enough to come sufficiently closeOrder correlations.

to the target distributiort. Therefore, the rest of this pa-

per deals with ideas on how to sample binary vectors with @.1 Definition

given dependence structure. . .
We can try to construct a more parsimonious model by re-

moving higher order interaction terms. For additive ap-
3.3 Beyond the product model proaches, however, we face the problem that a truncated

: . representation not n ril fine pr ilityidi
There are, to our knowledge, two main strategies to produ ghrese tations do not necessarily define probabilityidist

binary vectors with correlated components utions since they might not be non-negative.
y P ' Still, for a symmetric matriXA, we define thel(d +1)/2

(1) We can construct a generalized linear model which pefP@rameter model
mits computation of its marginal distributions. We apply

the chain rule factorizatior6] and writeqg as Gaao(Y) = H(a0+YTAY), (12)

where u is a normalization constant and we s&f =
—(minycga YTAY A Q). Sinceag is the solution of an NP
hard quadratic unconstrained binary optimisation problem
this definition is of little practical value.

o (y) = ae(y) ML2Ge (Vi | yri-1), (10)
which allows us to sample vectors component-wise.

(2) We sample from a multivariate auxiliary distributibg
and map the samples inB§'. We call 4.2 Moments

do(Y) = Jy-1(y) ho(v)dv (11)  Invirtue of the linear structure, we can derive explicit ex-
pressions for the cross-moments and marginal distribsition
a copula model, although we refrain from working with €xplicit meaning that the complexity is polynomiakinThe
explicit uniform marginalsiflikosch, 20086). proofs are basic but rather tedious, so we moved them to the
appendix section.
Inthe following, we first study a few generalized linear mod- Next, we give a general formula yielding all cross-
els and then review a some copula approaches. moments, including the normalization constant.
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Proposition 2. For a set of indices £ D, we can write the
corresponding cross-moment as

1 2iel ZZJEDai,j"’Z?eI\{i}aU}
m=—
' o T T 2i(dag+ TALLUA])

For a proof see Appendik0.2

Corollary 1. The normalization constant is
p=2"92(4ay+ 1TA1+tr[A]) 1,

and the expected value is

E (y):} zgzlai,k
2o 2 T Aag+ ITAL+tr[A]

The meamm is close to ¥2 unless the row; dominates the
matrix. Therefore, iA is non-negative definite, the marginal
probabilitiesmy can hardly take values at the extremes of the

unit interval.

4.3 Marginals

For the marginal distributions

q(Al,:g (Vl:k) = deBd—(Hl) qA,ao(Vlzkv E)

there are explicit and recursive formulae. Hence, we can

compute the chain rule decompositid) (vhich in turn al-
lows to sample from the model.

Proposition 3. For the marginal distribution holds

q,(a\l:g (Vl:k) = u2d7k725|<(yl:k);
where
Sy =420+ $Hr ¥ (S hais + 5l
+30 Z?:k+1 aj+3laa

For a proof see Appendik0.3

4.4 Fitting the model

Given a sampleX = (Xg,...,Xn)T ~ 11 from the target dis-
tribution, we can determina, and a matrixA such that the
modelga 4, fits the first and second sampling moments

Xij =N 'Y XX, 1,j€D

by solving a linear system of dimensid(d + 1) /2+ 1. We
first use the bijection

T:DxD—{1,...,d(d+1)/2}, 1(i,j)=i(i—1)/24]

to map symmetric matrices in®(%+19/2. Precisely, for the
matricesA andX, we define the vectors

N def A def —
=8y, Xeij) = X

and the design matrix

A def . -
Skl = 21,3 (KL g (1)

Note thata| = 1TA1+tr[A]. We then equate the distribution

moments to the sample moments and normalize such that
292(1 ag+ 1/aS8) =%, (13)

29-2(4a0 + [8]) = 1.
The solution of the linear system

&\ _ a2 [14S 1] (%

as) 417 1 1
is finally transformed back into a symmetric mat#x'.
Since the design matrix does not depend on the data, fit-

ting several models to different data on the same spéde
extremely fast.

4.5 Properties

We check the requirement list from Sectibrs:

(a) The linear model is sufficiently parsimonious having di-
mension ding6) = d(d +1)/2.

(b) We can fit the parameters anday via method of mo-
ments. However, the fitted functiclq‘A*’aB(y) is usually
not a distribution.

Recall the connection between marginal distributions and

moments we observed iB), Fory; = 1 we obtain

S(k) =4a0+4%ic(Tjeraij+Yjacaij)
+icicYjeicdi,j+ Yicicdi
=430+ YicD Y jep @j + Yiep i +3Yicl Y jer &l
+2% i1 Yjercdij— Yiel &l
=dap+ 1TAL+tr[A]+
Yiel [23jep@ij+ Y jeni @il »

(c) We can sample via chain rule factorization.

(d) We can evaluatels 5,(y) via chain rule factorization
while sampling.

(e) The modeba 5, reproduces the mean and correlations
of the dataX.

Since in applications, the fitted matéx is hardly ever pos-
itive definite, we cannot use the linear model in an adaptive
Monte Carlo context. As other authori8&k et al. 1996
Emrich and Piedmontd 991) remark, additive representa-

and 15 (1) = u29-1'1-2g (1) is indeed the expression for tions like Propositiori are instructive but we cannot derive

the cross-moments in Proof of Propositibn

practical models from them.
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5 Log-linear models Then de,l(Vl:dfl) is the second degree Taylor approxima-

tion to the marginal distribution g, , , (y14-1). For a proof

If m(y) > 0 for all y € BY, we can usef =log in (4) and  gee Appendi%0.4

obtain a full log-linear representation

If we recursively computelz, ,,---,ds,, We can derive ap-
proximate conditional probabilities using)( Precisely, we
have

mi(y) = exp(Ticoa ui(y))-

Note that we assume the probability mass functinis
assumed to be log-linear in the parametgrdn the context
of contingency tables the term “log-linear model“ refers to
the assumption that the marginal probabilittgsare log-
linear in the higher order marginals.

0, (¥ = 1| yai-1) = logit (& + b yai 1), (16)
where Iogigl(x) = (1+exp(—x)) ! andd, b; are parts of
the matrixA; according to the notation introduced ih5j.
Remark Contingency table analysis is a well studied ap-In particular, (L6) is a logistic regression. We come back
proach to modeling discrete data®ig¢hop et al. 1975 to this class of models in the following Sectién We can
Christensen1997). For binary data, the underlying sam- sample from the proxy

pling distribution is assumed to be multinomial which re-

quires an enumeration of the state space we want to avoid. g (v & e - ) A

Gange(1995 uses the lterative Proportional Fitting algo- 9(¥) = Mieo B (% | v1i-1) ~ Ga ().

rithm (Haberman1972 from log-linear interaction theory which is close to the original log-linear model. The good-
to construct a binary distribution with given marginal prob ness of the approximation might be improved by judicious
abilities. The fitting procedures, however, require sterag permutation of the components. The approximation error
of all configurationsi (yi) and the construction of the joint s hard to control, however, since we repeatedly apply the

posterior from the fitted marginal probabilities. The metho second degree approximation and propagate initial errors.
is powerful and exact but computationally infeasible even

for moderate dimensions. 5.3 Fitting the model

5.1 Definition As in section4.4, we use the bijection

Removing higher order interaction terms, we can construct- p « p s {1,...,d(d+1)/2}, 1))

i(i—1)/24]j
ad(d+ 1)/2 parameter model

to map symmetric matrices in®(4+19/2, precisely, for the

def —
dua(y) = Hexp(yTAy), (14)  matricesA andX, we define the vectors
whereA is a symmetric matrix. We immediately recognize . def def _
the product model) as the special cage= [icp(1—m)¢ Arij) = Ay Keij) = N

andA = diag]logit(m)]. Cox and Wermutt{1994) refer to
this version of the log-linear model as quadratic exporménti
model.

We letyy = logmi(xk) for k= 1,...,nand fit the model solv-
ing the least square problem

5.2 Marginals Min, g @vaz || Xa—yl|,

The moments or marginal distributionsapf are sums of ex- which yields the parameters

ponentials which, in general, do not simplify to expression

that are polynomial ird. Therefore, we cannot perform a
chain rule factorizationd) to sample from the model.

Cox and Wermutt{1994) proposed the following second
degree Taylor approximations to the marginal distribugion
which are again of the formniLd).

Proposition 4. We write the parametek as
A" bT
=6 %)
and define the parameters

Ag_1=A"+ (1+tanKs)) diaglb] + 4 seck($)bbT,
flg—1 = p(1+exp(c))

(15)

= [(XTX) "Xyl -
Note that in most adaptive Monte Carlo algorithms that in-
volve importance sampling or Markov transitions, the prob-
abilities m(xy) of the target distribution are already com-
puted such that the fitting procedure is rather fast.
5.4 Properties

We check the requirement list from Sectibr3:

(&) The log-linear model is sufficiently parsimonious with
dim(6) =d(d+1)/2.

(b) We can fit the parametdrvia minimum least squares.
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(c) We can sample from an approximatigg(y) ~ ga(y)  such that the parameter estimation requires costly iterati
to the log-linear model. However, we cannot control thefitting procedures. Therefore, we construct a sparse versio
approximation error. of the logistic regression model which we can estimate faste

than the saturated model.

Instead of fitting the saturated modgly | yii-1), we
preferably work with a more parsimonious regression model

(d) We can evaluatea 5,(y) up to the normalisation con-
stantu which suffices for most adaptive Monte Carlo

methods. like q(y | y;) for some index selt; C {1,...,i —1}, where
(e) The modebja 5, reproduces the mean and correlationsthe number of predictorsl#is typically smaller thar — 1.
of the dataX. We solve this nested variable selection problem using
some simple, fast to compute criterion. Foaboutl/1o0,
6 Logistic models we define the index set
In the previous section we saw that even for a rather simple  def {i=1,...d| x¢(e1-¢)}

non-linear model we cannot derive closed-form expressions

for the marginal probabilities. Therefore, instead of com- = | ” . .
puting the marginals for é-dimensional modedig(y), we which identifies the components which have, according to
directly fit univariate models ’ the data, a marginal probability close to either boundary of

the unit interval.

Ob (Vi =1 vi-1), ieD We do not fit a logistic regression for the components
i €1. We rather set; = 0 and draw them independently,
to the conditional probabilities(y = 1| y1i-1) of the target  that is we seb;; = logit(x ) andb;_; = 0 which corresponds
function. Precisely, we postulate the logistic relation to logistic model without predictors. The reason is twofold
_ i1 ) Firstly, interactions do not really matter if the marginedp-
logit(Pr (v = 1)) = bii+ 3 1bijy;, €D ability is excessively small or large. Secondly, these comp

nents are prone to cause complete separation in the data or
might even be constant.

For the conditional distribution of the remaining compo-
nentsl® =D\ I, we construct parsimonious logistic regres-
sions. Ford aboutl/10, we define the predictor sets

for the marginal probabilities of the target distributimn\We
defined the logit function in9).

6.1 Definition
For ad-dimensional lower triangular matri®, we define

the logistic model as def .. .
g Lii{le,...,l—l|5<‘ri,j

b€l
€'z 17

de(y) = ig p(bs 48]y _yyas-1) (W) (17) which identifies the components with index smaller than
_ exp( Sico (v — 1) (i + bi-r‘l:i—lyliifl) and significant mutual association.

—log(1+expbii+bfy; 1y1i-1)))
whereZ,, is the Bernoulli distribution and 6.3 Fitting the model

p(x) = Iogit’l(x) =(1+ exp(—x))*l Given a sampl&X = (X1,...,Xn)T ~ 1T from the target distri-
bution we regresg’ = X; on the column& ! = (X1,_1,1),
the inverse-logit function. We identify the product modelwhere the colueri['] yields the intercept to complete the
%m as the special cade = diag[logit(m)]. The logistic  |ogistic model.

model is not a log-linear model. We maximise the log-likelihood functiofi(b) = £(b |

Note that there ard! possible logistic models and we ar- y,Z) of a weighted logistic regression model by solving the

bitrarily pick one while there should be a permutatiofD)  irst order conditiond?/d = 0. We find a numerical solu-

of the components which is optimal in a sense of nearness {g,, via Newton-Raphson iterations
the data. In practice, however, changing the parameuisati

does not seem to have a noticeably impact on the quality of 220(b
the adaptive Monte Carlo algorithm. _9°4(b")

dbbT

d¢(b")

[r+1] _ Rlr —
(b —bl) = =,

r>o, (18)

6.2 Sparse logistic regressions .
P g g starting at somd!?; see Procedur@ for the exact terms.

The major drawback of all multiplicative models is the fact Other updating formulas like Iteratively Reweighted Least
that they do not have closed-form likelihood-maximizersSquares or quasi-Newton iterations should work as well.
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Procedure 2 Fitting the weighted logistic regressions (b) We can fitthe parametebgvia likelihood maximisation
INpUt: W= (Wi,...,Wh), X = (X0,...,%)T, B € RIx for a_II i € D. The fitting is computationally intensive but
feasible.
foriel®do ) ) o
Z « (XU, 1), y < Xi, b0 BiLuf) (c) We can samplg ~ gg via chain rule factorization.
repeat d) We can exactly evalua :
Pk < logit™1(Zbl ) forallk=1,...,n @ y ®()
% « Pe(l— po) forallk=1,....n (e) The models reproduces the dependency structure of

the dataX although we cannot explicitly compute the
b « (ZTdiag[w] diag[q] Z + &l5,) "+ x marginal probabilities.

(zTdiagw]) (diag[q] Zb"Y + (y—p))

7 Gaussian copula models
until b’ —bf | < 102 for all |

In the preceding sections, we discussed three approaches

BiLum < Db . .
HLUATY based on generalized linear models. Now we turn to the
end for second class of models we call copula models.
return B Let hy be a family of auxiliary distributions o%?™ and

T: 2 — BY a mapping into the binary state space. We can

Sometimes, the Newton-Raphson iterations do not corsample from the copula model
verge because the likelihood function is monotone and thus )= he(v) dv
has no finite maximizer. This problem is caused by data 96l¥) = Je-iy) Ne
with complete or quasi-complete separation in the samplgy settingy = h(v) for a drawv ~ hg from the auxiliary
points @Albert and Andersoyil984). There are several ways djstribution.
to handle this issue.

(a) We just halt the algorithm after a fixed number of iter- /-1 Definition

ations and ignore the lack of convergence. Such proapnarently, non-normal parametric distributiogswith at
ceeding, however, might cause uncontrolled numerlcqlnostd(d —1)/2 dependence parameters either have a very
problems. limited dependence structure or rather unfavourable prope

(b) Firth (1993 proposes to use a Jeffrey’s prior bnThe ties Jog 1999. Therefore, the normal distribution

penalized log-likelihood does have a finite maximizer hs (V) = (271)"’/2|Z|’l/2exp(—l/szZ*1v),
but requires computing the derivatives of the Fisher in-
formation matrix. with mappingr: RY — B¢

(c) We just add a simple quadratic penalty teg™3 to Tu(V) = (Lo, (V1) -+ > Len g (VD))

the log-likelihood to ensure the target-function is convex .
: appears to be the natural and almost the only optiomgor
and does not cause numerical problems.

This model has already been discussed repeatedly in the lit-
(d) As we notice that some termshyfare growing beyonda erature Emrich and Piedmontel 997 Leisch et al, 1998
certain threshold, we move the componignom the set  Cox and Wermuth2003).
of components with associated logistic regression model
I to the set of independent componehts 7.2 Moments

In practice, we recommend to combine the approaches (€or| C D, the cross-moment or marginal probabilities is
and (d). In Procedur@, we did not elaborate how to B 1 B h d
handle non-convergence, but added a penalty term to thd™ — 2yeBe Ouz(Lr,You) = ‘fUYE]Bd {mt @y} =(v) dv
log-likelihood, which causes the exted, in the Newton- _ - hs (V) dv = hs (V) dv
Raphson update. Since we solve the update equation via Hae{n' (W} =(Y) Siier(eopuy P2(V) AV

Cholesky factorizations, adding a small term on the diajonayhere we used3) in the first line. Thus, the first and second
ensures that the matrix is indeed numerically decomposablghoment ofq, 5) are

m = ®([i), M= P, Hj; 01 j)

where®,(v;) and ®,(vi,vj; g j) denote the cumulative dis-

tribution functions of the univariate and bivariate noriat

(a) The logistic regression model is sufficiently parsimo-tributions with zero mean, unit variance and correlation co
nious with din(8) = d(d+1)/2. efficiento; ; € [-1,1].

6.4 Properties

We check the requirement list from Sectibrs:
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7.3 Sparse Gaussian copulae Newton iteration might repeatedly fail when restarted at th

corresponding boundamy € {—1,1}. This is yet another

we gf'f:.n spiezd };p the palr(am_ia;er estlmatlor_l and (lsmprO\_/e trf’gason why it is preferable to work with a sparse Gaussian
condition ofZ, if we work with a parsimonious Gaussian copula. In any eventbs(y1,y»; &) is monotonic ino since

copula. We can apply th_e same criterion we already 'ntro(Zl), and we can switch to bi-sectional search if necessary.
duced for the sparse logistic regression model. &about

1/100, we define the index set

Procedure 3 Fitting the dependency matrix
| dif{i —1,..d| K¢ (e1-8)). Input: X, X j for alli,jeD

Hi=®_1(%)forallieD
which identifies the components which have a marginal 5 =

probability close to either boundary of the unit interval. for (i,j) € Ado
We do not fit a any correlation parameters for the compo-  repeat
nentsinl butseto; j =0forall j € D\ {i}. Firstly, the corre- Do (i, j; 0 ) = X
. ’ . . . [r+1] N _ kN )
lation does not really matter if the marginal probabilitgis i i

cessively small or large. Secondly, we fit the parametey
separately adjusting the bivariate correlationg and com-

hgi{rj] (Hi, 1)

SH ; , until |o"l — g Y] < 1073
ponents with high correlations and extreme marginal proba- | Ll Tl <

bility lower the chance that is positive definite. end for
For the remaining component§= D\ I, we construct 11 N0t == 0then « (Z+A[1q4)/(1+]A])
parsimonious Gaussian copula. Fbaboutl/10, we define return u,2

the association set

A rather discouraging shortcoming of the Gaussian cop-
ula model is that locally fitted correlation matricEsnight
not be positive definite fad > 3. This is due to the fact that
an elliptical copula, like the Gaussian, can only attain the
bounds §) for d < 3, but not for higher dimensions.

We propose two ideas to obtain an approximate, but fea-
sible parameter:

(1) We replacex by >* = (X + |A[l)/(1+4]A|), whereA
is the smallest eigenvalue of the dependency matrix
This approach evenly lowers the local correlations to a
feasible level and is easy to implement on standard soft-
ware. Alas, we make an effort to estimatéd — 1)/2
dependency parameters, and in the end we might not
get more than an product model.

AC iy erexie|a< iyl i £}

which identifies the components with significant correlatio
Fori,j € Dx D\L we also setr; j = 0 to accelerate the
estimation procedure.

7.4 Fitting the model

We fit the modely, 5 to the data by adjusting andZ to
the sample moments. Precisely, we solve the equations

&1 () =X, ieD (19)
Do(Li, M3 G1j) =X j, (i,J) €A (20)

with sample mean; andx; ; as defined in1). We easily ) ) o
solve (L9) by setting (2) We can compute the correlation matkix which mini-
. . % 2 T

mizes the distancg>* — X ||, where||A||g = tr[AAT].

In other words, we construct the projection Dfinto

the set of correlation matricesligham(2002) proposes

an Alternating Projections algorithm to solve nearest-

correlation matrix problems. Yet, ¥ is rather far from

the set of correlation matrices, computing the projection
1) is expensive and, according to our experience, leads to

troublesome distortions in the correlation structure.

pi=® (%), ieD.

The difficult task is computing a feasible correlation matri
from (20). Recall the standard resuliqhnson et a/2002
p.255)

0Dy(y1,Y2;,0

wherehg denotes the density of the bivariate normal distri-
bution. We obtain the following Newton-Raphson iteration 7.5 Properties

Do (i, Uj; O ) — X, j We check the requirement list from Sectibr3:

hc{r (IJHNJ)

ar+l:ar* ) (Ivj) GAa (22) . . . . .
(a) The Gaussian copula modelis sufficiently parsimonious

ith dim(6) =d(d+1)/2.
starting at some € (—1,1). We use a fast series approx- with dim(6) (d+1)/

imation Drezner and Wesolowsky99Q Divgi, 1979 to
evaluated, (L, 1j;a). These approximations are critical
whena; comes very close to either boundaryefL, 1]. The

(b) We can fit the parameters and > via method of mo-
ments. The parametek is not always be positive defi-
nite which might require additional effort it feasible.
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(c) We can samplg ~ q(,, 5) usingy = 1, (v) withv~hs. 8.3 Fitting the model

(d) We cannot evaluatgs(y) since this requires computing We need to determine the family of index se# and the

a high-dimensional integral expression. Poisson parameteds= (A1,...,An) such that the resulting
modelq » ») is optimal in terms of distance to the mean and
correlation. Obviously, we face a rather difficult combiat
rial problem.Park et al(1996 describe a greedy algorithm,

We cannot use the Gaussian copula model in the context gfased on convolutions of Poisson variables, that finds sit lea
Importance Sampling or Markov chain Monte Carlo, sinceggme feasible combination of and .

evaluation ofq, 5)(y) is not possible. This model can be
quite useful, however, in other adaptive Monte Carlo algo—8 4 p )
rithms, for instance the Cross-Entropy meth&difinstein : roperties

(e) The modety, 5, exactly reproduces the mean and cor-
relation structure of the dat&a

1997 for combinatorial optimisation. We check the requirement list from Sectibrs:

8 Poisson reduction models (&) The Poisson reduction model is not necessarily parsimo-
nious. The number of parameters @i is determined

LetN = {1,...,n} denote another index set with> d. Ap- by the fitting algorithm.

proaches to generating binary vectors that do not rely on th
chain rule factorizationq) are usually based on combina-
tions of independent random variables

&)) We fit the model via method of moments using a fast but
non-optimal greedy algorithm.

V= (V1,...,Vh) ~ @kenhe,.- (c) We sampleg/ ~ ¢ » 5 usingy = T (V) with v ~ h.

We define index sets#” = {S € N | i € D} and generate the (d) We cannot evaluatg, ,» ,)(y) since it requires summa-

entryyi via tion of 20-¥/ — 1 terms using an inclusion-exclusion
n: 218 5 {0,1}, w(v)=f(vg), ieD. principle which is computationally not feasible.

In the context of G_aussian copulae, the auxiliary d?stribu-(e) The modety » ,, reproduces the mean and certain cor-
tionshg = he ared independent standard normal variables.” * o |5ti0n structures of the da¥a We cannot sample neg-
Park et gl.(1996 propose the fol_lowmg model based on ative correlations.
sums of independent Poisson variables.

Since the model is limited to certain patterns of non-neegati
8.1 Definition correlations, we cannot use it as general-purpose model in
adaptive Monte Carlo algorithms. It might be useful, how-
ever, if we know that the target distributiom has strictly
b (V) = Mren (Arke ) /vl non-negative correlations.

We define a Poisson modgl, ») with auxiliary distribution

and mapping : NJ — B¢

9 Archimedean copula models
T (V) = (Lioy(Tkes, Vi)s -+ > Ljo (Skesy Vi))-
Genest and Neslehoy2007) discuss in detail the potentials
8.2 Moments and pitfalls of applying copula theory, which is well devel-
oped for bivariate, continuous random variables, to multi-
variate discrete distribution. Yet, there have been gaalie
tempts to sample binary vectors via copulaee (1993 de-
m =P (Viel: YiegVk=0) =exp(— Skeryus Ak)- scribes how to construct an Archimedean copula, more pre-
cisely the Frank family, (see e.flelsen(2006 p.119)), for
o ) ) sampling multivariate binary data.
Proposition 5. For y € BY, define the index sets Unfortunately, most results in copula theory do not eas-
Do={ieD|y =0}, Di={ieD|y=1}, ily extend to high dimensions. Indeed, we need to solve
a non-linear equation for each component when generating
a random vector from the Frank copula, anee (1993
acknowledges that this is only applicable fb<< 3. For

For an index sett € D, the cross-moments or marginal prob-
abilities are

Therefore, fitting via method of moments is possible.

and the families of subsetg = {l ¢ D1 | |I| =t}. We can
write the mass function of the Poisson model as

o) (Y) = Sver1y (V) = Iow-dime_nsional problems, however, we can just enumerate
5 the solution spacB? and draw from an alias tabl&\alker,
Mp, |1— Zt‘:"l‘ (=11 Sic.q expl— Y keMie1S\Ujen, S AW |- 1977, which somewhat renders the Archimedean copula ap-

_ proach an interesting exercise, but without much practical
For a proof see Appendik0.5 value in Monte Carlo applications.
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10 Appendix

10.1 Propositiori

Proof. Recall that? = Uyep {{i1,...,ik} CD i1 < -+ <ix} andvi(y) = [Miel [(V — M)/ /M (1 —my)] with m; > 0 for all
i € D. We define an inner product

(1,9) ' Es, (F(V)O(Y) = ¥ yend F(Y)AY) Miep M (1—my) 1Y

on the vector space of real-valued functionsiSn The setS= {vi(y) | | € .#} is orthonormal, since

(v —m)? ¥ —m 0 forl#J
(Vi,rg) = E%p, Ezpy| ———e | =
iell_rlu m(1—m) ie(,ulJ:l\(,m) mi(1—my) 1 forl=1J,

There are 32— 1 elements irSand%m(y) > 0 which implies thaBU {1} is an orthonormal basis of the real-valued function
onBY. It follows that each functiori : BY — R has exactly one representation as linear combination aftitbms inSU {1}
whichisf = (f,1)+ 5., vi(f,v). Since

(1) P Vi) = 3 yewa (1Y) By (V1 (V) B (V) = Er (Wi () = @1,

we obtaini(y)/Bm(y) = 1+ 31, vi(y) ¢ for f = 11/ %y which concludes the proof. O

10.2 Propositior2

Proof. We first derive two auxiliary results to structure the proof.

Lemma 1.For a set C D of indices it holds that

> yerd [keluginj} Yk = od=[1=2+1 () +1151,(5)

For an index seM C D, we have the sum formulf, ga [Tkem & = 20-IMI_1f we have an empty séfl = 0 the sum equals

29 and each time we add a new index D \ M to M half of the addends vanish. The number of elemenkg ia | U {i, j} is
the number of elements iInplus one ifi ¢ | and again plus one if#£ j andj ¢ |. Written using indicator function, we have
TULi, j} = 1+ 1y () + Lpyugy (J) = 1 +2 =1 (i) — Ly4,(j) which implies Lemma 1. O

Lemma 2.
dieD X jeD 21 0@ 0) g = 1TAL+tr[A] + Fiey 25 jepaij+ Yjen iy aij]

Straightforward calculations:

21O om0 = (A4 1, (1) (1 + Lo (§) = A+ L) A+ L) + Ly () — Lingy (1))
=1+ L) +L()+LiOL () + Ly (3) + L)Ly (1) = Lingy () = L) Liagy (1)
=14+15() + L)+ 1 () + Lixa (i, §) = Lingiy (1),

where we used (i) 1, (j) = Li ()1 ()13 (5) = L)L ()14, () = Li(i)L~4; (§) in the second line. Thus, we have
YienYjen 2" et W gy =5 p Yo (L+ Ly () + L () + Li() + L () — Lingy () &
= 2ieD 2 jeD@ij T 2 jep@j,j + Yiel 2 jeD @i, T YieD X jel &ij + Yiel X jel & — Yiel .

=1TAL+tr[A] + Skl [ZZIED al+ el k) — ak,k}
= UTAL+tr[A] + Sier [251ep ki + Yien k) 8k ]

The last line is the assertion of Lemma 2. O
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Using the two Lemmata above, we find a convenient expreserahé cross-moment

m = Zye]Bd(ﬂkel ¥) H(a0+ YTAY)
=H [ZyeBda0+2ye]Bd(nkel ¥) SieD Y jep WY ai,j}

=H [ZdimaOJF 2ieD 2 jeD & ] ZVEJBd(erIu{LJ} M()} (Lemma 1)
= p[2 Mag+ Ficp Fjep 22 V0 &y ]
= p2d-I-2 [4a0+ Siep S jeD oL () +11u(y (1) a‘.’j] (Lemma 2)

= p20-11=2[4ag+ ITAL+tr[A] + Sicr [25 jep @i, + S jen it ai] ]

Sincemp = 1 by definition, we the normalization constantiis= 292 (4ay + 1TA1+tr[A]) "%, which allows us to write
down the normalized cross-moments

m ,iJrZiel (25 jep @i+ Tjen iy &)
'l 2ll(4ag+ ITAL+tr[A])

The proofis complete. O

10.3 Propositior3

Proof. We easily margin out the last componenhavingl = {1,...,d —t},
A ()1 = (g (1, 2) + A (11,0)) ™t = 230+ (i, )TA(y1, 1) + (1,0 TA(%,0)

= 2a0+tr[A[(y1, 1)(v1, )T+ (1,0) (i, 0)T]] = 280+ r [A FVV'ITVT q”

Iterating the argument, we obtain foe={1,...,d —t} andI® =D\ |

(d—t) “1 o t—2 anyl 2nif
QA,aO(Vl)IJ =2a+2 tr[A{zj_tle ]-tltT‘Ht

Straightforward calculations:

a[a s 200 ]| - viaten @m0+ diago. 1] - (20 207A @Y. 20 + riadiag )]

= [4%ia Tja WYiaij +4%ia Yjcic aij+ Yicie Y jercdij + Sicic dii)
= [4%ia % (T ja Vidij+ Sjercdij) + Sicie T jercdij+ Yicic i

The proof is complete. O

10.4 Propositiont

Proof. For convenience of notation, lgt. = (y1,...,¥s_1). Note thatga(y) = pexp(yLA'y_ + y4(2bTy_ +c)). The
marginal distribution is therefore

m(y-) = pexp(yLA'y-) (1+exp2y’b+c))
= pexp(yLA'y_ +yl b+¢/2) (exp(—y b —¢/2) + expyl b+¢/2))
=pexp(yLA'y_ +y b+c/2) 2cosh(yTb+¢/2).

The marginal log mass function is thus

logri(y_) = log(2u) +¢/2+yT A'y_ +y" b+logcosh(y" b+¢/2) .
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For logcosh we can use a Taylor approximation
log coslty™ b+ ¢/2) ~ logcost{c/2) + yT b tanh(¢/2) + 1/2(yT b)?seclf(¢/2)
to obtain
logri(y-) ~ log(2u cosi¢/2)) +¢/2+ yT A'y_ + (1+tank{¢/2)) y b + Y2sech(c/2)(y" b)?
Sincey_ is a binary vector, we hawg b = y" diag[b] y_ and can thus rewrite the inner products as
YIA'y_ +yTb+ (Y b)? =tr [A'y_yT +diag[b] y_y" +bbTy_y" |
= y" (A’ +diag[b] +bbT)y_.
We let denote
U = 211cosh(e/2) exple/2) = 1 (exp(—¢/2) + exp(c/2)) exp(e/2) = 1 (1-+exp(c))
and
A* = A’ + (14 tanh(¢/2)) diag[b] + /2seci(c/2)bbT
to form the approximatiom(y_) ~ u* exp(y” A*y_) which completes the proof.
O
10.5 Propositiord
Proof. Straightforward calculations using the inclusion-exi@uagrinciple for the union of events:
A ) (Y) = Yver-1(y) M (V) =P, (Nicp { L0} Skeg Vk = % })

=Ph, (Niep; Nkes {Vk = 0}, Nicy Ukes {Vi > 0})

=Pn, (Niep; Nkes {Vk = 0}) Pp, (ﬂieoo Ukes\Ujen, 5 1V > 0})

=Pq,,, (Y01 =1) (1— Pn, (UieDo Mkes\Ujen, § {Vk = 0}))

= Mp, {1 — 32 (1) Sy 4 P, (ﬂiel MkeS\Ujep, 5 1Yk = O})}

= mp, {1* 29 (- 1)Ly expl— Y kenier1S\Ujen, S, )\k)} :
The proof is complete. O
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