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Christian Schäfer∗

February 24, 2011

Abstract

In the context of adaptive Monte Carlo algorithms, we can-
not directly generate independent samples from the distribu-
tion of interest but use a proxy which we need to be close to
the target.

Generally, such a proxy distribution is a parametric fam-
ily on the sampling spaces of the target distribution. For
continuous sampling problems in high dimensions, we of-
ten use the multivariate normal distribution as a proxy for we
can easily parametrise it by its moments and quickly sample
from it.

Our objective is to construct similarly flexible parametric
families on binary sampling spaces too large for exhaustive
enumeration. The binary sampling problem seems more dif-
ficult than its continuous counterpart since the choice of a
suitable proxy distribution is not obvious.

1 Parametric families and Monte Carlo

1.1 Adaptive Monte Carlo

A Monte Carlo algorithm is said to be adaptive it is able
to adjust, sequentially and automatically, its sampling dis-
tribution to the problem at hand. Precisely, the algorithms
are able to incorporate information obtained from past sim-
ulations to improve the sampling distributionq in terms of
nearness to the target distributionπ .

Some important classes of adaptive Monte Carlo algo-
rithms are Adaptive Importance Sampling (e.g.Cappé et al.,
2008), Adaptive Markov chain Monte Carlo (e.g.Andrieu
and Thoms, 2008), Sequential Monte Carlo (Del Moral
et al., 2006) and the Cross-Entropy method (Rubinstein and
Kroese, 2004).

For the sampling distribution, we usually select a suitable
parametric familyq= qθ and adjust its parameterθ during
the course of the adaptive algorithm. In continuous sam-
pling spaces, good results are often achieved using normal
distributionsN (µ ,Σ), for they reproduce the marginals and
covariance structure of the target.
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1.2 Data from the target distribution

In the sequel, letd > 0 denote the dimension of the binary
spaceBd = {0,1}d. Adaptive Monte Carlo algorithms are
generally able to produce a, not necessarily independent and
possibly weighted, sample

w = (w1, . . . ,wn) ∈ [0,1]n, X = (x1, . . . ,xn)
⊺ ∈ B

n×d

from the target distributionπ we want to emulate using a
binary model. We define the index setD = {1, . . . ,d} and
denote by

x̄i
de f
= ∑n

k=1wkxk,i , x̄i, j
de f
= ∑n

k=1wkxk,ixk, j , i, j ∈ D (1)

the weighted first and second sample moments. We further
define by

r i, j
de f
=

x̄i, j − x̄i x̄ j
√

x̄i(1− x̄i)x̄ j(1− x̄ j)
, i, j ∈ D. (2)

the weighted sample correlation.

1.3 Suitable parametric families

We first frame some properties making a parametric family
suitable as sampling distribution in adaptive Monte Carlo
algorithms.

(a) For reasons of parsimony, we want to construct a fam-
ily of distributions with at most dim(θ ) ≤ d(d+ 1)/2
parameters.

(b) Given a sampleX = (x1, . . . ,xn)
⊺ from the target distri-

bution π , we need to estimateθ ∗ such that the binary
modelqθ∗ is close toπ .

(c) We need to generate samplesY= (y1, . . . ,ym)
⊺ from the

modelqθ . We need the rows ofY to be independent.

(d) For some algorithms, we need to evaluate the probabil-
ity qθ (y). For instance, we needqθ (y) to compute im-
portance weights or acceptance ratios in the context of
Importance Sampling or Markov chain Monte Carlo, re-
spectively.

(e) Analogously to the multivariate normal, we need our
calibrated binary modelqθ∗ to reproduce the marginals
and covariance structure ofπ .
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2 Distributions on binary spaces

Before we embark on the discussion of binary models, we
make some observations which hold true for every binary
distribution. The notation and results introduced in this sec-
tion will be used throughout the rest of this work. Here, we
denote byπ some generic distribution onBd

Moments We use the short notation,

uI (γ)
de f
= ∏i∈I γi , I ⊆ D,

for the product of all components index byI with ∏i∈ /0 = 1.
SinceuI (γ) = 1 iff γ i = 1 for all i ∈ I , uI is the indicator
function for the unit vector1|I |. We can characterize every
distribution onBd by 2d−1 full probabilities

pI
de f
= Pπ

(

γ I = 1,γD\I = 0
)

, I ⊆ D

or by 2d−1 cross-moments, that is marginal probabilities,

mI
de f
= Eπ (uI (γ)) = Pπ (γ I = 1) , I ⊆ D.

In the following, we assume thatmi ∈ (0,1) for all i ∈ D,
since formi ∈ {0,1}, the componentγi = mi is constant and
therefore not part of the sampling problem.

For the product of components normalized to have zero
mean and unit variance, we write

vI (γ)
de f
= ∏k∈I (γi−mi)/

√

mi(1−mi), I ⊆ D.

Note thatEπ (vi, j) is the correlation betweenγi and γ j .
Therefore, we call

cI
de f
= Eπ (vI (γ))

the correlation of order|I |.

Marginals We use the notation

πI (γ I ) = ∑ξ∈Bd−|I | π(γ I ,ξ ), I ⊆ D.

for the marginal distributions. Note the connection to the
cross-moments

πI (1|I |) = ∑ξ∈Bd−|I | π(1|I |,ξ ) = ∑γ∈Bd uI (γ) π(γ)

= mI .
(3)

RepresentationsFor any functionf : (0,1)→ R, we can
write

f (π(γ)) = ∑I⊆D ∏i∈I γi ∏i∈D\I (1− γi) f (pI ).

If f has an inversef−1, there are thus coefficientsaI such
that

π(γ) = f−1(∑I⊆D aI uI (γ)). (4)

Constraints The general constraints on binary data are

(∑i∈I mi−|I |+1)∨0≤mI ≤min{mK | K ⊆ I} , (5)

where the upper bound is the monotonicity of the measure,
and the lower bound follows from

|I |−1= ∑γ∈Bd(|I |−1)π(γ)

≥ ∑γ∈Bd (∑i∈I γi−uI(γ))π(γ)

= ∑i∈I mi−mI .

In fact,mI is a|I |-dimensional copula with respect to the ex-
pectationsmi for i ∈ I , seeNelsen(2006, p.45), and the in-
equalities (5) correspond to the Fréchet-Hoeffding bounds.

Sampling For sampling from a binary distributionπ , we
apply the chain rule factorization

π(γ) = π{1}(γ1)∏d
i=2 π{1:i}(γ i | γ1:i−1)

= π{1}(γ1)∏d
i=2 π{1:i−1}(γ1:i−1)/π{1:i}(γ1:i),

(6)

which permits to sample a random vector component-wise,
conditioning on the entries we already generated. We do not
even need to compute the full decomposition (6), but only
the conditional probabilitiesπ{1:i}(γi = 1 | γ1:i−1) defined by

π{1:i}(γ1:i−1,1)

π{1:i}(γ1:i−1,1)+π{1:i}(γ1:i−1,0)
. (7)

The full probabilityπ(γ) is then computed as a by-product
of the sampling Procedure1.

Procedure 1 Sampling via chain rule factorization

y = (0, . . . ,0), p← 1
for i = 1. . . ,d do

r ← π{1:i}(γi = 1 | γ1:i−1)

sample yi ∼Br

p←

{

p · r if yi = 1

p · (1− r) if yi = 0

end for
return y, p

3 Product models

The simplest non-trivial distributions onBd are certainly
those having independent components.

3.1 Definition

For a vectorm ∈ (0,1)d of marginal probabilities, we define
the product model

qm(γ)
de f
= ∏i∈D mγ

i (1−mi)
1−γ

= ∏i∈D(1−mi)exp(∑i∈D logit(mi)) .
(8)
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The second representation using the logit function

logit : (0,1)→R, logit(p) = logp− log(1− p) (9)

is useful to identify the product model as special case of
more complex models. Later, we rather writeBm instead of
qm for the product model, since (8) is the generalization of
the Bernoulli distribution tod dimensions.

3.2 Properties

We check the requirement list from Section1.3:

(a) The product model is parsimonious with dim(θ ) = d.

(b) The maximum likelihood estimatorm∗ is the sample
mean (1).

(c) We easily sample fromqm, since (6) holds trivially.

(d) We easily evaluate the probability of a product of inde-
pendent components.

(e) The modelqm does not reproduce any dependencies we
might observe in the dataX.

The last point is a weakness which makes this simple model
impractical when adaptive Monte Carlo algorithms are ap-
plied to challenging sampling problems. The product model
qm is often not flexible enough to come sufficiently close
to the target distributionπ . Therefore, the rest of this pa-
per deals with ideas on how to sample binary vectors with a
given dependence structure.

3.3 Beyond the product model

There are, to our knowledge, two main strategies to produce
binary vectors with correlated components.

(1) We can construct a generalized linear model which per-
mits computation of its marginal distributions. We apply
the chain rule factorization (6) and writeqθ as

qθ (γ) = qθ (γ1)∏d
i=2qθ (γ i | γ1:i−1), (10)

which allows us to sample vectors component-wise.

(2) We sample from a multivariate auxiliary distributionhθ
and map the samples intoBd. We call

qθ (γ) =
∫

τ−1(γ)hθ (v)dv (11)

a copula model, although we refrain from working with
explicit uniform marginals (Mikosch, 2006).

In the following, we first study a few generalized linear mod-
els and then review a some copula approaches.

4 Linear models

Taking f the identity mapping in (4), we obtain a full linear
representation

π(γ) = ∑I⊆D aI uI (γ).

However, we cannot give a useful interpretation of the coef-
ficientsaI . Bahadur(1961) derived the following represen-
tation:

Proposition 1. Define the index set

I
de f
= ∪k∈D {I ⊆ D | |I |= k} .

Then we can write any binary distribution as

π(γ) = Bm(γ)(1+∑I∈Ik
vI (γ) cI ),

wherem = (m1, . . . ,md) are the marginal probabilities.

Proof. For convenience, we give the proof proposed byBa-
hadurin Appendix10.1.

This decomposition, first discovered by Lazarsfeld, is a
special case of a more general interaction theory (Streitberg,
1990) and allows for a reasonable interpretation of the pa-
rameters. Indeed, we have a product model times a correc-
tion term 1+∑I∈Ik

vI (γ) cI where the coefficients are higher
order correlations.

4.1 Definition

We can try to construct a more parsimonious model by re-
moving higher order interaction terms. For additive ap-
proaches, however, we face the problem that a truncated
representations do not necessarily define probability distri-
butions since they might not be non-negative.

Still, for a symmetric matrixA, we define thed(d+1)/2
parameter model

qA,a0(γ) = µ(a0+ γ⊺Aγ), (12)

where µ is a normalization constant and we seta0 =
−(minγ∈Bd γ⊺Aγ ∧ 0). Sincea0 is the solution of an NP
hard quadratic unconstrained binary optimisation problem,
this definition is of little practical value.

4.2 Moments

In virtue of the linear structure, we can derive explicit ex-
pressions for the cross-moments and marginal distributions,
explicit meaning that the complexity is polynomial ind. The
proofs are basic but rather tedious, so we moved them to the
appendix section.

Next, we give a general formula yielding all cross-
moments, including the normalization constant.
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Proposition 2. For a set of indices I⊆ D, we can write the
corresponding cross-moment as

mI =
1

2|I |
+

∑i∈I

[

2∑ j∈D ai, j +∑d
j∈I\{i} ai, j

]

2|I |(4a0+ 1⊺A1+ tr [A])
.

For a proof see Appendix10.2

Corollary 1. The normalization constant is

µ = 2−d+2(4a0+ 1⊺A1+ tr [A])−1 ,

and the expected value is

EqA,a0
(γi) =

1
2
+

∑d
k=1 ai,k

4a0+ 1⊺A1+ tr [A]
.

The meanmi is close to 1/2 unless the rowai dominates the
matrix. Therefore, ifA is non-negative definite, the marginal
probabilitiesmi can hardly take values at the extremes of the
unit interval.

4.3 Marginals

For the marginal distributions

q(1:k)
A,a0

(γ1:k) = ∑ξ∈Bd−(k+1) qA,a0(γ1:k,ξ )

there are explicit and recursive formulae. Hence, we can
compute the chain rule decomposition (6) which in turn al-
lows to sample from the model.

Proposition 3. For the marginal distribution holds

q(1:k)
A,a0

(γ1:k) = µ2d−k−2sk(γ1:k),

where

sk(γ1:k) = 4a0+∑k
i=1 γi

(

∑k
j=1γ jai, j +∑d

j=k+1ai, j

)

+∑d
i=k+1 ∑d

j=k+1ai, j +∑d
i=k+1ai,i .

For a proof see Appendix10.3

Recall the connection between marginal distributions and
moments we observed in (3). Forγ I = 1 we obtain

sI (1k) = 4a0+4∑i∈I (∑ j∈I ai, j +∑ j∈Ic ai, j)

+∑i∈Ic ∑ j∈Ic ai, j +∑i∈Ic ai,i

= 4a0+∑i∈D ∑ j∈D ai, j +∑i∈D ai,i +3∑i∈I ∑ j∈I ai, j

+2∑i∈I ∑ j∈Ic ai, j −∑i∈I ai,i

= 4a0+ 1⊺A1+ tr [A]+

∑i∈I

[

2∑ j∈D ai, j +∑ j∈I\{i}ai, j
]

,

and πI (1k) = µ2d−|I |−2sI (1k) is indeed the expression for
the cross-moments in Proof of Proposition2.

4.4 Fitting the model

Given a sampleX = (x1, . . . ,xn)
⊺ ∼ π from the target dis-

tribution, we can determinea0 and a matrixA such that the
modelqA,a0 fits the first and second sampling moments

x̄{i, j} = n−1∑n
k=1xk,ixk, j , i, j ∈D

by solving a linear system of dimensiond(d+1)/2+1. We
first use the bijection

τ : D×D→{1, . . . ,d(d+1)/2}, τ(i, j) = i(i−1)/2+ j

to map symmetric matrices intoR(d+1)d/2. Precisely, for the
matricesA andX, we define the vectors

âτ(i, j)
de f
= ai, j , x̂τ(i, j)

de f
= x̄i, j

and the design matrix

ŝτ(i, j),τ(k,l)
de f
= 21{i, j}(k)+1{i, j,k}(l).

Note that|â|= 1⊺A1+ tr [A]. We then equate the distribution
moments to the sample moments and normalize such that

2d−2(Ia0+ 1/4Ŝâ) = x̂, 2d−2(4a0+ |â|) = 1. (13)

The solution of the linear system

(

â∗

a∗0

)

= 2−d+2
[

1/4Ŝ 1
41⊺ 1

]−1(
x̂
1

)

is finally transformed back into a symmetric matrixA∗.
Since the design matrix does not depend on the data, fit-
ting several models to different data on the same spaceB

d is
extremely fast.

4.5 Properties

We check the requirement list from Section1.3:

(a) The linear model is sufficiently parsimonious having di-
mension dim(θ ) = d(d+1)/2.

(b) We can fit the parametersA anda0 via method of mo-
ments. However, the fitted functionqA∗,a∗0

(γ) is usually
not a distribution.

(c) We can sample via chain rule factorization.

(d) We can evaluateqA,a0(y) via chain rule factorization
while sampling.

(e) The modelqA,a0 reproduces the mean and correlations
of the dataX.

Since in applications, the fitted matrixA∗ is hardly ever pos-
itive definite, we cannot use the linear model in an adaptive
Monte Carlo context. As other authors (Park et al., 1996;
Emrich and Piedmonte, 1991) remark, additive representa-
tions like Proposition1 are instructive but we cannot derive
practical models from them.
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5 Log-linear models

If π(γ) > 0 for all γ ∈ B
d, we can usef = log in (4) and

obtain a full log-linear representation

π(γ) = exp
(

∑I⊆D aI uI (γ)
)

.

Note that we assume the probability mass functionπ is
assumed to be log-linear in the parametersaI . In the context
of contingency tables the term “log-linear model“ refers to
the assumption that the marginal probabilitiesmI are log-
linear in the higher order marginals.

RemarkContingency table analysis is a well studied ap-
proach to modeling discrete data (Bishop et al., 1975;
Christensen, 1997). For binary data, the underlying sam-
pling distribution is assumed to be multinomial which re-
quires an enumeration of the state space we want to avoid.
Gange(1995) uses the Iterative Proportional Fitting algo-
rithm (Haberman, 1972) from log-linear interaction theory
to construct a binary distribution with given marginal prob-
abilities. The fitting procedures, however, require storage
of all configurationsπI (γ I ) and the construction of the joint
posterior from the fitted marginal probabilities. The method
is powerful and exact but computationally infeasible even
for moderate dimensions.

5.1 Definition

Removing higher order interaction terms, we can construct
a d(d+1)/2 parameter model

qµ,A(γ)
de f
= µ exp(γ⊺Aγ), (14)

whereA is a symmetric matrix. We immediately recognize
the product model (8) as the special caseµ = ∏i∈D(1−mi)

d

andA = diag[logit(m)]. Cox and Wermuth(1994) refer to
this version of the log-linear model as quadratic exponential
model.

5.2 Marginals

The moments or marginal distributions ofqA are sums of ex-
ponentials which, in general, do not simplify to expressions
that are polynomial ind. Therefore, we cannot perform a
chain rule factorization (6) to sample from the model.

Cox and Wermuth(1994) proposed the following second
degree Taylor approximations to the marginal distributions
which are again of the form (14).

Proposition 4. We write the parameterA as

A =

(

A′ b⊺

b c

)

, (15)

and define the parameters

Ãd−1 = A′+
(

1+ tanh( c
2)
)

diag[b]+ 1
2 sech2( c

2)bb⊺,

µ̃d−1 = µ(1+exp(c))

Then q̃Ad−1
(γ 1:d−1) is the second degree Taylor approxima-

tion to the marginal distribution qA1:d−1(γ 1:d−1). For a proof
see Appendix10.4.

If we recursively computeqÃd−1
, . . . ,qÃ1

, we can derive ap-
proximate conditional probabilities using (7). Precisely, we
have

qÃi
(γi = 1 | γ1:i−1) = logit−1(c̃i + b̃⊺

i γ1:i−1), (16)

where logit−1(x) = (1+exp(−x))−1 andc̃i , b̃i are parts of
the matrixÃi according to the notation introduced in (15).
In particular, (16) is a logistic regression. We come back
to this class of models in the following Section6. We can
sample from the proxy

q̃Ã(γ)
de f
= ∏i∈D qÃi

(γi | γ1:i−1)≈ qA(γ),

which is close to the original log-linear model. The good-
ness of the approximation might be improved by judicious
permutation of the components. The approximation error
is hard to control, however, since we repeatedly apply the
second degree approximation and propagate initial errors.

5.3 Fitting the model

As in section4.4, we use the bijection

τ : D×D→{1, . . . ,d(d+1)/2}, τ(i, j) = i(i−1)/2+ j

to map symmetric matrices intoR(d+1)d/2. Precisely, for the
matricesA andX, we define the vectors

âτ(i, j)
de f
= ai, j , x̂τ(i, j)

de f
= x̄i, j .

We letyk = logπ(xk) for k= 1, . . . ,n and fit the model solv-
ing the least square problem

minâ∈R(d+1)d/2

∥

∥X̂â− y
∥

∥

2

which yields the parameters

a∗i, j = [(X̂
⊺

X̂)−1X̂
⊺

y]τ(i, j).

Note that in most adaptive Monte Carlo algorithms that in-
volve importance sampling or Markov transitions, the prob-
abilities π(xk) of the target distribution are already com-
puted such that the fitting procedure is rather fast.

5.4 Properties

We check the requirement list from Section1.3:

(a) The log-linear model is sufficiently parsimonious with
dim(θ ) = d(d+1)/2.

(b) We can fit the parameterA via minimum least squares.



Christian Schäfer 6

(c) We can sample from an approximation ˜qÃ(γ) ≈ qA(γ)
to the log-linear model. However, we cannot control the
approximation error.

(d) We can evaluateqA,a0(y) up to the normalisation con-
stantµ which suffices for most adaptive Monte Carlo
methods.

(e) The modelqA,a0 reproduces the mean and correlations
of the dataX.

6 Logistic models

In the previous section we saw that even for a rather simple
non-linear model we cannot derive closed-form expressions
for the marginal probabilities. Therefore, instead of com-
puting the marginals for ad-dimensional modelqθ (γ), we
directly fit univariate models

qbi (γi = 1 | γ1:i−1), i ∈ D

to the conditional probabilitiesπ(γi = 1 | γ1:i−1) of the target
function. Precisely, we postulate the logistic relation

logit(Pπ (γi = 1)) = bi,i +∑i−1
j=1bi, jγ j , i ∈ D

for the marginal probabilities of the target distributionπ . We
defined the logit function in (9).

6.1 Definition

For a d-dimensional lower triangular matrixB, we define
the logistic model as

qB(γ)
de f
= ∏

i∈D
Bp(bi,i+b⊺i,1:i−1γ1:i−1)

(γi) (17)

= exp
(

∑i∈D(γi−1)(bi,i +b⊺

i,1:i−1γ1:i−1)

− log(1+exp(bi,i +b⊺

i,1:i−1γ1:i−1))
)

whereBp is the Bernoulli distribution and

p(x) = logit−1(x) = (1+exp(−x))−1

the inverse-logit function. We identify the product model
Bm as the special caseB = diag[logit(m)]. The logistic
model is not a log-linear model.

Note that there ared! possible logistic models and we ar-
bitrarily pick one while there should be a permutationσ(D)
of the components which is optimal in a sense of nearness to
the data. In practice, however, changing the parametrisation
does not seem to have a noticeably impact on the quality of
the adaptive Monte Carlo algorithm.

6.2 Sparse logistic regressions

The major drawback of all multiplicative models is the fact
that they do not have closed-form likelihood-maximizers

such that the parameter estimation requires costly iterative
fitting procedures. Therefore, we construct a sparse version
of the logistic regression model which we can estimate faster
than the saturated model.

Instead of fitting the saturated modelq(γi | γ1:i−1), we
preferably work with a more parsimonious regression model
like q(γi | γLi ) for some index setLi ⊆ {1, . . . , i−1}, where
the number of predictors #Li is typically smaller thani−1.

We solve this nested variable selection problem using
some simple, fast to compute criterion. Forε about1/100,
we define the index set

I
de f
= {i = 1, . . . ,d | x̄i /∈ (ε,1− ε)}.

which identifies the components which have, according to
the data, a marginal probability close to either boundary of
the unit interval.

We do not fit a logistic regression for the components
i ∈ I . We rather setLi = /0 and draw them independently,
that is we setbi,i = logit(x̄i) andbi,−i = 0 which corresponds
to logistic model without predictors. The reason is twofold.
Firstly, interactions do not really matter if the marginal prob-
ability is excessively small or large. Secondly, these compo-
nents are prone to cause complete separation in the data or
might even be constant.

For the conditional distribution of the remaining compo-
nentsIc = D\ I , we construct parsimonious logistic regres-
sions. Forδ about1/10, we define the predictor sets

Li
de f
= { j = 1, . . . , i−1 | δ <

∣

∣r i, j
∣

∣}, i ∈ Ic,

which identifies the components with index smaller thani
and significant mutual association.

6.3 Fitting the model

Given a sampleX = (x1, . . . ,xn)
⊺ ∼ π from the target distri-

bution we regressy[i] = Xi on the columnsZ[i] = (X1:i−1,1),
where the columnZ[i]

i yields the intercept to complete the
logistic model.

We maximise the log-likelihood functionℓ(b) = ℓ(b |
y,Z) of a weighted logistic regression model by solving the
first order condition∂ℓ/∂β = 0. We find a numerical solu-
tion via Newton-Raphson iterations

−
∂ 2ℓ(b[r])

∂bb⊺
(b[r+1]−b[r]) =

∂ℓ(b[r])

∂b
, r > 0, (18)

starting at someb[0]; see Procedure2 for the exact terms.
Other updating formulas like Iteratively Reweighted Least
Squares or quasi-Newton iterations should work as well.
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Procedure 2 Fitting the weighted logistic regressions

Input: w = (w1, . . . ,wn), X = (x1, . . . ,xn)
⊺, B ∈ R

d×d

for i ∈ Ic do
Z← (XLi ,1), y←Xi , b[0]← Bi,Li∪{i}
repeat

pk ← logit−1(Zkb[r−1]) for all k= 1, . . . ,n

qk ← pk(1− pk) for all k= 1, . . . ,n

b[r]← (Z⊺diag[w]diag[q]Z+ εIn)
−1×

(Z⊺diag[w])
(

diag[q]Zb[r−1]+(y−p)
)

until |b[r]
j −b[r−1]

j |< 10−3 for all j

Bi,Li∪{i}← b

end for
return B

Sometimes, the Newton-Raphson iterations do not con-
verge because the likelihood function is monotone and thus
has no finite maximizer. This problem is caused by data
with complete or quasi-complete separation in the sample
points (Albert and Anderson, 1984). There are several ways
to handle this issue.

(a) We just halt the algorithm after a fixed number of iter-
ations and ignore the lack of convergence. Such pro-
ceeding, however, might cause uncontrolled numerical
problems.

(b) Firth (1993) proposes to use a Jeffrey’s prior onb. The
penalized log-likelihood does have a finite maximizer
but requires computing the derivatives of the Fisher in-
formation matrix.

(c) We just add a simple quadratic penalty termεβ ⊺β to
the log-likelihood to ensure the target-function is convex
and does not cause numerical problems.

(d) As we notice that some terms ofbi are growing beyond a
certain threshold, we move the componenti from the set
of components with associated logistic regression model
Ic to the set of independent componentsI .

In practice, we recommend to combine the approaches (c)
and (d). In Procedure2, we did not elaborate how to
handle non-convergence, but added a penalty term to the
log-likelihood, which causes the extraεIn in the Newton-
Raphson update. Since we solve the update equation via
Cholesky factorizations, adding a small term on the diagonal
ensures that the matrix is indeed numerically decomposable.

6.4 Properties

We check the requirement list from Section1.3:

(a) The logistic regression model is sufficiently parsimo-
nious with dim(θ ) = d(d+1)/2.

(b) We can fit the parametersbi via likelihood maximisation
for all i ∈D. The fitting is computationally intensive but
feasible.

(c) We can sampley∼ qB via chain rule factorization.

(d) We can exactly evaluateqB(y).

(e) The modelqB reproduces the dependency structure of
the dataX although we cannot explicitly compute the
marginal probabilities.

7 Gaussian copula models

In the preceding sections, we discussed three approaches
based on generalized linear models. Now we turn to the
second class of models we call copula models.

Let hθ be a family of auxiliary distributions onX and
τ : X → B

d a mapping into the binary state space. We can
sample from the copula model

qθ (γ) =
∫

τ−1(γ) hθ (v)dv

by settingy = h(v) for a drawv ∼ hθ from the auxiliary
distribution.

7.1 Definition

Apparently, non-normal parametric distributionssθ with at
mostd(d−1)/2 dependence parameters either have a very
limited dependence structure or rather unfavourable proper-
ties (Joe, 1996). Therefore, the normal distribution

hΣ(v) = (2π)−d/2 |Σ|−1/2 exp(−1/2v⊺Σ−1v),

with mappingτ : Rd→ B
d

τµ(v) = (1(∞,µi ](v1), . . . ,1(∞,µd]
(vd)),

appears to be the natural and almost the only option forhθ .
This model has already been discussed repeatedly in the lit-
erature (Emrich and Piedmonte, 1991; Leisch et al., 1998;
Cox and Wermuth, 2002).

7.2 Moments

For I ⊆ D, the cross-moment or marginal probabilities is

mI = ∑γ∈Bd qµ,Σ(1I ,γD\I ) =
∫

∪γ∈Bd {τ−1
µ (1I ,γD\I )}

hΣ(v)dv

=
∫

×i∈I{τ−1
µi

(1)} hΣ(v)dv =
∫

×i∈I (−∞,µi ]
hΣ(v)dv,

where we used (3) in the first line. Thus, the first and second
moment ofq(µ,Σ) are

mi = Φ1(µi), mi, j = Φ2(µi ,µ j ;σi, j)

whereΦ1(vi) andΦ2(vi ,v j ;σi, j ) denote the cumulative dis-
tribution functions of the univariate and bivariate normaldis-
tributions with zero mean, unit variance and correlation co-
efficientσi, j ∈ [−1,1].
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7.3 Sparse Gaussian copulae

We can speed up the parameter estimation and improve the
condition of Σ, if we work with a parsimonious Gaussian
copula. We can apply the same criterion we already intro-
duced for the sparse logistic regression model. Forε about
1/100, we define the index set

I
de f
= {i = 1, . . . ,d | x̄i /∈ (ε,1− ε)}.

which identifies the components which have a marginal
probability close to either boundary of the unit interval.

We do not fit a any correlation parameters for the compo-
nents inI but setσi, j =0 for all j ∈D\{i}. Firstly, the corre-
lation does not really matter if the marginal probability isex-
cessively small or large. Secondly, we fit the parameterΣ by
separately adjusting the bivariate correlationsσi, j , and com-
ponents with high correlations and extreme marginal proba-
bility lower the chance thatΣ is positive definite.

For the remaining componentsIc = D \ I , we construct
parsimonious Gaussian copula. Forδ about1/10, we define
the association set

A
de f
=
{

{i, j} ∈ Ic× Ic | δ <
∣

∣r i, j
∣

∣ , i 6= j
}

which identifies the components with significant correlation.
For i, j ∈ D×D \ L we also setσi, j = 0 to accelerate the
estimation procedure.

7.4 Fitting the model

We fit the modelq(µ,Σ) to the data by adjustingµ andΣ to
the sample moments. Precisely, we solve the equations

Φ1(µi) = x̄i , i ∈ D (19)

Φ2(µi ,µ j ;σi, j) = x̄i, j , (i, j) ∈ A (20)

with sample mean ¯xi and x̄i, j as defined in (1). We easily
solve (19) by setting

µi = Φ−1
1 (x̄i), i ∈ D.

The difficult task is computing a feasible correlation matrix
from (20). Recall the standard result (Johnson et al., 2002,
p.255)

∂Φ2(y1,y2;σ)

∂σ
= hσ (y1,y2), (21)

wherehσ denotes the density of the bivariate normal distri-
bution. We obtain the following Newton-Raphson iteration

αr+1 = αr −
Φ2(µi ,µ j ;αr)− x̄i, j

hαr (µi ,µ j)
, (i, j) ∈ A, (22)

starting at someα0 ∈ (−1,1). We use a fast series approx-
imation (Drezner and Wesolowsky, 1990; Divgi, 1979) to
evaluateΦ2(µi ,µ j ;α). These approximations are critical
whenαr comes very close to either boundary of[−1,1]. The

Newton iteration might repeatedly fail when restarted at the
corresponding boundaryr0 ∈ {−1,1}. This is yet another
reason why it is preferable to work with a sparse Gaussian
copula. In any event,Φ2(y1,y2;σ) is monotonic inσ since
(21), and we can switch to bi-sectional search if necessary.

Procedure 3 Fitting the dependency matrix

Input: x̄i , x̄i, j for all i, j ∈D

µi = Φ−1(x̄i) for all i ∈ D
Σ = Id

for (i, j) ∈ A do
repeat

σ [r+1]
i, j ← σ [r]

i, j −
Φ2(µi ,µ j ;σ [r]

i, j )− x̄i, j

h
σ [r]

i, j
(µi ,µ j)

until |σ [r]
i, j −σ [r−1]

i, j |< 10−3

end for
if not Σ≻ 0 then Σ← (Σ+ |λ |Id)/(1+ |λ |)
return µ , Σ

A rather discouraging shortcoming of the Gaussian cop-
ula model is that locally fitted correlation matricesΣ might
not be positive definite ford≥ 3. This is due to the fact that
an elliptical copula, like the Gaussian, can only attain the
bounds (5) for d < 3, but not for higher dimensions.

We propose two ideas to obtain an approximate, but fea-
sible parameter:

(1) We replaceΣ by Σ∗ = (Σ + |λ |I)/(1+ |λ |), whereλ
is the smallest eigenvalue of the dependency matrixΣ.
This approach evenly lowers the local correlations to a
feasible level and is easy to implement on standard soft-
ware. Alas, we make an effort to estimated(d−1)/2
dependency parameters, and in the end we might not
get more than an product model.

(2) We can compute the correlation matrixΣ∗ which mini-
mizes the distance‖Σ∗−Σ‖F , where‖A‖2F = tr [AA⊺].
In other words, we construct the projection ofΣ into
the set of correlation matrices.Higham(2002) proposes
an Alternating Projections algorithm to solve nearest-
correlation matrix problems. Yet, ifΣ is rather far from
the set of correlation matrices, computing the projection
is expensive and, according to our experience, leads to
troublesome distortions in the correlation structure.

7.5 Properties

We check the requirement list from Section1.3:

(a) The Gaussian copula model is sufficiently parsimonious
with dim(θ ) = d(d+1)/2.

(b) We can fit the parametersµ andΣ via method of mo-
ments.The parameterΣ is not always be positive defi-
nite which might require additional effort it feasible.
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(c) We can sampley∼ q(µ,Σ) usingy = τµ(v) with v∼ hΣ.

(d) We cannot evaluateqB(y) since this requires computing
a high-dimensional integral expression.

(e) The modelq(µ,Σ) exactly reproduces the mean and cor-
relation structure of the dataX.

We cannot use the Gaussian copula model in the context of
Importance Sampling or Markov chain Monte Carlo, since
evaluation ofq(µ,Σ)(y) is not possible. This model can be
quite useful, however, in other adaptive Monte Carlo algo-
rithms, for instance the Cross-Entropy method (Rubinstein,
1997) for combinatorial optimisation.

8 Poisson reduction models

Let N= {1, . . . ,n} denote another index set withn≫ d. Ap-
proaches to generating binary vectors that do not rely on the
chain rule factorization (6) are usually based on combina-
tions of independent random variables

v = (v1, . . . ,vn)∼⊗k∈Nhθk.

We define index setsM = {Si ∈N | i ∈ D} and generate the
entryyi via

τi : X
|Si |→{0,1} , τi(v) = f (vSi ), i ∈ D.

In the context of Gaussian copulae, the auxiliary distribu-
tionshθk = hθ ared independent standard normal variables.
Park et al.(1996) propose the following model based on
sums of independent Poisson variables.

8.1 Definition

We define a Poisson modelq(S ,λ ) with auxiliary distribution

hλ (v) = ∏k∈N(λ
vk
k e−λk)/vk!

and mappingτ : Nn
0→ B

d

τS (v) = (1{0}(∑k∈S1
vk), . . . ,1{0}(∑k∈Sd

vk)).

8.2 Moments

For an index setI ∈D, the cross-moments or marginal prob-
abilities are

mI = P
(

∀i ∈ I : ∑k∈Si
vk = 0

)

= exp(−∑k∈∩i∈I Si
λk).

Therefore, fitting via method of moments is possible.

Proposition 5. For γ ∈ B
d, define the index sets

D0 = {i ∈ D | γi = 0} , D1 = {i ∈ D | γi = 1} ,

and the families of subsetsIt = {I ∈ D1 | |I |= t}. We can
write the mass function of the Poisson model as

q(S ,λ )(γ) = ∑v∈τ−1(γ) hλ (v) =

mD0

[

1−∑|D0|
t=1 (−1)t−1 ∑I⊆It exp(−∑k∈∩i∈I Si\∪ j∈D1Sj

λk)

]

.

For a proof see Appendix10.5.

8.3 Fitting the model

We need to determine the family of index setsM and the
Poisson parametersλ = (λ1, . . . ,λn) such that the resulting
modelq(S ,λ ) is optimal in terms of distance to the mean and
correlation. Obviously, we face a rather difficult combinato-
rial problem.Park et al.(1996) describe a greedy algorithm,
based on convolutions of Poisson variables, that finds at least
some feasible combination ofS andλ .

8.4 Properties

We check the requirement list from Section1.3:

(a) The Poisson reduction model is not necessarily parsimo-
nious. The number of parameters dim(θ ) is determined
by the fitting algorithm.

(b) We fit the model via method of moments using a fast but
non-optimal greedy algorithm.

(c) We sampley∼ q(S ,λ ) usingy = τS (v) with v∼ hλ .

(d) We cannot evaluateq(S ,λ )(y) since it requires summa-

tion of 2d−|y| − 1 terms using an inclusion-exclusion
principle which is computationally not feasible.

(e) The modelq(S ,λ ) reproduces the mean and certain cor-
relation structures of the dataX. We cannot sample neg-
ative correlations.

Since the model is limited to certain patterns of non-negative
correlations, we cannot use it as general-purpose model in
adaptive Monte Carlo algorithms. It might be useful, how-
ever, if we know that the target distributionπ has strictly
non-negative correlations.

9 Archimedean copula models

Genest and Neslehova(2007) discuss in detail the potentials
and pitfalls of applying copula theory, which is well devel-
oped for bivariate, continuous random variables, to multi-
variate discrete distribution. Yet, there have been earlier at-
tempts to sample binary vectors via copulae:Lee(1993) de-
scribes how to construct an Archimedean copula, more pre-
cisely the Frank family, (see e.g.Nelsen(2006, p.119)), for
sampling multivariate binary data.

Unfortunately, most results in copula theory do not eas-
ily extend to high dimensions. Indeed, we need to solve
a non-linear equation for each component when generating
a random vector from the Frank copula, andLee (1993)
acknowledges that this is only applicable ford ≤ 3. For
low-dimensional problems, however, we can just enumerate
the solution spaceBd and draw from an alias table (Walker,
1977), which somewhat renders the Archimedean copula ap-
proach an interesting exercise, but without much practical
value in Monte Carlo applications.
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10 Appendix

10.1 Proposition1

Proof. Recall thatI = ∪k∈D {{i1, . . . , ik} ⊆ D | i1 < · · ·< ik} andvI (γ) = ∏i∈I [(γi −mi)/
√

mi(1−mi)] with mi > 0 for all
i ∈ D. We define an inner product

( f ,g)
de f
= EBm ( f (γ)g(γ)) = ∑γ∈Bd f (γ)g(γ)∏i∈D mγi

i (1−mi)
1−γi

on the vector space of real-valued functions onB
d. The setS= {vI (γ) | I ∈I } is orthonormal, since

(vI , rJ) = ∏
i∈I∩J

EBm

(

(γi−mi)
2

mi(1−mi)

)

∏
i∈(I∪J)\(I∩J)

EBm

(

γi−mi
√

mi(1−mi)

)

=

{

0 for I 6= J

1 for I = J,

There are 2d−1 elements inSandBm(γ)> 0 which implies thatS∪{1} is an orthonormal basis of the real-valued function
onBd. It follows that each functionf : Bd→R has exactly one representation as linear combination of functions inS∪{1}
which is f = ( f ,1)+∑I∈I vI ( f ,vI ). Since

(π/Bm,vI ) = ∑γ∈Bd(π(γ)/Bm)(γ)vI (γ)Bm(γ) = Eπ (vI (γ)) = cI ,

we obtainπ(γ)/Bm(γ) = 1+∑I∈I vI (γ) cI for f = π/Bm which concludes the proof.

10.2 Proposition2

Proof. We first derive two auxiliary results to structure the proof.

Lemma 1.For a setI ⊆ D of indices it holds that

∑γ∈Bd ∏k∈I∪{i, j} γk = 2d−|I |−2+1I (i)+1I∪{i}( j).

For an index setM ⊆ D, we have the sum formula∑γ∈Bd ∏k∈M γk = 2d−|M|. If we have an empty setM = /0 the sum equals

2d and each time we add a new indexi ∈D\M to M half of the addends vanish. The number of elements inM = I ∪{i, j} is
the number of elements inI plus one ifi /∈ I and again plus one ifi 6= j and j /∈ I . Written using indicator function, we have
|I ∪{i, j}|= |I |+1D\I(i)+1D\(I∪{i})( j) = |I |+2−1I(i)−1I∪{i}( j) which implies Lemma 1.

Lemma 2.

∑i∈D ∑ j∈D 21I (i)+1I∪{i}( j) ai, j = 1⊺A1+ tr [A]+∑i∈I

[

2∑ j∈D ai, j +∑ j∈I\{i}ai, j
]

Straightforward calculations:

21I (i)+1I∪{i}( j) = (1+1I(i))(1+1I∪{i}( j)) = (1+1I(i))(1+1I ( j)+1{i}( j)−1I∩{i}( j))

= 1+1I(i)+1I( j)+1I (i)1I ( j)+1{i}( j)+1I (i)1{i}( j)−1I∩{i}( j)−1I (i)1I∩{i}( j)

= 1+1{i}( j)+1I (i)+1I( j)+1I×I (i, j)−1I∩{i}( j),

where we used1I (i)1{i}( j) = 1I (i)1I (i)1{i}( j) = 1I (i)1I ( j)1{i}( j) = 1I (i)1I∩{i}( j) in the second line. Thus, we have

∑i∈D ∑ j∈D 21I (i)+1I∪{i}( j) ai, j = ∑i∈D ∑ j∈D

(

1+1{i}( j)+1I (i)+1I( j)+1I×I (i, j)−1I∩{i}( j)
)

ai, j

= ∑i∈D ∑ j∈D ai, j +∑ j∈D a j , j +∑i∈I ∑ j∈D ai, j +∑i∈D ∑ j∈I ai, j +∑i∈I ∑ j∈I ai, j −∑i∈I a j , j

= 1⊺A1+ tr [A]+∑k∈I

[

2∑l∈D ak,l +∑l∈I ak,l −ak,k
]

= 1⊺A1+ tr [A]+∑k∈I

[

2∑l∈D ak,l +∑l∈I\{k}ak,l
]

The last line is the assertion of Lemma 2.
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Using the two Lemmata above, we find a convenient expression for the cross-moment

mI = ∑γ∈Bd(∏k∈I γk) µ(a0+ γ⊺Aγ)

= µ
[

∑γ∈Bd a0+∑γ∈Bd(∏k∈I γk)∑i∈D ∑ j∈D γiγ j ai, j

]

= µ
[

2d−|I |a0+∑i∈D ∑ j∈D ai, j ∑γ∈Bd(∏k∈I∪{i, j} γk)
]

(Lemma 1)

= µ
[

2d−|I |a0+ ∑i∈D ∑ j∈D 2d−|I∪{i, j}| ai, j
]

= µ2d−|I |−2
[

4a0+∑i∈D ∑ j∈D 21I (i)+1I∪{i}( j) ai, j

]

(Lemma 2)

= µ2d−|I |−2
[

4a0+ 1⊺A1+ tr [A]+∑i∈I

[

2∑ j∈D ai, j +∑ j∈I\{i}ai, j
]]

Sincem/0 = 1 by definition, we the normalization constant isµ = 2−d+2(4a0+ 1⊺A1+ tr [A])−1, which allows us to write
down the normalized cross-moments

mI =
1

2|I |
+

∑i∈I

[

2∑ j∈D ai, j +∑ j∈I\{i} ai, j
]

2|I |(4a0+ 1⊺A1+ tr [A])
.

The proof is complete.

10.3 Proposition3

Proof. We easily margin out the last componentd, havingI = {1, . . . ,d− t},

q(d−1)
A,a0

(γ I )µ−1 =
(

q(d)A,a0
(γ I ,1)+q(d)A,a0

(γ I ,0)
)

µ−1 = 2a0+(γ I ,1)
⊺A(γ I ,1)+ (γ I ,0)

⊺A(γ I ,0)

= 2a0+ tr [A [(γ I ,1)(γ I ,1)⊺+(γ I ,0)(γ I ,0)⊺]] = 2a0+ tr

[

A
[

2γ I γ⊺I γ I

γ⊺I 1

]]

Iterating the argument, we obtain forI = {1, . . . ,d− t} andIc = D\ I

q(d−t)
A,a0

(γ I )µ−1 = 2ta0+2t−2 tr

[

A
[

4γ I γ⊺I 2γ I 1
⊺

t
21tγ⊺I 1t1

⊺

t + It

]]

Straightforward calculations:

tr

[

A
[

4γ I γ⊺I 2γ I 1
⊺

t
21tγ⊺I 1t1

⊺

t + It

]]

= tr [A [(2γ I ,1t)(2γ I ,1t)
⊺+diag[0I ,1t ]]] = [(2γ I ,1t)

⊺A(2γ I ,1t)+ tr [Adiag[0I ,1t)]]]

=
[

4∑i∈I ∑ j∈I γiγ jai, j +4∑i∈I ∑ j∈Ic γiai, j +∑i∈Ic ∑ j∈Ic ai, j +∑i∈Ic ai,i
]

=
[

4∑i∈I γi(∑ j∈I γ jai, j +∑ j∈Ic ai, j)+∑i∈Ic ∑ j∈Ic ai, j +∑i∈Ic ai,i
]

The proof is complete.

10.4 Proposition4

Proof. For convenience of notation, letγ− = (γ1, . . . ,γd−1). Note thatqA(γ) = µ exp(γ⊺−A′γ− + γd(2b⊺γ− + c)). The
marginal distribution is therefore

π(γ−) = µ exp(γ⊺−A′γ−)
(

1+exp(2γ⊺−b+ c)
)

= µ exp
(

γ⊺−A′γ−+ γ⊺−b+ c/2
)(

exp(−γ⊺−b− c/2)+exp(γ⊺−b+ c/2)
)

= µ exp
(

γ⊺−A′γ−+ γ⊺−b+ c/2
)

2cosh
(

γ⊺−b+ c/2
)

.

The marginal log mass function is thus

logπ(γ−) = log(2µ)+ c/2+ γ⊺−A′γ−+ γ⊺−b+ logcosh
(

γ⊺−b+ c/2
)

.
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For logcosh we can use a Taylor approximation

logcosh(γ⊺−b+ c/2)≈ logcosh(c/2)+ γ⊺−b tanh(c/2)+ 1/2(γ⊺−b)2sech2(c/2)

to obtain

logπ(γ−)≈ log(2µ cosh(c/2))+ c/2+ γ⊺−A′γ−+
(

1+ tanh(c/2)
)

γ⊺−b+ 1/2sech2(c/2)(γ⊺−b)2

Sinceγ− is a binary vector, we haveγ⊺−b = γ⊺−diag[b]γ− and can thus rewrite the inner products as

γ⊺−A′γ−+ γ⊺−b+(γ⊺−b)2 = tr
[

A′γ−γ⊺−+diag[b]γ−γ⊺−+bb⊺γ−γ⊺−
]

= γ⊺−(A
′+diag[b]+bb⊺)γ−.

We let denote
µ∗ = 2µ cosh(c/2)exp(c/2) = µ(exp(−c/2)+exp(c/2))exp(c/2) = µ (1+exp(c))

and
A∗ = A′+(1+ tanh(c/2))diag[b]+ 1/2sech2(c/2)bb⊺

to form the approximationπ(γ−)≈ µ∗ exp(γ⊺−A∗γ−) which completes the proof.

10.5 Proposition5

Proof. Straightforward calculations using the inclusion-exclusion principle for the union of events:

q(S ,λ )(γ) = ∑v∈τ−1(γ)hλ (v) = Phλ

(

∩i∈D
{

1{0}∑k∈Si
vk = γi

})

= Phλ

(

∩i∈D1 ∩k∈Si {vk = 0} , ∩i∈D0 ∪k∈Si {vk > 0}
)

= Phλ

(

∩i∈D1 ∩k∈Si {vk = 0}
)

Phλ

(

∩i∈D0 ∪k∈Si\∪ j∈D1
Sj
{vk > 0}

)

= Pq(S ,λ) (γD1 = 1)
(

1−Phλ

(

∪i∈D0 ∩k∈Si\∪ j∈D1Sj
{vk = 0}

))

= mD0

[

1−∑|D0|
t=1 (−1)t−1 ∑I⊆It Phλ

(

∩i∈I ∩k∈Si\∪ j∈D1
Sj
{vk = 0}

)]

= mD0

[

1−∑|D0|
t=1 (−1)t−1 ∑I⊆It exp(−∑k∈∩i∈I Si\∪ j∈D1Sj

λk)
]

.

The proof is complete.
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