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ABSTRACT 
Journal bearings cannot be considered as passive elements 

in gear-bearing assemblies, and the lubricant is recognized as 
playing an important role in the interactions between the shafts 
and the bearings. In order to take this influence into account, 
bearings are usually modeled by means of eight dynamic 
coefficients, i.e., asymmetric stiffness and damping matrices. 

In this paper, a nonlinear approach is proposed 
enabling the behavior of a gear-shaft-bearing assembly to be 
analyzed. A discrete finite element model is used for the shafts, 
and a specific gear element is introduced which accounts for 
non-linear time-varying mesh stiffness as well as tooth shape 
deviations. The meshing forces are internal system forces 
whereas the effects of the bearings on the shafts are taken to be 
external. A combination of the Newmark time integration 
scheme and the Newton-Raphson algorithm is used to 
simultaneously solve the contact problem for the gear, and the 
Reynolds equations for the bearings. The resulting algorithm is 
applied to a single stage geared system with two shafts, four 
bearings, a pinion and a gear while taking mass unbalance, 
eccentricity and meshing excitations into account. Several 
examples are presented which demonstrate the influence of 
bearing nonlinearity and the efficiency of the proposed model 
and numerical procedure. 

INTRODUCTION 
The dynamic response of geared systems remains a major 

concern in terms of noise and vibration, especially in high-
speed applications. In this context, journal bearings are 
recognized as interesting technological solutions since they 
provide significant stiffness and damping for reduced noise 
levels compared with rolling element bearings. The literature 
on journal bearings comprises numerous contributions, only a 
few of which can be cited here [1-7] and it is now accepted 
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that, for most practical cases, the theoretical foundations are 
firmly established allowing accurate predictions of bearing 
performance. A survey about the theory of hydrodynamics and 
its applications to various bearing geometries and operating 
conditions can be found in the classic textbooks of Cameron 
[8], Pinkus and Sternlicht [9], Frêne et al. [10]. 

On the other hand, the simulation of gear dynamics 
has yielded a vast literature [11], [12] with the majority of the 
gear models based upon lumped parameter representations 
combining rigid gears, discrete elastic and dissipative elements 
[13], [14], [15] or, more recently, on combinations of shaft 
finite elements and elastic foundations [16]. Forcing terms are 
often derived from transmission errors (Gregory et al. [15], 
Munro [17], Özgüven and Houser [18]) and /or the contact 
conditions between the active flanks [19]. Non linear features 
in spur gearing such as backlash and shocks on tooth flanks 
have been analyzed by Kahraman and Singh [20], Kahraman 
and Blankenship [21], Parker et al. [22].  

Over the last decade, computing procedures have been 
developed which include the characteristics of shafts, gears, 
bearings and housings in the prediction of the global 
vibrational behavior of a transmission [23-26]. The majority of 
these codes, however, are restricted to linear analysis, i.e., static 
solution and modal analysis, and bearing and gear models 
remain global. The present work contributes to the analysis of 
the interactions between gears, shafts and journal bearings in 
geared drives. In contrast to the majority of the models in the 
literature, the time-varying properties and non-linearities of 
bearings and gears are introduced in the simulations. To this 
end, the equations of motion, the normal contact problems on 
tooth flanks and the Reynolds equation for hydrodynamic 
bearings are simultaneously solved by combining a time-step 
integration scheme, a Newton-Raphson procedure and a normal 
contact algorithm. Finally, the importance of gear-bearing 



dynamic interactions and the interest of non-linear models for 
journal bearings are discussed. 

NOMENCLATURE 
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 is in the axial direction, see figure 1) 
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 : cartesian local frame of the bearing 
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 : polar local frame of the bearing 

ω  : rotation speed (ras/s)

C  : radial clearance 
ε  : eccentricity ratio (varies between 0 and 1)

φ  : attitude angle (rad)
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Figure 1 - Sketch of the geared system 

1 - DESCRIPTION OF THE MODEL 
1-1 Shaft-gear model 
The dynamic model of single stage transmissions (figure 1) 

is based on the developments of Velex and Maatar [19] and 
Ajmi and Velex [16]. Shafts are modeled by classic two-node 
finite elements with 6 degrees of freedom per node for bending 
(Timoschenko's beam), torsion and axial displacements. A 
pinion - gear pair are represented by two 2-node shaft elements 
connected by lumped stiffnesses which account for contact, 
tooth and gear body deflections along the contact lines in the 
base plane (figure 2). An elemental mesh stiffness and an 
equivalent normal shape deviation are associated with every 
potential point of contact to simulate actual tooth flank traces 
and their evolutions with time. Based upon rigid-body 
kinematics, the lines of contact are translated and all relevant 
parameters (stiffness and deviations) are re-calculated at each 
time step of the meshing process. It is assumed that the contacts 
between mating flanks are line contacts within the theoretical 
base plane and that tooth friction forces can be neglected 
compared with normal forces. The normal contact condition at 
every potential point of contact on the tooth flanks is directly 
included in the mesh stiffness formulation by canceling the 
elemental stiffness when the corresponding deflection is 
negative or nil. The proposed formulation leads to time-varying 
non-linear mesh stiffness matrices and forcing terms, the latter 
accounting for tooth shape deviations and mounting errors [16], 
[19], [23]. The pinion-gear mass matrix is classic since second 
order terms and gyroscopic components are neglected. 
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Figure 2 – Model of mesh elasticity and tooth shape 
deviations 

Figure 3 - Direction of external load and definition of local 
frames for the bearings on shaft 1 and 2 

1-2 Journal bearing model 
1-2-1 Reynolds equation – Short Bearing 

approximation 
Figure 3 gives a schematic view of a journal bearing 

consisting of a fixed journal of radius R , length L  and of a 

rotating shaft of radius sR , with sC R R= −  being the radial

clearance. At constant speed ω and under a constant loadW ,

the shaft center O′  keeps a fixed position in the bearing
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defined by the constant eccentricity 0e and attitude angle 0φ
whereas, for dynamic conditions, it follows an orbit within the 
journal clearance characterized by a time-dependent 

eccentricity e  and attitude angleφ . The position of the shaft

center with respect to the bearing center O  can be described 

either by its Cartesian co-ordinates in the frame ),( yx
rr

yexeyyxxOO
rrrr φφ sincos +=+=′ (1) 

or its local (or polar) co-ordinates in the frame ),( qr
rr

 

),( rxreOO
rrr ==′ φ  (2) 

Introducing the angular co-ordinate θ  whose origin is on

the axis r
r

, the lubricant film thickness is given as: 

)cos1( θε+= Ch (3) 

where the eccentricity ratio Ce /=ε  varies between 0 and 1. 
Assuming an isothermal, laminar flow of an iso-viscous 

incompressible fluid, the behavior of the lubricant film is 
governed by the Reynolds equation [2]. For the sake of 
simplicity, the short bearing approximation is introduced, i.e., 
the width-to-diameter ratio DL /  is supposed to be small, 
which leads to the following Reynolds equation for dynamic 
conditions: 
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Using the boundary conditions 0)2/,( =±= Lzp θ ,

Equation (4) can be integrated and the hydrodynamic pressure 
field is expressed as: 
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The hydrodynamic force bF  is obtained by integration of 

),( zp θ  for ]2,0[ πθ ∈  and ]2/,2/[ LLz −∈ using the

Gümbel boundary conditions which discard negative pressures 
from the force integral [10]. 

1-2-1 Steady-state solution 
The solution for steady-state conditions can be deduced 

from (5) by setting the time-varying perturbations ε&  and φ& to

zero. The associated hydrodynamic bearing force integration is 
straightforward and gives 
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with the attitude angle being defined as 
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The steady-state position and bearing force depend on 0ε .

This is derived from the static equilibrium between the 
hydrodynamic reaction generated by the bearing and the 

external force 0W  imposed by the transmitted torques and 

transferred to the bearings by the pinion and the gear, i.e., 

00 )( WFb =ε (8) 

This equation is non-linear and it is solved by a dichotomy 
scheme. In turn, the eccentricity of the shaft in the journal 
modifies the pinion-gear center distance slightly and 
consequently, the gear mesh stiffness function and excitations. 

1-2-1 Dynamic characteristics 
Denoting ( )00 , yx , the shaft center co-ordinates in 

steady-state conditions and ( )yx ∆∆ , , the corresponding time-

dependent dynamic perturbations, the actual position of the 
shaft center is defined as: 
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From which, the dynamic parametersε ,φ , and their time-

derivativesε&  and φ&  are deduced as:
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2 – DYNAMIC BEHAVIOR OF THE GEAR-BEARING 
ASSEMBLY 

2-1 Equations of motion 
The assembly of all the elemental matrices and forcing 

term vectors leads to the following system of equations in the 

frame ),,( zts
rrr

 relative to the structure 

)},({)},({})]{,([}]{[}]{[ XXFXtFXXtKXCXM b
&&&& +=++  (11) 

where 



M  and C  are the global constant mass and damping matrices 

XXX &&& ,, are the degree-of-freedom, velocity and acceleration

vectors 

),( XtK  is the global stiffness matrix of the system, 

),(),( XtKKXtK gearshaft +=  with 

shaftK  : constant global stiffness matrix of the shafts 

),( XtK gear  : global stiffness matrix of the gear which is 

time-dependant because of the contact length evolution on 
the base plane and potentially non-linear because of the 
interaction between the degrees of freedom, tooth 
deviations and the instantaneous contact extent (Velex and 
Maatar, [19]) 

),()(),( 0 XtFtFXtF gear+=  with 

)(0 tF  : external load vector (input and output torques, mass 

unbalance, …) 

),( XtFgear  : embodies the inertial effects caused by unsteady 

rotations (associated with no-load transmission error) and the 
contributions of geometrical errors and tooth shape deviations 
(pitch errors, tooth modifications …) [19] 

),( XXFb
&  are the hydrodynamic forces produced by the

bearings which are opposing the motions of the shaft as 
described in section 2. 

If the inertia center of the shaft is different from its 
geometrical center, then mass imbalance forces are embedded 

in the external load vector )(0 tF . In the frame ),,( zts
rrr

, these 

forces read 
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for each node of the shaft. In this expression, M  is the 

mass of the shaft plus the pinion or gear and mie  represents the 

distance between the inertia and geometrical centers of the 
shaft. 

In the proposed formulation (11), the contributions of 
bearings appear as external forces to the system following the 
original approach of Abdul-Wahed [27] in his study of the non-
linear behavior of rigid shafts supported by hydrodynamic 
bearings. The system of equations (11) is non-linear because 

the hydrodynamic forces ),( XXFb
&  depend on the position

X  and on the velocity X& , and because of the contact 
conditions between the gear teeth. The resolution requires a 
complex procedure combining several iterative schemes and a 
time-step integration process as described in Section 3 -3, 
which will be referred to as non-linear analysis. The solution 
technique can be significantly simplified by assuming small 
displacements in the vicinity of the static positions, i.e., using 
the linear analysis which is probably no longer suited to the 
case of significant dynamic loads or mass imbalances. Both 
kinds of analyses, linear and non-linear, are detailed in the 
following section. 

2-2 Linear analysis 
Using a first order expansion in the vicinity of the static 

solution 0X  leads to the following dynamic bearing force 

vectors: 
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where 0bF  is obtained by (6), 0XXX −=∆ , XYK ][

and XYC][  represent the stiffness and damping matrices due to 

the lubricant film. 
For short bearings, and applying Gümbel’s conditions, 

the expressions of ][K  and ][C  are easier to obtain in the 

local frame  ),( qr
rr

 of the bearing. According to Frêne et al. 

[10], they read 
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where 0W  is the static load generated by the meshing and 

applied to the bearing. The coefficients ijA  and ijB  depend on 

0ε  only, which characterizes the steady-state position, such

that )]([][ 0εKK =  and )]([][ 0εCC = .

The matrices rqK ][  and rqC][  can be transferred 

from the local frame ),( qr
rr

 into the Cartesian frame ),( yx
rr

by  
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where 
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for bearings on the input (pinion) shaft and 
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for bearings on the output (gear) shaft , with the attitude angle 

0φ  obtained by (7). 

Finally, the matrices XYK ][  and XYC][  in Equation 

(13) are obtained by applying a second change of basis, from 
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for all bearings, where α  is the pressure angle.

Replacing the expression (13) of ),( XXFb
&  into the

equations of motion (11) along with the expressions of X∆ and

X&∆ , one obtains the linear system of equations in the frame
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The differential system (20) is solved by the implicit 
Newmark time-step integration scheme combined with a 
normal contact algorithm which verifies that all contact forces 
on the teeth are positive and no contact deflections occur 
outside the contact area [19].  
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 Table 1 – Iterative procedure 

2-3 Non-linear analysis 
Because of the assumption of small perturbations, the 

linear theory cannot account for large dynamic loads. Solving 
the complete non-linear problem requires the Reynolds 
equation in dynamic regime, the contact conditions on the teeth 
and the equations of motion to be dealt with simultaneously. In 

this case, the hydrodynamic forces ),( XXFb
&  are obtained by

numerical integration of the pressure field given by (5) as 
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with ]2/,2/[ LLz −∈  and ]2,0[ πθ ∈ .

As for the linear approach, Gümbel’s conditions are 

obtained by considering only the positive values of ),( zp θ .

The components of  ),( XXFb
&  in frames ),,( zyx
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where ][P  and ][Q  are the matrices in (16), (17) and (19) 

The non-linear equations (11) are solved by 
combining the Newmark time integration scheme with the 
Newton-Raphson incremental-iterative algorithm, and with an 
iterative process aimed at updating the dynamic characteristics 
of the meshing process (Table 1). 

3 – NUMERICAL RESULTS 

The gear, shaft and bearing data used in the numerical 
simulations are given in Tables 2 to 4. A unique modal damping 
factor of 0.03 has been used for all the numerical simulations 
and the time increment t∆  was set to 1/32th of the mesh
period. All simulations were performed over 256 mesh periods, 
i.e. 8192 time increments, which correspond approximately to 
10 pinion revolutions. 

3 – 1 Gear-bearing interactions 
A first simulation was performed with an input (pinion) 

speed ω=700 rad/s, an input torque C =200N.m and the mass

imbalance forces in (12) were computed with mie =0.5mm. The 

corresponding transient motion of the shaft center in bearing 1 
(input shaft) is plotted in Figure 4a. The motion, composed of 
10 loops corresponding to the 10 pinion revolutions, becomes 
stable after the transient oscillations on the first orbits have 
disappeared. The last calculated orbit is shown in Figure 4b 
which shows the 26 oscillations associated with the mesh 
period and demonstrates the interaction between the gears and 
the bearings. The norm of the hydrodynamic forces over the 
last orbit, i.e. the last 256 mesh periods, of the same bearing is 
plotted in Figure 5. The low-frequency excitation seems 
prevalent but, as in the previous example, the mesh frequency 
components appear in the time signal superimposed on the 
basic once-per-revolution period related to mass imbalance. 
Pinion Gear 

Number of teeth 26 157 

Face width (mm) 50 40 

Helix angle (°) 0 

Module (mm) 4 

Pressure angle α  (°) 20 

Dedundum coefficient 1. 1. 

Addendum coefficient 1.4 1.4 

Profile shift coefficient 0.16 -0.16 

Center distance (mm) 366 

Mass (kg) 2 74 

Table 2 - Gear data 

Pinion shaft Gear shaft 

Outer diameter (mm) 70 90 

Inner diameter (mm) 30 30 

Shaft length (mm) 
1L = 2L =160 

Young modulus (N/m2) 2.1.1011

Density (kg/m3) 7800 

Table 3  - Shaft data 

Bearings 1 and 2 
Pinion shaft 

Bearings 3 and 4 
(gear shaft) 

Diameter (mm) 70 90 

Length (mm) 14 18 

Radial clearance (µm) 150 110 

Table 4 - Bearing data 
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3 – 2 Comparison of the linear and the non-linear 
theorie s 

Dynamic tooth loading is characterized by considering the 

dynamic tooth load factor R  defined as the ratio of the 
maximum dynamic mesh force to the maximum static one. 

Figure 6 represents the evolutions of R versus the pinion speed 
calculated for various loads and using different solution 
techniques. The solutions obtained by the linear and non-linear 
methods are very close and are dominated by amplitude jumps 
and shocks at the major tooth critical frequency. It can also be 
observed that dynamic amplifications are reduced when the 
transmitted torque is increased. 

Considering bearing forces, the results on the pinion shaft 
(Figure 7) reveal that, here again, the linear and non-linear 
theories lead to very similar response curves with slightly 
larger differences as the transmitted load increases. The 
situation is different on the gear shaft, as illustrated in Figure 8, 
for which the non-linear and linear results deviate significantly 
as either speed or load increases. This discrepancy is apparently 
caused by the larger imbalance on the gear. This observation is 
confirmed by the bearing force plots in Figure 9, obtained for 

three imbalance amplitudes ( mie =0mm, mie =0.5mm and 

mie =1mm), which indicate that larger dynamic forces make 

non-linear modeling necessary. 
On the other hand, dynamic tooth loads appear as 

moderately sensitive to imbalance, as illustrated in Figure 10, 
and, in contrast to bearing forces, the linear and non-linear 
results remain very close whatever the imbalance amplitude. 
The final set of results in Figures 11 and 12, shows, for two 

imbalance amplitudes ( mie =0.5mm and mie =1mm), the 

trajectories of the pinion shaft in its bearings for a pinion speed 
ranging from 100 to 1200 rad/s. The previous conclusions 
about the role of dynamic force amplitudes on shaft-bearing 
interactions are confirmed and suggest that linear theories 
might not be suited for accurate vibration transfer analysis. 
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Figure 7 – Peak-to-peak of the hydrodynamic load bF  in 

bearing 1 for different input torques 
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Figure 8 – Peak-to-peak of the hydrodynamic load bF  in 

bearing 3 for different input torques 
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Figure 9 – Peak-to-peak of the hydrodynamic load bF  in 

bearing 3 for different values of the mass imbalance 
9

0

1

2

3

4

5

6

7

100 200 300 400 500 600 700 800 900 1000 1100 1200

Pinion speed

R

lin 0 nlin 0 lin 1 nlin 1 lin 2 nlin 2

 Figure 10 – Maximum dynamic-to-maximum static mesh 
load ratio for different amplitudes of the mass imbalance 

-0,96

-0,94

-0,92

-0,90

-0,88

-0,86

-0,84

-0,15 -0,10 -0,05 0,00 0,05 0,10X/C

Y
/C

linear non-linear

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,40 0,50 0,60 0,70 0,80X/C

Y
/C

linear non-linear

Figure 11 – Orbits of bearings 1 and 3 for values of the 
input speed from 100 rad/s (smallest orbit) up to 1200 

rad/s (largest orbit) obtained by the linear and non-linear 
theory - Mass imbalance corresponding to case 1 
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Figure 12 – Orbits of bearings 1 and 3 for values of the 
input speed from 100 rad/s (smallest orbit) up to 1200 

rad/s (largest orbit) obtained by the linear and non-linear 
theory - Mass imbalance corresponding to case 2 

CONCLUSION 
This paper presents a model of gear-shaft-bearing systems 

which accounts for various contact non-linearities and 
couplings. The state equations are solved by an original 
technique which combines a Newmark scheme, a Newton-
Raphson procedure for bearing non-linearities, and a unilateral 
contact algorithm which deals with the contact problem on gear 
teeth. The proposed theory is applied to a simplified F.E. model 
of a single-stage spur gear system with 2 shafts and 4 bearings. 

From the numerical examples, the following observations 
can be made: 

i) for accurate predictions of vibration transfer through the
bearings,  bearing non-linear behavior has to be taken
into account in the case of large dynamic forces,

ii) mesh excitations appear in the dynamic bearing
response although bearing force amplitudes are usually
dominated by imbalance,

iii) dynamic tooth load sensitivity to once-per-revolution
excitations seems very limited.
10
The present study is part of a research program on dynamic 
couplings in geared systems and is clearly approximate in 
nature since it is based on the short-bearing theory which limits 
the practical range of applications. Further work is under way 
to account for the influence of helical gears, different bearing 
technologies and flexible mounts. 
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