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Abstract

We introduce into classical mechanics the concept of non-discerned particles for particles that are

identical, non-interacting and prepared in the same way. The non-discerned particles correspond to

an action and a density which satisfy the statistical Hamilton-Jacobi equations and allow to explain

the Gibbs paradox in a simple manner. On the other hand, a discerned particle corresponds to a

particular action that satisfies the local Hamilton-Jacobi equations. We then study the convergence

of quantum mechanics to classical mechanics when ~ → 0 by considering the convergence for the

two cases. These results provide an argument for a renewed interpretation of quantum mechanics.
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I. INTRODUCTION

The indiscernability concept, which is very relevant in quantum and statistical physics, is

not well-defined in the literature. In particular, it is the origin of the Gibbs paradox. Indeed,

when one calculates the entropy of two mixed gases, the classical result for distinguishable

particles is double the expected result. If the particles are considered indistinguishable, the

correct result is recovered because of the indiscernability factor. This paradox identified by

Gibbs1 in 1889, was solved only by means of quantum mechanics 35 years later by using

the indiscernability postulate for quantum particles. Indeed it was Einstein who, in 1924,

introduced the indiscernability of perfect gas molecules at the same time as Bose-Einstein

statistics. In his homage to Einstein for the centenary of his birth in 1979, Alfred Kastler

pointed out that2: ” the distinction between distinguishable and indistinguishable entities

and the difference of statistical behavior between those two types of entities remains obscure.

Boltzmann treated those ’molecules’ as distinguishable entities, which has yielded the so-called

Boltzmann statistics. On the contrary, Planck implicitly dealt with the ”energy elements”

he introduced as indistinguishable particles, which led to a probabilistic counting of a macro-

scopic state different from the Boltzmann one. In 1909, Einstein rightly criticized this lack of

rigor.” But as noted by Henri Bacry3 p.129, ”the historical progression could have been very

different. Indeed, logically, one could postulate the non-discernability principle in order to

solve the Gibbs paradox. But this principle can be applied to all the principles of quantum me-

chanics or to those of classical mechanics.” This same observation has been made by a large

number of other authors. In 1965 Landé4 demonstrated that this indiscernability postulate

of classical particles is sufficient and necessary in order to explain why entropy vanished.

In 1977, Leinaas and Myrheim5 used it for the foundation of their identical classical and

quantum particles theory. Moreover, as noted by Greiner, in addition to the Gibbs paradox,

several cases where it is needed to consider indistinguishable particles in classical mechanics

and distinguishable particles in quantum mechanics can be found 6 p.134 : ”Hence, the

Gibbs factor 1
N !

is indeed the correct recipe for avoiding the Gibbs paradox. From now on

we will therefore always take into account the Gibbs correction factor for indistinguishable

states when we count the microstates. However, we want to emphasize that this factor is no

more than a recipe to avoid the contradictions of classical statistical mechanics. In the case

of distinguishable objects (e.g., atoms which are localized at certain grid points), the Gibbs
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factor must not be added. In classical theory the particles remain distinguishable. We will

meet this inconsistency more frequently in classical statistical mechanics.” But nowadays,

most of the textbooks contain definitions such as :”in classical mechanics, two particles in

a system are always distinguishable” and ”in quantum mechanics, two particles are always

indistinguishable”7 p.328-329, do not answer the concrete problems exposed by Greiner in

both classical statistics mechanics and quantum statistical mechanics. In this article we pro-

pose an accurate definition of both discernability and indiscernability in classical mechanics

and a way to avoid ambiguities and paradoxes. These definitions yield an understandable

interpretation both of the action in classical mechanics and the wave function in quantum

mechanics. We only consider the case of a single particle or a system of identical particles

without interactions and prepared in the same way. The case of identical particles with

interactions will be presented in a future paper8. In paragraph 2, we introduce the discerned

and non-discerned particles concepts in classical mechanics through the Hamilton-Jacobi

equations. In the following paragraphs, we study the convergence of quantum mechanics

to classical mechanics when ~ tends to 0 by considering two cases: the first corresponds

to the convergence to non-discerned classical particles, and the second corresponds to the

convergence to a classical discerned particle. Based on these convergences, we propose an

updated interpretation of quantum mechanics.

II. DISCERNED AND NON-DISCERNED PARTICLES IN CLASSICAL ME-

CHANICS

Let us consider in classical mechanics a system of identical particles without interactions.

Definition 1 - A classical particle is potentially discerned if its initial position xo and

its initial velocity v0 are known.

Let us note that there is an abuse of language when one talks about a classical particle. One

should rather speak of a particle that is studied in the framework of classical mechanics.

We now consider a particle within a beam of classical identical particles such as electronic,

atomic or molecular beams (CO2 or C60). For such particle, one only knows, initially, the

probability density ρ0 (x) and the velocity field v0(x) through the action S0(x); this action
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is known to within a constant from the equation v0(x) = ∇S0(x)
m

where m is the particle

mass. This yields the following definition :

Definition 2 - A classical particle, of which at initial time only the density of its initial

position ρ0 (x) and initial action S0(x), is referred to as potentially non-discerned.

This notion is intrinsic to a particle. It gives the initial conditions, which means the way

it has been prepared. Therefore, it is an indiscernability on the initial particle position. It

doesn’t depend on the observer but on the effective modeling scale of the phenomenon.

In this article, we are only interested in the case where the N particles are prepared

in the same way with the same initial density ρ0 (x) and the same initial action S0(x)

evolving in the same potential V (x) and which can have independent behaviors. It is the

case of classical identical particles without interactions and prepared in the same way,

such as C60 or neutral molecules. It is still the case for instance for electrons prepared

in the same way, and although they are able to interact with each other, they will have

independent behaviors because they are generated one by one in the system. The general case

of interacting identical particles which are not prepared in the same way will be presented

in a future article8.

Definition 3 - N indentical particles, prepared in the same way, with the same initial den-

sity ρ0 (x), the same initial action S0(x), and evolving in the same potential V (x) are called

non-discerned.

We have named those particles non-discerned and not indistinguishable because, if their

initial positions are known, their trajectories will be known as well. Nevertheless, when one

counts them, they will have the same properties as the indistinguishable ones. Thus, if the

initial density ρ0 (x) is given, and one randomly chooses N particles, the N! permutations are

strictly equivalent and do not correspond to the same configuration as for indistinguishable

particles. This means that if X is the coordinate space of a non-discerned particle, the true

configuration space of N non-discerned particles is not XN but rather XN/SN where SN is

the symmetric group.
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A. Non-discerned particles and statistical Hamilton-Jacobi equations

For non-discerned particles, we have the following theorem:

THEOREM 1 - The probability density ρ (x, t) and the action S (x,t) of classical particles

prepared in the same way, with initial density ρ0(x), with the same initial action S0(x), and

evolving in the same potential V (x), are solutions to the statistical Hamilton-Jacobi

equations:

∂S (x, t)

∂t
+

1

2m
(∇S(x, t))2 + V (x) = 0 ∀ (x, t) ∈ R

3 × R
+ (1)

S(x, 0) = S0(x) ∀x ∈ R
3. (2)

∂ρ (x, t)

∂t
+ div

(

ρ (x, t)
∇S (x, t)

m

)

= 0 ∀ (x, t) ∈ R
3 × R

+ (3)

ρ(x, 0) = ρ0(x) ∀x ∈ R
3. (4)

Let us recall that the velocity field is v(x, t) = ∇S(x,t)
m

and that the Hamilton-Jacobi equa-

tion (1) is not coupled to the continuity equation (3). The difference between discerned

particles and non-discerned particles thus explains why the ”recipes” proposed in some clas-

sical statistical mechanics books are useful. But as has been demonstrated above, it is not

a principle which can be added. The nature of the discernability of the particles depends

strongly on the experimental conditions determined by the modeling scale.

B. Discerned particles and local Hamilton-Jacobi equations

One can ask if it is possible to define an action for a potentially discerned particle in a

potential field V (x)? Such an action should depend only on the starting point x0, the initial

velocity v0 and the potential V (x).

THEOREM 2 - If ξ(t) is the classical trajectory in the field V (x) of a particle with the

initial position x0 and with initial velocity v0, then the function

Sξ (x, t) = m
dξ(t)

dt
· x+ g(t) (5)

5



where dg(t)
dt

= −1
2
m(dξ(t)

dt
)2 − V (ξ(t))−md2ξ(t)

dt2
· ξ(t), is called local action, and is solution

to local Hamilton-Jacobi equations.

∂Sξ (x, t)

∂t
|x=ξ(t) +

1

2m
(∇Sξ(x, t))2|x=ξ(t) + V (x)|x=ξ(t) = 0 ∀t ∈ R

+ (6)

dξ(t)

dt
=

∇Sξ(ξ(t), t)

m
∀t ∈ R

+ (7)

Sξ(x, 0) = mv0x et ξ(0) = x0. (8)

The local action satisfies the Hamilton-Jacobi equations only along the trajectory ξ(t). The

introduction of such an action linked to a trajectory appears as strange and devoid of

any effective interest other than a theoretical one by proposing a framework for defining

discerned particles. This action will take on a meaning in paragraph 4 when we show that

it corresponds to the convergence of coherent state when ~ tends to 0. We have defined two

kinds of actions, a global one S(x, t) and a local one Sξ (x, t). The global action S(x, t) is

a field defined for all x independently of the starting point x0. But the local one Sξ (x, t)

depends on the trajectory ξ(t) and the starting point x0. The least action principle is

valid only for the global action and not for the local one. This difference provides

an answer to the doubts emitted by some physicists bothered by the use of the least action

principle. In particular, Henri Poincaré who wrote in ”La science et l’hypothèse”:9

”The statement of the least action principle is somehow shocking for the mind. To move

from one point to another, a material molecule, removed from the action of any force, but

subject to mmoving on a surface, will move through the geodesic line, which means the

shortest path. This molecule seems to know the point one wishes to guide it to, to predict

the time it needs to reach it by choosing one path or another and to choose the most suitable

one. The statement thus presents the particle as a free and animated being. It is clear that

it would be better to replace it with a less shocking statement and where, as the philosophers

would say, the final causes would not seem to be taking the place of efficient causes.” This

paradox can be solved if one remarks that the least action principle can only be applied to

a global action and not to a local one because this former one depends on the starting or

final point.
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III. CONVERGENCE TO NON-DISCERNED PARTICLES WHEN ~ → 0.

Let us consider the wave function solution to the Schrödinger equation Ψ(x, t):

iℏ
∂Ψ

∂t
= −

ℏ
2

2m
△Ψ+ V (x)Ψ ∀(x, t) ∈ R

3 × R
+ (9)

Ψ(x, 0) = Ψ0(x) ∀x ∈ R
3. (10)

With the variable change Ψ(x, t) =
√

ρ~(x, t) exp(iS
~(x,t)
~

), the density ρ~(x, t) and the action

S~(x, t) are on the parameter ~. The Schrödinger equation may be divided into Madelung

equations10 (1926) which correspond to:

∂S~(x, t)

∂t
+

1

2m
(∇S~(x, t))2 + V (x)−

~
2

2m

△
√

ρ~(x, t)
√

ρ~(x, t)
= 0 ∀(x, t) ∈ R

3 × R
+ (11)

∂ρ~(x, t)

∂t
+∇ · (ρ~(x, t)

∇S~(x, t)

m
) = 0 ∀(x, t) ∈ R

3 × R
+ (12)

with initial conditions

ρ~(x, 0) = ρ~0(x) et S~(x, 0) = S~

0(x) ∀x ∈ R
3. (13)

In the two following paragraphs we study the convergence of the density ρ~(x, t) and the

action S~(x, t) in the Madelung equations when ~ tends to 0. It is subtle and remains a

difficult problem. For this reason, we only consider two typical cases, for which analytical

solutions exist. The difference between the two examples is the fact that the initial conditions

are not the same due to a different preparation of the particles and initial conditions for the

potential when ~ tends to 0.

Definition 4 - A quantum system is non-discerned semi-classically if it satisfies the

two following conditions

- its initial probability density ρ~0(x) and its initial action S~

0(x) converge respectively, to

regular functions ρ0(x) and S0(x) not depending on ~ when ~ → 0.

- its interaction with the potential field V (x) can be described classically. The simplest case

corresponds to particles in vacuum with only geometric constraints. For instance, Young’s

slits interference experiment, or a single particle in a box (V (x) = 0 or V (x) = +∞).

As previously described, this is the case of a set of non-interacting particles prepared in the

same way: free particles beam in a linear potential, electronic or C60 beam in the Young’s

slits diffraction, atomic beam in Stern and Gerlach experiment.
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A. Convergence to statistical Hamilton-Jacobi equations

If we consider the system with classical initial conditions

ρ~0(x) = ρ0(x) = (2πσ2
0)

− 3
2 e

− (x−ζ0)
2

2σ2
0 and S~

0(x) = S0(x) = mv0 · x. (14)

in a linear potential field V (x) = −K · x. The density ρ~(x, t) and the action S~(x, t), solu-

tions to the Madelung equations (11)(12)(13) with the initial condition (14), are respectively

equal to11 :

ρ~(x, t) = (2πσ2
~
(t))−

3
2 e

−

(

x−ζ0−v0t−K
t2

2m

)2

2σ2
~
(t) (15)

S~(x, t) = −
3~

2
tg−1(~t/2mσ2

0)−
1

2
mv2

0t+mv0 · x+K · xt

−
1

2
K · v0t

2 −
K2t3

6m
+

(

x− ζ0 − v0t−K t2

2m

)2

~
2t

8mσ2
0σ

2
~
(t)

(16)

with

σ~ (t) = σ0

(

1 +
(

~t/2mσ2
0

)2
)

1
2
. (17)

The constants σ0, v0, ζ0 andK are given and independent of ~; σ0 for example corresponds

to the hole width for preparing the particle beam.

When ~ → 0, σ~ (t) converges to σ0 and one gets the following theorem :

THEOREM 3 -When ~ → 0, the density ρ~(x, t) and the action S~(x, t) converge to

ρ(x, t) = (2πσ2
0)

− 3
2 e

−

(

x−ζ0−v0t−K t2

2m

)2

2σ2
0 (18)

and S(x, t) = −
1

2
mv2

0t+mv0 · x+K · xt−
1

2
K · v0t

2 −
K2t3

6m
. (19)

which are solutions to statistical Hamilton-Jacobi equations (1)(2)(3)(4).

Thus, when ~ → 0, for semi-classical non-discerned particles, the probability density

ρ~(x, t) of the wave function tends to the probability density of a statistical set of classical

particles ρ(x, t). We conjecture that this result in the case of a linear potential field can be

generalized to semi-classically discerned particles for other potentials.

CONJECTURE - For semi-classically non-discerned particles, when ~ → 0, for

all x and t bounded, the density ρ~(x, t) and the action S~(x, t), which are solutions to
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Madelung equations(11)(12)(13), converge to ρ(x, t) et S(x, t), which are solutions to statis-

tical Hamilton-Jacobi equations. (1)(2)(3)(4).

This conjecture is verified for the convergence of the density ρ~(x, t) with an explicit cal-

culation for the Stern-Gerlach experiment12, for the EPR one13, and by numerical simulation

for the Young’s slits experiment14,15.

B. De Broglie-Bohm quantum trajectories

Those last convergence examples show that for semi-classically non-discerned particles,

the Madelung equations converge to statistical Hamilton-Jacobi equations. The uncertainty

of the position of a quantum particle corresponds in that case to an uncertainty of the

position of a classical particle, only whose initial density has been defined. In classical

mechanics, this uncertainty is removed by giving the initial position of the par-

ticle. It would be illogical not to do the same in quantum mechanics.

We assume that for semi-classically non-discerned particles, a quantum particle is not

well described by its wave function. It is therefore necessary to add its initial position

and it becomes natural to introduce the so-called de Broglie-Bohm trajectories. In this

interpretation, its velocity is given by16,17:

v~(x, t) =
1

m
∇S~(x, t) (20)

or by the alternative form18–21:

v~(x, t) =
1

m
∇S~(x, t) +

~

2m
∇ ln ρ~(x, t)× k, (21)

where k is the unit vector parallel to the particle spin vector.

This spin current ~

2m
∇ρ~(x, t)×k corresponds to Gordon’s current when one changes from

the Dirac equation to the Pauli equation and subsequently to the Schrodinger equation20.

This current is very important because it allows us to return to quantum mechanics on small

scales, in particular in relation to Compton’s wavelength, as in the Foldy and Wouthuysen

transformation22.

We have the following classical property: if a system of particles with initial density ρ0(x)

has de Broglie-Bohm-like trajectories defined by the velocity field v~(x, t) from equations
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(20) or (21), then the probability density of those particles at time t is equal to ρ~(x, t), the

square of the wave function magnitude. In the case of semi-classical non-discerned particles,

this shows that the Broglie-Bohm interpretation reproduces the predictions of standard

quantum mechanics.

In one dimension, for the initial particle position x0 = ζ0 + η0 with initial velocity v0,

in a linear potential V (x) = −Kx and with velocity (20), one recovers the Broglie-Bohm

trajectory : ξ~(t) = ζ0 + v0t − K t2

2m
+ η0

σ~(t)
σ0

which converges to the classical trajectory

ξ(t) = ζ0 + η0 + v0t−K t2

2m
when ~ → 0.

In three dimensions, for a particle initial position such as x0 = ζ0 + η0 with an initial

velocity v0, in a linear potential V (x) = −Kx3 and with the velocity (21), we have the

Bohm-Broglie trajectory14 : ξ~0,1(t) = ζ0,1 + v0,1t +
√

η20,1 + η20,2
σ~(t)
σ0

cosϕ(t), ξ~2(t) = ζ0,2 +

v0,2t+
√

η20,1 + η20,2
σ~(t)
σ0

sinϕ(t), ξ~3(t) = ζ0,3+v0,3t−K
t2

2m
+η0,3

σ~(t)
σ0

avec ϕ(t) = arctan(
η0,1
η0,2

)−

arctan( ~t
2mσ2

0
), which converges to the classical trajectory ξ0,1(t) = ζ0,1+η0,1+ v0,1t , ξ0,2(t) =

ζ0,2 + η0,2 + v0,2t, ξ0,3(t) = ζ0,3 + η0,3 + v0,3t−K t2

2m
when ~ → 0.

Generally, when ~ → 0, one deduces from conjecture that v~(x, t) given from equations

(20) or (21) converge to the classical velocity v(x, t) = 1
m
∇S(x, t). This leads to the fact

that the Broglie-Bohm trajectories converge to the classical ones. We verify this conjecture

with an explicit calculation for the Stern-Gerlach experiment12 and by numerical simulation

for the Young’s slits experiment14,15.

IV. CONVERGENCE TO DISCERNED PARTICLES WHEN ~ → 0.

Definition 5 - A quantum system is discerned semi-classically if it satisfies the two

conditions

- its initial probability density ρ~0(x) and its initial action S~

0(x) converge respectively,

when ~ → 0, to a Dirac distribution and an action S0(x) not depending on ~.

- its interaction with the potential field V (x) can be described classically.

This situation occurs when the wave packet corresponds to a quasi-classical coherent state

which were introduced in 1926 by Schrödinger23, and is of great importance in quantum op-

tics since Glauber24(1965). They have three properties: their gravity center follows a classical

trajectory; they verify a Heisenberg equality and not an inequality; the wave packet shape
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doesn’t change during motion (or at least it recovers its shape after a cycle). It still oc-

curs when the wave packet corresponds to the periodic trajectories of a non-dispersive wave

packet, which are eigenvectors of the Floquet operator. For the hydrogen atom, the exis-

tence of a localized wave packet on the classical trajectory (an old dream of Schrödinger’s)

and which was predicted in 1994 by Bialynicki-Birula, Kalinski, Eberly, Buchleitner et De-

lande25–27, has been discovered recently by Maeda and Gallagher28 on Rydberg atoms.

A. Convergence of coherent states to the solutions to the local Hamilton-Jacobi

equations

For the two dimensional harmonic oscillator, V (x) = 1
2
mω2x2, coherent states are built11

from the initial wave function Ψ0(x) which corresponds to the density and initial action:

ρ~0(x) = (2πσ2
~
)−1e

− (x−x0)
2

2σ2
~ and S0(x) = S~

0(x) = mv0 · x (22)

with σ~ =
√

~

2mω
. Here, v0 and x0 are still constant vectors and independent from ~, but

σ~ will tend to 0 as ~.

For this harmonic oscillator, the density ρ~(x, t) and the action S~(x, t),solutions to

Madelung equations (11)(12)(13) with initial conditions (22), are equal to 11:

ρ~(x, t) =
(

2πσ2
~

)−1
e
− (x−ξ(t))2

2σ2
~ and S~(x, t) = +m

dξ(t)

dt
· x + g(t)− ~ωt (23)

where ξ(t) is the trajectory of a classical particle evolving in the potential V (x) = 1
2
mω2x2,

with x0 and v0 as initial position and velocity where g(t) =
∫ t

0
(−1

2
m(dξ(s)

ds
)2+ 1

2
mω2ξ(s)2)ds.

Because we have 2V (ξ(s)) = md2ξ(s)
ds2

· ξ(s), it yields the following theorem :

THEOREM 4 - When ~ → 0, for all x and t bounded, the density ρ~(x, t) and the action

S~(x, t) converge respectively to ρξ(x, t) = δ(x− ξ(t)) and Sξ(x, t) = mdξ(t)
dt

· v0 + g(t) where

Sξ(x, t) and the trajectory ξ(t) are solutions to the local Hamilton-Jacobi equations (6)(7)(8).

Therefore, the kinematic of the wave packet converges to the single harmonic oscillator

described by ξ(t). Because this classical particle is completely defined by its initial conditions

x0 and v0, it can be considered as a discerned particle.

When ~ → 0, for all x and t bounded, the ”quantum potential” Q~(x, t) = − ~2

2m

△√
ρ√
ρ

=

~ω− 1
2
mω2(x−ξ(t))2 tends to Q(x, t) = −1

2
mω2(x−ξ(t))2. It is then zero on the trajectory

(x = ξ(t)).
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More generally, let us consider semi-classically non-discerned particles where ρ~(x, t) con-

verge to Dirac distribution ρξ(x, t) = δ(x−ξ(t)). Mathematically, one needs, as proposed by

Kazandjian29, to study the convergence of Madelung equations in the least square approach.

This yields:

∫

ρ~(x, t)[
∂S~(x, t)

∂t
+

1

2m
(∇S~(x, t))2 + V (x) +Q~(x, t)]2dx = 0. (24)

For ~ 6= 0, the equation (24) yields the Madelung equations (11); in the limit ~ → 0, but,

ρ~(x, t) tends to 0 for all x 6= ξ(t), and converges to a Dirac distribution centered on ξ(t);

In this limit, the equation (24) can be written as

∂S(ξ(t), t)

∂t
+

1

2m
(∇S(ξ(t), t))2 + V (ξ(t)) +Q(ξ(t), t) = 0.

And because Q(ξ(t), t) = 0, this yields

∂S(ξ(t), t)

∂t
+

1

2m
(∇S(ξ(t), t))2 + V (ξ(t)) = 0 (25)

which corresponds to the local Hamilton-Jacobi equations (6). Thus, in the general case

of semi-classically non-discerned particles, the wave function kinematics converges to the

motion of a discerned classical particle ξ(t) which is completely defined by its initial position

x0 and its initial velocity v0.

It is then possible to consider, unlike in the semi-classically non-discerned case, that the

wave function can be seen as a single quantum particle. The semi-classically discerned case

is in agreement with the Copenhagen interpretation of the wave function, which contains all

the information on the particle.

B. Interpretation for the semi-classically discerned particles

In the semi-classically discerned case, the Broglie-Bohm interpretation is not relevant

mathematically, unlike the semi-classically non-discerned case. Other assumptions are pos-

sible. A natural interpretation is the one proposed by Schrödinger 23 in 1926 for the coherent

states of the harmonic oscillator. In the Schrödinger interpretation, the quantum par-

ticle in the semi-classically discerned case is a spatially extended particle, represented by

a wave packet whose center follows the classical trajectory. For the coherent states of the
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harmonic oscillator in two dimensions, the velocity field (21) at time t and at point x is then

equal to :

v~(x, t) = v(t) + Ω× (x− ξ(t)) (26)

with Ω = ωk. They behave as extended particles which have the same evolution as spinning

particles in two dimensions. But this cannot be generalized easily in three dimensions. It

seems that it is not possible to consider in three dimensions the particle as a solid in motion.

This is the main difficulty in the Schrödinger interpretation: does the particle exist within

the wave packet? We think that this reality can only be defined on the scale where the

Schrödinger equation is the effective equation. Some solutions are nevertheless possible on

smaller scales30,31, where the quantum particle is not represented by a point but is a sort of

elastic string whose gravity center follows the classical trajectory ξ(t).

Another possible interpretation for the semi-classical discerned particles is the Bohr model

of the atom (1913) found again by de Broglie33 in 1924 with conditions of resonance between

the wave and the particle. In the Bohr-deBroglie interpretation, the quantum particle is a

point (in relation to the wave packet size) which follows a trajectory in resonance with its

internal vibration in the wave.

The principle of an interpretation that depends on the particle preparation conditions is

not really new. It has already been figured out by Einstein and de Broglie. For Louis de

Broglie, its real interpretation was the double solution theory introduced in 1927 in which

the pilot-wave is just a low-level product: ”I introduced as a ’double solution theory’ the

idea that it was necessary to distinguish two different solutions but both linked to the wave

equation, one that I called wave u which was a real physical wave but not normalizable having

a local anomaly defining the particle and represented by a singularity, the other one as the

Schrödinger Ψ of wave, which is normalizable without singularities and being a probability

representation.”

We consider as interesting L. de Broglie’s idea of the existence of a statistical wave, Ψ

and of a soliton wave u; however, it is not a double solution which appears here but a double

interpretation of the wave function according to the initial conditions.

Einstein’s point of view is well summed up in one of his final papers (1953), ”Elementary

reflections concerning the foundation of quantum mechanics” in homage to Max Born:
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”The fact that the Schrödinger equation associated to the Born interpretation does not

lead to a description of the ”real states” of an individual system, naturally incites one to

find a theory that is not subjected to this limitation. Up to now, the two attempts have in

common that they conserve the Schrödinger equation and abandon the Born interpretation.

The first one, which marks a de Broglie’s return, was continued by Bohm.... The second one,

which aimed to get a ”real description” of an individual system and which might be based on

the Schrödinger equation, is very late and is from Schrödinger himself. The general idea is

briefly the following : the function ψ represents in itself the reality and it is not necessary to

add Born’s statistical interpretation.[...] From previous considerations, it results that the only

acceptable interpretation of the Schrödinger equation is the statistical interpretation given

by Born. Nevertheless, this interpretation doesn’t give the ’real description’ of an individual

system, it just gives statistical statements of a set of systems.”

Thus, it is because de Broglie and Schrödinger keep the Schrödinger equation that Ein-

stein, who considers it as fundamentally statistical, refused each of their interpretations.

Finally, there exist situations where the Broglie-Bohm interpretation of the

Schrödinger wave function is probably wrong. It is in particular the case of state

transitions for a hydrogen atom. Indeed, since Delmelt’experiment32 in 1986, the physical

reality of individuals quantum jumps has been fully validated. The semi-classical approxima-

tion, where the interaction with the potential field can be described classically, is no longer

possible and one must use electromagnetic field quantization since the exchanges occur pho-

ton by photon. Einstein thought that it is not possible to find an individual deterministic

behavior from the Schrödinger equation. It is the same for Heisenberg who developed matrix

mechanics and the second quantization from this example.

This doesn’t mean that one has to renounce to determinism and realism, but rather

that Schrödinger’s statistical wave function does not permit, in that case, to discover an

individual behavior.

V. CONCLUSION

The introduction into classical mechanics of the concepts of non-discerned particles

and discerned particles respectively verifying the statistical Hamilton-Jacobi equa-

tions and the local Hamilton-Jacobi equations gives a simple answer to some paradoxes
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in classical statistical mechanics and allows to have a better understanding of the least action

principle.

When one studies the convergence of the Madelung equations when ~ → 0, we obtain the

following results:

- In the semi-classically non-discerned case the quantum particles converge to

classical non-discerned ones, verifying the statistical Hamilton-Jacobi equations. The wave

function is not sufficient to represent the quantum particles. One needs to add it the initial

positions, as for classical particles, in order to describe them completely. Thus, the Broglie-

Bohm interpretation is relevant.

- In the semi-classically discerned case the quantum particles converge to classical

discerned ones, verifying the local Hamilton-Jacobi equations. The Broglie-Bohm in-

terpretation is not imperative because the wave function is sufficient to represent the

particles as in the Copenhagen interpretation. However, one can make some realistic and

deterministic assumptions such as the Schrödinger and the Bohr-deBroglie interpre-

tations.

- In the case where the semi-classical approximation is no longer valid , as in

the transition states in the hydrogen atom, the two interpretations are wrong as claimed by

Heisenberg. Consequently, Born’s statistical interpretation is the only possible

interpretation of the Schrödinger equation. This doesn’t mean that it is necessary to

give up to determinism and realism, but rather that the Schrödinger wave function doesn’t

allow, in that case, to reveal the individual behavior of a particle. An individual interpreta-

tion needs to use creation and annhilation operators of quantum Field Theory.

Therefore, as Einstein said, the situation is much more complex than what de Broglie

and Bohm thought.
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