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Hadronic multiplicities

Introduction

High-p t jets can be initiated either in a short-distance interaction among partons in high energy collisions such as pp, p p, in the DIS e ± p, the e + e -annihilation and via electroweak (or new physics) processes. One well-known example is given by the decay chain of the top quark t → H + b, where the b quark should start a jet. Thus the ability to identify jets from the fragmentation and hadronization of b quarks becomes very important for such Higgs boson searches. Needless to say, the relevance of b-tagging extends over many other channels in the quest for new physics at hadron colliders. The experimental identification of b-jets relies upon several of their properties in order to reject background, e.g. jets initiated by lighter quarks or gluons. First, the fragmentation is hard and the leading b-hadron retains a large part of the original b quark momentum. In addition, the weak decay products may have a large transverse momentum with respect to the jet axis therefore allowing separation from the rest of the cascade particles. Lastly, the relatively long lifetime of b-hadrons leading to displaced vertices which can be identified by using well-known impact parameter techniques [START_REF] Aad | Expected Performance of the ATLAS Experiment -Detector, Trigger and Physics[END_REF]. Still, a fraction of light jets could be mis-identified as b-jets, especially at large transverse momentum of the jet. Now, let us point out that an essential difference between heavy and light quark jets results from kinematics constraints: the gluon radiation off a quark of mass m and energy E ≫ m is suppressed inside a forward cone with an opening angle Θ m = m/E, the so-called dead cone phenomenon [START_REF] Dokshitzer | On specific QCD properties of heavy quark fragmentation ('dead cone')[END_REF][START_REF] Dokshitzer | Multiplicity difference between heavy and light quark jets revisited[END_REF].

In this work, we compute the average (charged) multiplicity of a jet initiated by a heavy quark. For this purpose, we extend the modified leading logarithmic approximation (MLLA) evolution equations [START_REF] Dokshitzer | Gif-sur-Yvette[END_REF] to the case where the jet is initiated by a heavy (charm, bottom) quark. The average multiplicity of light quarks jets produced in high energy collisions can be written as N(Y ) ∝ exp Y γ(y)dy (Y and y are defined in section 2), where γ ≃ γ 0 + ∆γ is the anomalous dimension that accounts for soft and collinear gluons in the double logarithmic approximation (DLA) γ 0 ≃ √ α s , in addition to hard collinear gluons ∆γ ≃ α s or single logarithms (SLs), which better account for energy conservation and the running of the coupling constant α s [4].

In the present work we evaluate the mean multiplicity as a function of the mass of the heavy quark. Actually, the mass depends on the scale Q of the hard process in which the heavy quark participates. In the MS renormalization scheme, for example, the running mass becomes a function of the strong coupling constant α s (Q), and the pole mass defined through the renormalized heavy quark propagator (for a review see [START_REF] Kluth | Tests of quantum chromo dynamics at e+ e-colliders[END_REF] and references therein). In order to assess the schemedependence of our calculations beyond leading-order we have considered a broad range of possible values for the charm and bottom masses: m c = 1 -1.5 GeV and m b = 3 -5 GeV, respectively [START_REF] Kluth | Tests of quantum chromo dynamics at e+ e-colliders[END_REF]. Lastly, we will see that under the assumption of local parton hadron duality (LPHD) as hadronization model [START_REF] Dokshitzer | Specific features of heavy quark production. LPHD approach to heavy particle spectra[END_REF][START_REF] Yakov | Similarity of Parton and Hadron Spectra in QCD Jets[END_REF], light-and heavy-quark initiated jets show significant differences regarding particle multiplicities as a consequence of soft gluon suppression inside the dead cone. Such differences could be exploited by using auxiliary criteria complementing b-tagging procedures to be applied to jets with very large transverse momentum, as advocated in this study.

Kinematics and variables

As known from jet calculus for light quarks, the evolution time parameter determining the structure of the parton branching of the primary gluon is given by (for a review see [START_REF] Dokshitzer | Gif-sur-Yvette[END_REF] and references therein)

y = ln k ⊥ Q 0 , k ⊥ = zQ ≥ Q 0 , Q = EΘ ≥ Q 0 , (2.1) 
where k ⊥ is the transverse momentum of the gluon emitted off the light quark, Q is the virtuality of the jet (or jet hardness), E the energy of the leading parton, Q 0 /E ≤ Θ ≤ Θ 0 is the emission angle of the gluon (Θ ≪ 1), Θ 0 the total half opening angle of the jet being fixed by experimental requirements, and Q 0 is the collinear cut-off parameter. Let us define in this context the variable

Y as y = Y + ln z, Y = ln Q Q 0 .
The appearance of this scale is a consequence of angular ordering (AO) of successive parton branchings in QCD cascades [START_REF] Dokshitzer | Gif-sur-Yvette[END_REF][START_REF] Yakov | Similarity of Parton and Hadron Spectra in QCD Jets[END_REF]. An important difference in the structure of light (ℓ ≡ q = u, d, s) versus heavy quark (h ≡ Q = c, b) jets stems from the dynamical restriction on the phase space of primary gluon radiation in the heavy quark case, where the gluon radiation off an energetic quark Q with mass m and energy E ≫ m is suppressed inside the forward cone with an opening angle Θ m = m/E, the above-mentioned dead cone phenomenon [START_REF] Dokshitzer | Multiplicity difference between heavy and light quark jets revisited[END_REF].

The corresponding evolution time parameter for a jet initiated by a heavy quark with energy E and mass m appears in a natural way and reads ỹ

= ln κ ⊥ Q 0 , κ 2 ⊥ = k 2 ⊥ + z 2 m 2 [3]
, which for collinear emissions Θ ≪ 1 can also be rewritten in the form

κ ⊥ = z Q, Q = E Θ 2 + Θ 2 m 1 2 , (2.2) 
with Θ ≥ Θ m (see Fig. 1). An additional comment is in order concerning the AO for gluons emitted off the heavy quark. In (2.2), Θ is the emission angle of the primary gluon g being emitted off the heavy quark. Now let Θ ′ be the emission angle of a second gluon g ′ relative to the primary gluon with energy ω ′ ≪ ω and Θ ′′ the emission angle relative to the heavy quark; in this case the incoherence condition Θ ′2 ≤ (Θ 2 + Θ 2 m ) together with Θ ′′ > Θ m (the emission angle of the second gluon should still be larger than the dead cone) naturally leads (2.2) to become the proper evolution parameter for the gluon subjet (for more details see [START_REF] Dokshitzer | Multiplicity difference between heavy and light quark jets revisited[END_REF]). For Θ m = 0, the standard AO (Θ ′ ≤ Θ) is recovered. Therefore, for a massless quark, the virtuality of the jet simply reduces to Q = EΘ as given above. The same quantity κ ⊥ determines the scale of the running coupling α s in the gluon emission off the heavy quark. It can be related to the anomalous dimension of the process by

γ 2 0 (κ ⊥ ) = 2N c α s (κ ⊥ ) π = 1 β 0 ( ỹ + λ ) , β 0 (n f ) = 1 4N c 11 3 N c - 2 3 n f , λ = ln Q 0 Λ QCD , (2.3) 
where n f is the number of active flavours and N c the number of colours. The variation of the effective coupling α s as n f → n f + 1 over the heavy quarks threshold has been suggested by next- to-leading (NLO) calculations in the MS scheme [START_REF] Dokshitzer | Specific features of heavy quark production. LPHD approach to heavy particle spectra[END_REF] and is sub-leading in this frame. In this context β 0 (n f ) will be evaluated at the total number of quarks we consider in our application. The four scales of the process are related as follows,

Q ≫ m ≫ Q 0 ∼ Λ QCD ,
where Q 0 ∼ Λ QCD corresponds to the limiting spectrum approximation [START_REF] Dokshitzer | Gif-sur-Yvette[END_REF]. Finally, the dead cone phenomenon imposes the following bounds of integration to the perturbative regime

m Q ≤ z ≤ 1 - m Q , m 2 ≤ Q2 ≤ E 2 (Θ 2 0 + Θ 2 m ), (2.4) 
which now account for the phase-space of the heavy quark jet. The last inequality states that the minimal transverse momentum of the jet Q = EΘ m = m is given by the mass of the heavy quark, which enters the game as the natural cut-off parameter of the perturbative approach.

Definitions and notation

The multiplicity distribution is defined by the formula

P n = σ n ∑ ∞ n=0 σ n = σ n σ inel , ∞ ∑ n=0 P n = 1 (3.1)
where σ n denotes the cross section of an n-particle yield process, σ inel is the inelastic cross-section, and the sum runs over all possible values of n.

It is often more convenient to represent multiplicity distributions by their moments. All such sets can be obtained from the generating functional Z(y, u) [START_REF] Dokshitzer | Gif-sur-Yvette[END_REF] defined by

Z(y, u) = ∞ ∑ n=0 P n (y) (1 + u) n
at the energy scale y. For fixed y, we can drop this variable from the azimuthally averaged generating functional Z(u). The average multiplicity is defined by the formula,

n ≡ N = ∞ ∑ n=0 P n n, P n = 1 n! d n Z(u) du n u=-1 . (3.2)
We will compute the average multiplicity (3.2) of partons in jets to be denoted hereafter as N A , with A = Q, q, g, corresponding to a heavy, light quark or gluon initiated jet respectively. Once arrived at his point, let us make an important distinction between two different particle sources populating heavy-quark initiated jets. On the one hand, parton cascade from gluon emission yields the QCD component of the total jet multiplicity (the main object of our present study), excluding weak decay products of the leading primary quark at the final stage of hadronization. On the other hand, the latter products coming from the leading flavoured hadron should be taken into account in the measured multiplicities of jets. We shall denote the average charged hadron multiplicity from the latter source as N dc A . Hence the total charged average multiplicity,

N total A , reads N total A = N ch A + N dc A ; A = q, Q. (3.3)
As a consequence of the LPHD, N ch A = K ch × N A [START_REF] Dokshitzer | Specific features of heavy quark production. LPHD approach to heavy particle spectra[END_REF][START_REF] Yakov | Similarity of Parton and Hadron Spectra in QCD Jets[END_REF], where the free parameter K ch normalizes the average multiplicity of partons to the average multiplicity of charged hadrons. For charm and bottom quarks, we will respectively set the values N dc c = 2.60 ± 0.15 and N dc b = 5.55 ± 0.09 [START_REF] Dokshitzer | Multiplicity difference between heavy and light quark jets revisited[END_REF][START_REF] Akers | A Measurement of charged particle multiplicity in Z0 → c anti-c and Z0 → b anti-b events[END_REF], while in light quark jets one expects N dc q = 1.2 ± 0.1 [START_REF]Combined preliminary data on Z parameters from the LEP experiments and constraints on the Standard Model[END_REF]. In this work, we advocate the use of such a difference between average jet multiplicities as a signature to distinguish a posteriori heavy from light quark jets, particularly in b-tagging techniques applied to the analysis of many interesting decay channels.

QCD evolution equations

The splitting functions P(z, α s ) = α s P (0) (z) + α 2 s P (1) (z) + . . .

where P (0) (z) and P (1) (z) are respectively the LO and NLO splitting functions, can be associated to each vertex of the process in the partonic shower. P(z, α s ) determines the decay probability of a parent parton (quark, anti-quark, gluon) into two offspring partons of energy fractions z and 1z.

In this work, we are rather concerned with calculations which only involve the LO P (0) (z) splitting functions in the evolution equations [START_REF] Dokshitzer | Gif-sur-Yvette[END_REF]. Let us start by considering the the splitting process, Q → Qg, Q being a heavy quark and g the emitted gluon which is displayed in Fig. 1; the corresponding LO splitting function reads [START_REF] Baier | Quasireal electron method in high-energy quantum electrodynamics[END_REF][START_REF] Krauss | Resummed jet rates for e+ e-annihilation into massive quarks[END_REF] 

Θ 0 E Q=(c, b) g Θ D-C 1 (1-z) z h m E Θ m =
P (0) Qg (z) = C F N c 1 z -1 + z 2 - z(1 -z)m 2 k 2 ⊥ + z 2 m 2 , P (0) QQ (z) = P (0) Qg (1 -z) (4.2)
where k ⊥ ≈ min(zEΘ, (1z)EΘ) is the transverse momentum of the soft gluon being emitted off the heavy quark. The previous formula (4.2) has the following physical interpretation, for k ⊥ ≪ z 2 m 2 , the corresponding limit reads P Qg (z) → C F 2N c z and that is why, at leading logarithmic approximation, the forward emission of soft and collinear gluons off the heavy quark becomes suppressed once Θ ≪ Θ m , while the emission of hard and collinear gluons dominates in this region.

For the massless process g → gg, we adopt the standard three gluon vertex kernel [4, 13]

P (0) gg (z) = 1 z -(1 -z)[2 -z(1 -z)], (4.3) 
and finally for g → Q Q, we take [START_REF] Baier | Quasireal electron method in high-energy quantum electrodynamics[END_REF][START_REF] Krauss | Resummed jet rates for e+ e-annihilation into massive quarks[END_REF]]

P (0) gQ (z) = 1 4N c 1 -2z(1 -z) + 2z(1 -z)m 2 k 2 ⊥ + m 2 , ( 4.4) 
which needs to be resummed together with the three gluon vertex contribution. However, as a first approach to this problem, we neglect the production of heavy quark pairs inside gluon and quark jets, making use of [START_REF] Dokshitzer | Gif-sur-Yvette[END_REF][START_REF] Dremin | Hadron multiplicities[END_REF]]

P (0) gq (z) = P (0) gQ (z)| m=0 = 1 4N c [1 -2z(1 -z)] . (4.5)
Including mass effects in the evolution equations also requires the replacement of the massless quark propagator 1/k 2 ⊥ by the massive quark propagator 1/(k 2 ⊥ + z 2 m 2 ) [START_REF] Krauss | Resummed jet rates for e+ e-annihilation into massive quarks[END_REF], such that the phase space for soft and collinear gluon emissions off the heavy quark can be written in the form [START_REF] Krauss | Resummed jet rates for e+ e-annihilation into massive quarks[END_REF] 

d 2 σ Qg ≃ γ 2 0 dk 2 ⊥ k 2 ⊥ + z 2 m 2 dzP (0) Qg (z), (4.6) 
where

P (0)
Qg (z) is given by (4.2). Working out the structure of (4.2) and setting k ⊥ ≈ zEΘ one has

P (0) Qg (z) = C F N c 1 z Θ 2 Θ 2 + Θ 2 m -1 + z 2 + Θ 2 m Θ 2 + Θ 2 m . (4.7)
The system of QCD evolution equations for the heavy quark initiated jet is found to read [START_REF] Perez Ramos | Heavy quark flavour dependence of multiparticle production in QCD jets[END_REF] 

N c C F dN Q d Ỹ =ε 1 ( Ỹ , L m ) Ỹev Ỹm d ỹγ 2 0 ( ỹ)N g ( ỹ) -ε 2 ( Ỹ , L m )γ 2 0 ( Ỹ )N g ( Ỹ ), (4.8 
)

dN g d Ỹ = Ỹev Ỹm d ỹγ 2 0 ( ỹ)N g ( ỹ) -A( Ỹ , L m )γ 2 0 ( Ỹ )N g ( Ỹ ), (4.9) 
where

A( Ỹ , L m ) = a(n f ) -2 + n f 2N c 1 -2 C F N c e -Ỹ +L m + 1 2 1 + n f N c 1 -2 C F N c e -2 Ỹ +2L m , (4.10) with a(n f ) = 1 4N c 11 3 N c + 2 3 n f 1 -2 C F N c , Ỹm ≡ L m = ln m Q 0 , (4.11) 
and

ε 1 ( Ỹ , L m ) = 1 -e -2 Ỹ +2L m , ε 2 ( Ỹ , L m ) = 3 4 - 3 2 e -Ỹ +L m -e -2 Ỹ +2L m . (4.12)
There are the following kinds of power suppressed corrections to the heavy quark multiplicity: the leading integral term of (4.8) is O( m 2 Q2 ) suppressed, while subleading MLLA corrections appear in the standard form O( √ α s ) like in the massless case, finally

O( m Q √ α s ) and O( m 2 Q2
√ α s ), which are new in this context. Massless results can be recovered after setting m/ Q → Q 0 /Q in (4.10) and (4.12). For massive particles however, these terms are somewhat larger and can not be neglected in our approach unless they are evaluated for much higher energies than at present colliders. On top of that, the corresponding massless equations in the high energy limit are obtained from (4.8) and (4.9) simply by setting ỹ

→ y, Ỹ → Y , Y ev → Y , Y m → 0, ε 1 → 1, ε 2 → ε2 = 3 4 - 3 2 e -Y + O e -2Y , A → Ã = a(n f ) -2 + n f 2N c 1 -2 C F N c e -Y + O e -2Y ,
and are written in the standard form [START_REF] Dremin | Hadron multiplicities[END_REF] 

N c C F dN q dY = Y 0 dyγ 2 0 N g (y) -ε2 γ 2 0 N g (Y ), dN g dY = Y 0 dyγ 2 0 N g (y) -Ãγ 2 0 N g (Y ), (4.13) 
with the initial condition N g,q (Y = 0) = 1 at threshold. Notice that (4.8) and (4.9) are valid only for m ≫ Q 0 and therefore m → 0 does not reproduce the correct limit, which has to be smooth as given by the massless equations (4.13). Since heavy quarks are less sensitive to recoil effects, the subtraction terms ∝ e -Ỹ +L m and ∝ e -2 Ỹ +2L m in ε 2 ( ˜Y, L m ) diminish the role of energy conservation as compared to massless quark initiated jets. As a consistency check, upon integration over Ỹ of the DLA term in Eq.(4.8), the phase space structure of the radiated quanta reads

N Q (ln Q) ≈ 1 + C F N c Θ 2 0 0 Θ 2 dΘ 2 (Θ 2 + Θ 2 m ) 2 1-m/ Q m/ Q dz z γ 2 0 N g (ln z Q). (4.14)
Notice that the lower bound over Θ 2 in (4.14) ( Ỹ in (4.8)) can be taken down to "0" (Y m = L m in (4.8)) because the heavy quark mass plays the role of collinear cut-off parameter.

Phenomenological consequences

Working out the structure of (4.8) and (4.9), we obtain the rough difference between the light and heavy quark jet multiplicities, which yields,

N q -N Q E→∞ ≈ 1 -exp -2 L m β 0 N q , N q ∝ exp 2 Ỹ β 0 . ( 5.1) 
It can be seen that (5.1) is exponentially increasing because it is dominated by the leading DLA energy dependence of N q . According to (5.1), the gap arising from the dead cone effect should be bigger for the b than for the c quark at the primary state bremsstrahlung radiation off the heavy quark jet. The approximated solution of the evolution equations leads to the rough behaviour of N q -N Q in (5.1), which is not exact in its present form. In Fig. 2 (left), we display the numerical solution of the evolution equations (4.13) for N q and (4.8) for N Q corresponding to the heavy quark mass intervals m c = 1 -1.5 GeV, m b = 3 -5 GeV. Let us remark that the gap arising between the light quark jet multiplicity and the heavy quark jet multiplicity follows the trends given by (5.1) asymptotically with E → ∞. Finally, as expected for massless quarks L m = 0, the difference N q -N Q vanishes. In this study we advocate the role of mean multiplicities of jets as a potentially useful signature for b-tagging and new associated physics [START_REF] Sanchis-Lozano | Prospects of searching for (un) particles from Hidden Sectors using rapidity correlations in multiparticle production at the LHC[END_REF] when combined with other selection criteria. In Fig. 2 (right), we plot as function of the jet hardness Q 1 , the total average jet multiplicity (3.3), which accounts for the primary state radiation off the heavy quark together with the decay products from the final-state flavoured hadrons, which were introduced in section 3. For these predictions, we set K ch = 0.6 in (3.3), and Q 0 ∼ Λ QCD = 230 MeV [START_REF] Dokshitzer | Gif-sur-Yvette[END_REF]. Moreover, the flavour decays constants N dc c = 2.60 ± 0.15 and N dc b = 5.55 ± 0.09 are independent of the hard process inside the cascade, such that N dc A can be added in the whole energy range. For instance, such values were obtained by the OPAL collaboration at the Z 0 peak of the e + e -annihilation. In this experiment, D * mesons were properly reconstructed in order to provide samples of events with varying c and b purity, such that it became possible to measure light and heavy quark charged hadron multiplicities separately [START_REF] Akers | A Measurement of charged particle multiplicity in Z0 → c anti-c and Z0 → b anti-b events[END_REF]. As compared to the average multiplicities of the primary state radiation displayed in Fig. 2 (left), after accounting for N dc A , the b quark jet multiplicity becomes slightly higher than the c quark jet multiplicity, although both remain suppressed because of the dead cone effect.

Conclusions

Thus, our present work focusing on the differences of the average charged hadron multiplicity between jets initiated by gluons, light or heavy quarks could indeed represent a helpful auxiliary criterion to tag such heavy flavours from background for jet hardness Q 40 GeV. Notice that we are suggesting as a potential signature the a posteriori comparison between average jet multiplicities corresponding to different samples of events where other criteria to discriminate heavy from light quark initiated jets were first applied. Fig. 2 (right) plainly demonstrate that the separation between light quark jets and heavy quark jets is allowed above a few tens of GeV with the foreseen errors of the experimentally measured average multiplicities of jets. The difference between light quark jet multiplicities and heavy quark jet multiplicities N q -N Q in one jet is exponentially increasing because of suppression of forward gluons in the angular region around the heavy quark direction. This result is not drastically affected after accounting for heavy flavour decays multiplicities, such that it can still be used as an important signature for b-tagging and the search of new physics in a jet together with other selection criteria. Notice that the measurement of such observables require the previous reconstruction of jets at hadron colliders [START_REF] Cacciari | The Catchment Area of Jets[END_REF].

Figure 1 :

 1 Figure 1: Parton splitting in the process Q → a dead cone with opening angle Θ m is schematically shown.

Figure 2 :

 2 Figure 2: Massless and massive quark jet average multiplicity N Q for the primary state radiation (left) and N total Q including heavy quark flavour decays (right) as a function of the jet hardness Q. Bands indicate m c and m b in the [1, 1.5] and [3, 5] GeV intervals respectively.
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