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Abstract

In this article, our aim is to estimate the successive derivatives of the stationary density
f of a strictly stationary and (-mixing process (Xt),.,. This process is observed at discrete
times t = 0, A,...,nA. The sampling interval A can be fixed or small. We use a penalized
least-square approach to compute adaptive estimators. If the derivative () belongs to the
Besov space %5, then our estimator converges at rate (nA)_a/(2a+2j+1). Then we consider a
diffusion with known diffusion coefficient. We use the particular form of the stationary density
to compute an adaptive estimator of its first derivative f’. When the sampling interval A
tends to 0, and when the diffusion coefficient is known, the convergence rate of our estimator is
(nA)fa/(QaH). When the diffusion coefficient is known, we also construct a quotient estimator
of the drift for low-frequency data.

Key words: derivatives of the stationary density, diffusion processes, mixing processes, nonpara-
metric estimation, stationary processes
AMS Classification: 62G05, 60G10

1 Introduction

In this article, we consider a strictly stationary, ergodic and S-mixing process (X¢, ¢ > 0) observed
at discrete times with sampling interval A. The jth order derivatives f) (j > 0) of the stationary
density f are estimated by model selection. Adaptive estimators of f() are constructed thanks to
a penalized least-square method and the L? risk of these estimators is computed.

Numerous articles deal with non parametric estimation of the stationary density (or the deriva-
tives of the stationary density) for a strictly stationary and mixing process observed in continuous
time. For instance, Bosq [4] uses a kernel estimator, Comte and Merlevéde [5] realize a projection
estimation and Leblanc [16] utilizes wavelets. Under the Castellana and Leadbetter’s conditions,
when f belongs to a Besov space %9, the estimator of f converges at the parametric rate T-1/2
(where T is the time of observation). The non parametric estimation of the stationary density of
a stationary and mixing process observed at discrete times ¢ = 0, A, ..., nA has also been studied,
especially when the sampling interval A is fixed. For example, Masry [19] constructs wavelets es-
timators, Comte and Merlevéde [7] and Lerasle [17] use a penalized least-square contrast method.
The L? rate of convergence of the estimator is in that case n=®/(+1)_ Comte and Merlevede [5]
demonstrate that, if the sampling interval A — 0, the penalized estimator of f converges with
rate (nA)~*/(+1) and, under the conditions of Castellana and Leadbetter, the parametric rate
of convergence is reached.

There are less papers about the estimation of the derivatives of the stationary density, and the
main results are for independent and identically distributed random variables. For instance, Rao
[22] estimates the successive derivatives fU) of a multi-dimensional process by a wavelet method.
He bounds the L? risk of his estimator and computes the rate of convergence on Sobolev spaces.
This estimator converges with rate n~®/(2a+2i+1) " Hosseinioun et al. [13] estimate the partial
derivatives of the stationary density of a mixing process by a wavelet method, and their estimators
converge with rate (nA)~*/ (o120,

Classical examples of [-mixing processes are diffusions: if (X;) is solution of the stochastic
differential equation



dXt = b(Xf)dt + O'(Xt)th and XO =,

then, with some classical additional conditions on b and o, (X;) is exponentially S-mixing. Dalalyan
and Kutoyants [9] estimate the first derivative of the stationary density for a diffusion process
observed at continuous time. They prove that the minimax rate of convergence is 72/ (2a+1)
where T is the time of observation. This is the same rate of convergence as for non parametric
estimator of f.

A possible application is, for diffusion processes, the estimation of the drift function b by
quotient. Indeed, when o = 1, we have that f' = 2bf. The drift estimation is well-known when
the diffusion it observed at continuous time or for high-frequency data (see Comte et al. [6] for
instance), but it is far more difficult when A is fixed. Gobet et al. [12] build non parametric
estimators of b and ¢ when A is fixed and prove that their estimators reach the minimax L? risk.
However, their estimators are built with eigenvalues of the infinitesimal generator and are difficult
to implement.

In this paper, in a first step, we consider a strictly stationary and S-mixing process (X;),~,

observed at discrete times ¢t = 0, A,...,nA. The successive derivatives fU) (0 < j < k) of the
stationary density f are estimated either on a compact set, or on R thanks to a penalized least-
square method. We introduce a sequence of increasing linear subspaces (5,,) and, for each m, we
construct an estimator of f() by minimising a contrast function over S,,. Then, a penalty function
pen(m) is introduced to select an estimator of f) in the collection. When f\) ¢ B o the L?

risk of this estimator converges with rate (nA)f%‘/(QaHjH) and the procedure does not require

the knowledge of . When j = 0, this is the rate of convergence obtained by Comte and Merlevéde
[7, 5]. Moreover, when « is known, Rao [22] obtained a rate of convergence n—2®/(20+2i+1) for
independent variables.

In a second step, we assume that the process (X;) is solution of a stochastic differential equation
of known diffusion coefficient o. Then f’ can be estimated by estimating 20f and f. An estimator
of 2bf is built either on a compact set, or on R by a penalized least-square contrast method. It
only converges when the sampling interval A — 0, but in this case, its rate of convergence is better
than for the previous estimator: it is (nA) 2%/ ") when f/ € B ., (and not (nA) 20/ (Rat3)y,
This is the minimax rate obtained by Dalalyan and Kutoyants [9] with continuous observations.

Then, an estimator by quotient of the drift function b is constructed. When A is fixed, it
reaches the minimax rate obtained by Gobet et al. [12].

In Section 2, an adaptive estimator of the successive derivatives fU) of the stationary density f
of a stationary and (-mixing process is computed by a penalized least square method. In Section
3, only diffusions with known diffusion coefficients are considered. An adaptive estimator of f’ (in
fact, an estimator of 2bf) is built. In Section 4, a quotient estimator of b is constructed. In Section
5, the theoretical results are illustrated via various simulations using several models. Processes
(X¢) are simulated by the exact retrospective algorithm of Beskos et al. [3]. The proofs are given
in Section 6. In the Appendix, the spaces of functions are introduced.

2 Estimation of the successive derivatives of the stationary
density

2.1 Model and assumptions

In this section, a stationary process (X;), is observed at discrete times t = 0, A, ..., nA and the
successive derivatives f() of the stationary density f = f(© are estimated for 0 < j < k. The

sampling interval A is fixed or tends to 0. The estimation set A is either a compact [ag, a1], or R.
Let us consider the norms

o =Pl o e = Hliagay and (1) = (o) pacay- (2.1)

We have the following assumptions:



Assumption M1.
The process (X;) is ergodic, strictly stationary and arithmetically or exponentially 5-mixing.

A process is arithmetically S-mixing if its S-mixing coefficient satisfies:

Bx(t) < Bo (1+1) (2.2)

where 6 and 3 are some positive constants. A process is exponentially (or geometrically) S-mixing
if there exists two positive constants 3y and 6 such that:

Bx(t) < Poexp (—61) (2.3)

Assumption M 2.
The stationary density f is k times differentiable and, for each j < k, its derivatives f9) belong

to L*(A) N L*(A). Moreover, fU) satisfies [, «* (f(j)(ac))2 dr < +o00.
Remark 2.1. If A = [ag,a;], Assumption M2 is only Vj < k, fU) € L?(A).

Our aim is to estimate fU) by model selection. Therefore an increasing sequence of finite
dimensional linear subspaces (Sy,) is needed. On each of these subspaces, an estimator of f () ig
computed, and thanks to a penalty function depending on m, the best possible estimator is chosen.
Let us denote by €" the space of functions I times differentiable on A and with a continuous /th
derivative, and €, the set of the piecewise functions "'. To estimate /), 0 < j < k on a compact
set, we need a sequence of linear subspaces that satisfies the assumption:

Assumption S1 : Estimation on a compact set. 1. The subspaces S, are increasing, of fi-
nite dimension D,, and included in L*(A).

2. For any m, any functiont € S, is k times differentiable (belongs to €*~'NE" ) and satisfies:

Vi <k, t9(ag) =t (ar)=0.
3. There exists a norm connection: for any j < k, there exists a constant 1p; such that:
|12 241 114112
Vm, Vt € Sp, Hth < ;DX t)2, .
o0

Let us consider (¢a,m, A € Aw,) an orthonormal basis of Sy, with |Ap,| = D,,. We have that
, , 2
||\I/§m(a:)||oo < p; D2FY where \Ilim(x) =3 en, (‘ngzn(x)) )

4. There ezists a constant ¢ such that, for any m € N, any function t € Sy, :

|19, < D11

5. For any function t belonging to the unit ball of a Besov space %5 ..,
It = tmll72 < D32 v D2
where t,, is the orthogonal (L?) projection of t over Sy,.

Remark 2.2. Because of Point 2, the projection t,, converges very slowly to ¢t on the boundaries
of the compact A = [ag,a1] and the inequality ||t — tm||iz < D;2% can not be satisfied for any
te B .

In the Appendix, several sequences of linear subspaces satisfying this property are given. To
estimate f) on R, slightly different assumptions are needed: let us consider an increasing se-
quence of linear subspaces Sy, generated by an orthonormal basis {¢xm, A € Z}. We have that
dim(S,,) = 00, so to build estimators, we use the restricted spaces Sy, v = Vect (oxm, A € Ay N)
with |A,, n| < +00. The following assumption involves the sequences of linear subspaces (Sy,) and

(Sm,N)-



Assumption S2 : Estimation on R. 1. The sequence of linear subspaces (Sp,) is increasing.

2. We have that |\, y| = dim(Sy,n) = 2mTIN +1 .
8. Vm,NeN, Vte S, n: t€ € 1NEE and Vj <k, lim| ) o0 t@(z) = 0.

4. W; eRT, Vm e N, Vt € S, Vj <k, ||t(j)||io < g 225+ )m ||t||2LQ . Particularly,

2

2 < wj2(2j+1)m-

w5 (@)l =

> (@&%(@)2

AEZ

5. 3, ¥m € N, Vt € Sy, Vi < ks (D2, < 22 [|t]|2, .

6. For any function t € L?> N L' (R) such that [ 2*t*(z)dz < +oo,

[tm = tm w72 < ‘N

where t,, is the orthogonal (L?) projection of t over Sy, and t,, n its projection over Sp, n.

7. There exists r > 1 such that, for any function t belonging to the unit ball of a Besov space

B o (with o <1),
[t = tml72 <2777,

Proposition 2.1.

If the function ¢ generates a r-reqular multiresolution analysis of L2, with r > k, then the subspaces

S = Vect{orm, A€ Z} and Sp n = Vect{prm, A€ Am.n}
(where @y m(z) =2™20 2™z — \) and Ay = {\ € Z, |\| < 2™ N}) satisfy S2.

For the definition of the multi-resolution analysis, see Meyer [20], chapter 2.

2.2 Risk of the estimator for fixed m

An estimator g, of g; := fU) is computed by minimising the contrast function
2
Yinlt) = [E52 = =537 10 (Xia).
k=1

Under Assumptions S1 or S2:

E (150(0)) = I3 -2 (-1 (100, £) = 32 {1, s = e = s ~0 where =79

If Assumption S1 is satisfied, let us denote
9i.m (1) = arg nf (1),
and, under Assumption S2,
gjm.N(t) =arg inf ;. (t).
tes'm,N

We have the two following theorems:

Theorem 2.1 : Estimation on a compact set.

Under Assumptions M1-M2 and S1, the estimator risk satisfies, for any j < k and m € N:

D2+ 1
~ 2 2 m
E <||gj,m - 9j||L2) < lgjm — gjllz2 + 8050%’7 (1 v ﬁ)

2
Lz’

where g; ., is the orthogonal (L?) projection of g; over S,,. The constants B3y and 0 are defined in

(2.2) or (2.3), ¥, is defined in Assumption S1 and c is a universal constant.



Theorem 2.2 : Estimation on R.
Under Assumptions M1-M2 and S2, for any j < k and m € N:

A 9 5 om 2(2j+1)m 1
B (19300 = 5132) < oo — 5l + €5 + 8oty —— (1v 5 )

where C' depends on ffooo 22g?(z)dx and of the chosen sequence of linear subspaces (Sp n). Ac-
cording to Assumption S2 6., if N > (n AnfA),

A ) ) L 2EHm
E (195m.00 ~ 51:) < loam — ol + oo™ —— (1v 52 ).

If the random variables (Xy,...,X,) are independent, the derivatives of the density can be
estimated in the same way and the two previous theorems (as well as the theorems for the adaptive
risk) can be applied if we set 6 = +o0o.

When A = 1, the risk bound is the same as in Hosseinioun et al. [13].

2.3 Optimisation of the choice of m

Under Assumption S1 and if g; belongs to the unit ball of a Besov space %5, with a >

1, then ||gjm — Qj”ig < ¢D,? and the best bias-variance compromise is obtained for D,, ~

(n(1v OA))l/(QjJr?’). In that case,
E (||§Jm - ng2L2) <(nVv neA)72/(2j+3) .

If Assumption S2 is satisfied and if g; belongs to %5, with 7 > «, then ||g;m — 9j”2L2 < 27 2me,
If N >n(1A60A), the best bias-variance compromise is obtained for
1

M e 0ga(n (1 08)) and then B (g5 — g5l152) < (nvndd) 2o/ G,

Rao [22] builds estimators of the successive derivatives f) for independent variables. This esti-
mators converge with rate n—2¢/(e+2i+1)

2.4 Risk of the adaptive estimator on a compact set
An additional assumption for the process (X;) is needed:

Assumption M 3.
If the process (X¢),~ is arithmetically 3-mizing, then the constant 0 defined in (2.2) is such that
6> 3. -

Let us set 4, = {m, Dy, < Z;,} where Z; , < (RA A n)l/(2j+2) is the maximal dimension.
For any m € .#; ,, an estimator gj, € Sy, of g; = Y is computed. Let us introduce a penalty
function pen;(m) depending on D,, and n:

DA+ 1
pen;(m) > Hﬁoij (1 Vv ﬁ) .

Then we construct an adaptive estimator: choose 771; such that

Gj = §j,m; Wwhere 1h; =arg min Yin (Gj,m) + penj(m)].
MEMjn

Theorem 2.3 : Adaptive estimation on a compact set.
There exists a universal constant k such that, if Assumptions M1-8 and S1 are satisfied:

N 2 . 2 ¢ 1
B (15— 013:) <€ int (lasm = gl +pensm) + £ (1v 3

where C' is a universal constant and c depends on v, By and 0.



Remark 2.3. The adaptive estimator automatically realises the bias-variance compromise. Comte
and Merlevéde [5] obtain similar results when j = 0 and the sampling interval A is fixed, and their
remainder term is smaller: it is 1/n and not In*(n)/n.

The penalty function depends on 3y and 6. Unfortunately, these two constants are difficult
to estimate. However, the slope heuristic defined in Arlot and Massart [1] enables us to choose
automatically a constant \ such that the penalty AD2/*1/(nA) is good. It is also possible to use
the resampling penalties of Lerasle [18].

2.5 Risk of the adaptive estimator on R

Let us denote #;,, = {m, 2™ < 2, ,,} with .@ﬁlw <nAAnand fix N = N, = (nAnA). For
any m € A, an estimator §; m,n, € Sm,n, of g; is computed. The best dimension 7, is chosen
such that

2(2j+1)m 2(2j+1)m
n v ndA )

iy =arg mit [y (35.m,,) +penj(m)] - where  pen;(m) ZC%‘(

me Jjn
and the resulting estimator is denoted by g; := g; m; N, -

Theorem 2.4 : Adaptive estimation on R.

Under Assumptions M1-M3 and S2,
~ 2 . 2 c 1
E (15— 95l72) <€ inf (llggm — g3llza +pens(m)) + - (1v 3

where ¢ depends on v, By and 0.

3 Case of stationary diffusion processes
Let us consider the stochastic differential equation (SDE):
dX, = b(Xy)dt + o(X,)dWy, Xo =1, (3.1)

where 7 is a random variable and (W;),, a Brownian motion independent of . The drift function
b:R — R is unknown and the diffusion coefficient o : R — R** is known. The process (X;),~ is
assumed to be strictly stationary, ergodic and S-mixing. Obviously, we can construct estimators of
the successive derivatives of the stationary density using the previous section. But in this section,
we use the properties of a diffusion process to compute a new estimator of the first derivative of
the stationary density. If the sampling interval A is small, this new estimator converge faster than
the previous one.

3.1 Model and Assumptions

The process (X;),~ is observed at discrete times t =0, A, ..., nA.

Assumption M 4.
The functions b and o are globally Lipschitz and o € €.

Assumption M4 ensures the existence and uniqueness of a solution of the SDE (3.1).

Assumption M5.
The diffusion coefficient o belongs to €, is bounded and positive: there exist constants oo and oy
such that:

Ve eR, 0 <oy <o(z) < op.

Assumption M 6.
There exist constant r > 0 and 1 < o < 2 such that

IMy € RT, Vaz,|z| > My, ab(x) < —rlz|”.



Under Assumptions M4-M6, there exists a stationary density f for the SDE (3.1), and

f(z) o< o7 %(x) exp <2 /T b(s)a‘%s)ds) . (3.2)
0
Then f has moments of any orders and:
/|f’(a:)|2dx <00, VmeN, /|x|m |F/(2)] d < oo (3.3)
vm e N, ||2™ f(z)||,, < oo, ||b4(x)f(x)||oo < oo and /exp(|b(m)|)f(x)dx < 0. (3.4)
Assumption M7,

The process is stationary: n ~ f.

According to Pardoux and Veretennikov [21], Proposition 1 p.1063, under Assumptions M5-
M6, the process (X;) is exponentially -mixing: there exist constants Gy and 0 such that Sx (t) <
Boe~%. Moreover, Gloter [11] prove the following property:

Proposition 3.1.
Let us set F = o (n, Ws,s <t). Under Assumptions M4 and M7, for any k > 1, there exists a
constant c(k) depending on b and o such that:

Vh,0<h<1,¥t>0 E| sup [b(Xs)—b(Xs)|*
s€[t,t+h]

y}) < ¢ (k) h¥/? (1 + |Xt|k) .

Remark 3.1. To estimate f’, it is enough to have an estimator of 2bf and an estimator of f. Indeed,
according to equation (3.2), the first derivative f’ satisfies:

) @) o)

f@) = o2@) o)

By assumption, the diffusion coefficient ¢ is known. Besides, according to Assumptions M4 and
M35, ¢’ and o~! are bounded. As we have already constructed an estimator of f = go in Section
2, it remains to estimate 2bf.

In this section, we construct an estimator hof h:= 2bf either on a compact set [ag, a;], or on
R.

3.2 Sequence of linear subspaces

Like in the previous section, estimators hu of h are computed on some linear subspaces S, or
S, N, then a penalty function pen(m) is introduced to choose the best possible estimator h. If h
is estimated on a compact set A = [ag, a1], the following assumption is needed:

Assumption S3 : Estimation on a compact set. 1. The sequence of linear subspaces S, is
increasing, Dy, = dim(S,,) < co and Vm, S,, C L(A).

2. There exists a norm connection: for any m € N, any function t € Sy, satisfies
2 2
[t]l5% < @0 Dm [It]|72 -

Particularly, if we note ®,,(x) = D 5cp (gm\’m(x))z where (©xm, A € Ap) is an orthonor-
mal basis of S,,, then ||<I>,2n(x)||oo < ¢oDpy.

3. There exists r > 1 such that, for any function t belonging to 5 ., with o <,
It = tml72 < D>

where t,, is the orthogonal projection of t over Sp,.



In the Appendix, several examples of sequence of linear subspaces satisfying this assumption
are given. To estimate h on R, an increasing sequence of linear subspaces Sy, = Vect (px,m A € Z)
(where {¢x m},cz 18 an orthonormal basis of S,) is considered. As the dimension of those sub-
spaces is infinite, the truncated subspaces Sy, n = Vect (¢a,m, A € Ay, n) are used.

Assumption S4 : Estimation on R. 1. The sequence of linear subspaces (Sp,) is increasing.

2. The dimension of the subspace Sy, N 15 omtIN 41,

3. 3o , Ym, Yt € S, |2 < G027 |[tl|72. Let us set Op(z) = Sy (Prm(@))?, then
||<I>,2n(a:)||oo < ¢o2™ where ¢g is a constant independent of N.

4. For any function t € L?> N L' (R) such that [ 2*t*(z)dz < +oo,

[tm = tm w72 < ‘N

where t,, is the orthogonal (LQ) projection of t over Sy, and ty, N its projection over Sy, .

5. There exists v > 1 such that for any function t belonging to the unit ball of a Besov space
935‘00 with a < r,
It = ta]2 < c22me

Proposition 3.2.
Let us consider a function ¢ generating a r-reqular multi-resolution analysis of L? with r > 0. Let

us set
S = Vect{oxm, A€Z} and Sy n = Vect{prm, A € An}

where @ m(z) = 2m/2p (2 — \) and A, = {N€Z, |\ <2"N}. Then the subspaces Sy, n
satisfy Assumption S4.

Functions o(x) = sin(z)/x also generate a multi-resolution of L?(R), but they are not even
0-reqular. However, they satisfy Assumption S4 if Sobolev spaces take the place of Besov spaces in
Point 5. The definition of Sobolev spaces of reqularity o is recalled here:

W, = {g, /O; lg* ()] (22 + 1) da < oo}

where g* is the Fourier transform of g.

3.3 Risk of the estimator with m fixed

For any m € .4, where 4, = {m, D,, < .}, an estimator B, of h = 2bf is computed. The
maximal dimension &, is specified later. The following contrast function is considered:

4 n
T, () = ||t]|7. — — > (Xesna — Xea) t(Xpa) .-
k=1

As A7 (X(ep1)a — Xka) = Ira + Zia + b(Xpa) with

LA = — (b(Xs) —b(Xka))ds and Zpa = — o(Xs)dWs, (3.5)
A kA A kA

we have that E (T, () = ||t]|7.—4 (bf, t)—4E (Iat(XA)) . According to Lemma 6.4, |E (Izat(Xra))| <
c¢AY2. Moreover, h = 2bf, so

E(Ta(t) = 72 = 2(h,t) + O (AY/2).

This inequality justifies the choice of the contrast function if the sampling interval A is small. If
Assumption S3 is satisfied, we consider the estimator

iy = arg min T, ()

tESm



and, under Assumption S4, we set

B N = in T,(t).
m,N argtergg}N n(t)

Theorem 3.1 : Estimation on a compact set.
Under Assumptions M4-M7 and S3,

B ([ =], ) < o = Al 04 (B 111+ 20 ) 2

0 nA

where h,, is the orthogonal projection of h over S,, and c a constant depending on b and o. We
remind that the 3-mizing coefficient of the process (X;) is such that Bx(t) < Boe™%t.

Theorem 3.2 : Estimation on R.
Under Assumptions M4-M7 and S4

. 2 om ) .
E <Hhm,N - hHL2> < v = hll7. toeyr + A+ <||f|oo I 50¢o)

0 ) nA
where hy, n is the orthogonal projection of h on the space Sy, n. If N = Ny = nA, then

2000 | 2™
nA

R 2
E (Hth - hHL2) < Nl — B3z + A + (Ilflloo +55

where hy, is the orthogonal projection of h over S,,.

3.4 Optimisation of the choice of m

Under Assumption S3, if 214 belongs to the unit ball of a Besov space %5 ., then ||h — 72 <
D>, To minimise the bias-variance compromise, one have to choose

Dm ~ (nA)l/(1+2a)
and in that case the estimator risk satisfies:
2

Under Assumption S4, if h belongs to B, then ||h — hmHQLQ < 272me and

N 2
P — hHL2) < O (nA) 20529 A

“ 2
E (Hhm,m - hHLZ) < C(nA)20/(H20) A

Remark 3.2. Dalalyan and Kutoyants [9] estimate the first derivative of the stationary density
observed at continuous time (they observe X; for ¢ € [0,7]). In that framework, the diffusion
coefficient o2 is known. The minimax rate of convergence of the estimator is 7-%/(142%) Tt is the
rate that we obtain when A tends to 0.

Let us set A ~ n~". We obtain the following convergence table:

| 3 | principal term of the bound | rate of convergence of the estimator
0<B<£%5 A n=P
4211 <B<1 (nA)_QO‘ (1+2a) n—2a(1-p)/(da+1)

Those rates of convergence are the same as for the estimator of the drift. If g > 1/2, the domi-
nating term in the risk bound is always (nA)fza/ (1+2¢) " The rate of convergence is always smaller
than n=1/2. If (n,A) is fixed and if A < n=29/(42+3) then the second estimator A, converges
faster than the first one g; ,,,. However, if the sampling interval A is larger than p—20/(4at3) it g
the opposite.



3.5 Risk of the adaptive estimator on a compact set

For any m € Mpa = {m, Dy, < P,,} where the maximal dimension %, is specified later, an
estimator h,, € S,, of h is computed. Let us set

Dm 850 ~ . -
> - _ = .
pen(m) > AN (1 + 7 > and m mé%,L,A {’yn (hm) —l—pen(m)}

The resulting estimator is denoted by h := hy,. Let us consider the asymptotic framework:

Assumption S5.

nA nA
——~ — 00 and 92 < ——.
In“(n) In“(n)
Theorem 3.3 : Adaptive estimation on a compact set.

There exists a constant  depending only on the chosen sequence of linear subspaces (Sy,) such
that, under Assumptions M4-M7 , S8 and S5,

Cl

E <Hh - hHi) <c i {Ilm = I3 + pen(m) } + cA + —

where C' is a numerical constant, ¢’ depends on ¢o and ||f|| ., and c depends on b.

Remark 3.3. The estimator is only consistent if A — 0. Moreover, the adaptive estimator h
automatically realises the bias-variance compromise.

3.6 Risk of the adaptive estimator on R

An estimator iLm’nA € Smna is computed for any m € A, g = {m, 2™ < 2,}. The following
penalty function is introduced:

2m 2039 . . 5
> —_— _— =
pen(m) > KnA (1 + 2 ) and we set ™ mlen/f/’[n {fyn (hmm,A) —|—pen(m)}

Let us denote by ;LnA the resulting estimator.

Theorem 3.4 : Adaptive estimation on R.
There exists a constant k depending only on the sequence of linear subspaces (Sy,) such that, if
Assumptions M4-M7 , S4 and S5 are satisfied:

£ (|

4 Drift estimation by quotient

C/

~ 2 . 9
_ < — —_—.
hnA hHL2) - Cme‘l;g,n,m {”hm h||L2 —l—pen(m)} + CA + TLA

If the process (X¢),5 is the solution of the stochastic differential equation (SDE)
dX; = b(Xy)dt + dW,
and satisfies Assumptions M4-MT7, then
b= f'/2f.

An estimator of the drift by quotient can therefore be constructed. For high-frequency data,
Comte et al. [6] build an adaptive drift estimator thanks to a penalized least-square method. Their
estimator converges with the minimax rate (nA)_Qa/(QaH) if b belongs to the Besov space %5 .
On the contrary, there exist few results on the drift estimation where the sampling interval A is
fixed. Gobet et al. [12] build a drift estimator for low-frequency data, however, their estimator is
not easy to implement. In this section, a drift estimator by quotient is constructed and its risk is

computed.
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We estimate f and f’ on R in order to avoid convergence problems on the boundaries of the com-
pact. Let us consider two sequences of linear subspaces (So,m, m € Ao ) and (S1,m, m € M1 .)
satisfying Assumption S2 for k£ = 1 and such that

Mo.n = {mo, log(n) < 2™° < nvnA/ log(nA)} and A1, = {ml, 2m < (nA)1/5}

where the constant n does not depend on b neither o.

As in Section 2, adaptive estimators f := Gona and § := gipa of f = go and f/ = ¢
are computed. As b belongs to %5 ., f and f’ also belong to %5 ., and the best bias-variance
compromise for g, is obtained for 270 ~ (nA)Y/(1+2) “and for §; ,, it is obtained for 271 ~
(nA)Y/B+20) Tf o > 1, the restrictions on .4 ,, and .#; , do not modify the rate of convergence
of ours estimators. Let us consider the estimator

if g<2nAf and b=0 otherwise.

Theorem 4.1.
If b € #S . with a > 1, then

2,00
e (p-of) <c (e ()r- 1) +2 (1o -olf.) + =)

where the constant ¢ does not depend on n nor on A. Then, by Theorem 2.4,

~ 2
() =
L2

So b converges towards b with the minimax rate defined by Gobet et al. [12].

5 Simulations

5.1 Models

Ornstein-Uhlenbeck: Let us consider the SDE dX; = —bX; 4+ dW; with b > 0. The stationary
density is a Gaussian distribution .4 (O, (2b)71) and its derivative is

232,
JT

HOEE

xre

Hyperbolic tangent: We consider a process (X;) satisfying the SDE
dX; = —atanh(aXy)dt + dW;.
The stationary density related to this SDE is

B a® tanh(ax)

cosh?(az)

fl@) = —

~ 2cosh®(ax)

and f'(x) =

Square root: Let us consider the diffusion with parameters

axr
b(x)——\/ﬁ and o =1.

The stationary density is

f(x) = cexp (—2a\/ 1+ xz) and f'(z) = 2b(z)f(x)

11



Model 4: We consider the following SDE:

QCLXt

dX; = —
FT1+ X2

dt + dWy.

The process (X;),~, does not satisfy Assumption M6 neither the sufficient conditions to be expo-
nentially S-mixing. If @ > 1/2, it admits the stationary density

4eqax

B 2 —2a ’ _ __ Framr
f(x) =cq (1+27) and  f'(z) = (1+22) 7%

Sine function: Let us consider the diffusion with parameters:

. x
b(z) = sin(az) — Wiwr and o=1.

Its stationary density f satisfies:

f(x) =cqexp (—2a_1 cos(ax) — 2V 1+ x2) and f'(x) = 2¢c.b(z) f(x)

5.2 Estimation of the first derivative f’

Here, we estimate the first derivative f’ of the stationary density on a compact set and we compare
the two estimators g; and h defined in Sections 2 and 3. The subspaces S, are generated by
trigonometric polynomials: those functions are orthonormal, very regular and enable very fast
computations: to compute g1, (resp flm) when §1 m—1 (resp ilm_l) is known, it is only necessary
to compute one or two coefficients.

Figures 1-5 show the differences between the two estimators: g; converges whatever the sam-
pling interval, and h converges only if A is small. In that case, h is better than g1: the variance
term is greater for §; ,, (is proportional to D2, /(nA)) than for h,, (is p proportional to D, /nA).

In Tables 1-3, for each value of n and A, 50 exact simulations of a diffusion process are realized
using the retrospective exact algorithm of Beskos et al. [3] (except for the Ornstein-Uhlenbeck
process which is simulated using Gaussian variables). For each path, we compute the empirical
risks of the estimators g; and h:

| M } 5 1M 9
191 = 1l == 57 2 @rlw) = gr(@)® and [h—h[ =23 (hlan) = b))
k=1 k=1

where the points zj are equidistributed over A. To check that the estimator is adaptive, the oracles

- 2
ol ]
ory = . ||g1 Agl||E > and orp, = - E 5
My e #,, ||gl,m - 91||E min,,e_z, |[Am — hH

are computed. The mean time of simulation ¢, of a process is measured, and for each kind
of estimator, the means of the empirical risk ris, or risp, of the oracles or, or or; and of the
computation times t, or ¢ or computed.

The complexity of the retrospective exact algorithm of Beskos et al. [3] is proportional to
ne® where ¢ depends on the model. Table 3 shows that for Model 4, tg;,, increases when n or
A increases. For the hyperbolic tangent, the time of simulation only depends on n because the
constant ¢ is exactly equal to 0. The Ornstein-Uhlenbeck process is not simulated thanks to the
retrospective algorithm, so its time of simulation does not depend on A. Tables 1-3 show that the
first estimator g; is always faster to compute than the second one h. This is mainly because we
have less models to test: for the first estimator, the maximal dimension %, is bounded by (nA)l/ *
whereas for the second estimator, Z,, < (nA)l/ Z,

When A =1, g is better than h. If not, the estimators are similar and become better when
nA increases. For the Ornstein-Uhlenbeck process and the hyperbolic tangent, the process (X;),

is exponentially S-mixing and g, is in general better than h. For Model 4, the process (X;) is not
exponentially S-mixing and when A < 1, h is (in general) better than g;.

12
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Figure 1: Ornstein-Uhlenbeck: estimation of f
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Figure 2: Hyperbolic tangent: estimation of f’
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Figure 3: Square root: estimation of f’
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Figure 4: Model 4: estimation of f’
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Figure 5: Sine function: estimation of f’
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Table 1: Estimation of f’ for Ornstein-Uhlenbeck

first estimator second estimator
n A tsim TiSg | org | tg TiSp | orp | tn
104 1 0.10 0.00025 | 2.5 0.33 0.0090 1.0 0.73

10* [ 10T 0.10 0.0010 | 1.8 | 0.17 ][ 0.00091 | 1.2 | 0.68
10* [ 1072 || 0.099 0.0060 | 2.6 | 0.097 |[ 0.0067 | 2.3 | 0.66
103 1 0.0027 || 0.0023 | 4.2 | 0.034 || 0.0097 | 1.0 | 0.12
103 [ 1077 || 0.0025 || 0.0058 | 3.0 | 0.020 || 0.0077 | 2.3 | 0.12
103 | 1072 || 0.0026 0.037 | 3.0 | 0.0070 0.078 | 4.0 | 0.035
102 1 0.00022 || 0.0080 | 2.0 | 0.013 0.019 | 1.5 | 0.062
102 [ 10-T || 0.00021 || 0.035 | 2.4 [ 0.0046 || 0.078 | 5.5 | 0.019
102 | 102 || 0.00023 || 0.067 | 2.1 | 0.0048 0.11 1.4 | 0.0068

Table 2: Hyperbolic tangent: estimation of f’

first estimator second estimator
n A tsim TiSg | org | tg TiSp | orp | th
104 1 6.2 0.0027 | 1.1 0.33 0.0087 | 1.03 0.71

10* | 1071 1.2 0.0018 | 3.7 | 0.17 0.0014 | 14 0.68
10% | 1072 1.7 [/ 0.0065 | 2.8 | 0.10 || 0.0056 | 1.8 0.65
103 1 0.61 || 0.0040 | 1.5 | 0.034 || 0.0097 | 1.1 0.12
103 [ 10~ || 0.19 || 0.0067 | 2.8 | 0.020 || 0.0087 | 2.1 0.12
103 | 1072 || 0.16 || 0.022 | 2.5 | 0.0068 || 0.036 | 2.6 0.03
102 1 0.066 || 0.011 | 1.7 | 0.014 || 0.021 | 1.80 | 0.063
102 | 10T | 0.020 || 0.023 | 2.3 | 0.0048 || 0.044 | 3.4 | 0.020
102 | 1072 ]| 0.018 || 0.033 | 1.6 | 0.0054 || 0.078 | 1.2 | 0.0080

Table 3: Model 4: estimation of f’

first estimator second estimator
n A tsim TiSg | oryg | tg risy, | ory, | th
104 1 6.6 0.00073 | 1.8 0.33 0.020 1.0 0.71

10* [ 1071 2.3 0.0032 | 4.2 0.17 0.0019 | 1.3 0.70

107 1072 || 21 0016 | 3.8 | 0.10 | 0.0090 | 1.7 | 0.68

103 1 0.67 0.0049 | 2.4 | 0.035 0.022 | 1.1 0.12

10° [ 1071 || 0.24 0.017 | 3.6 | 0.021 [[ 0.013 | 2.0 [ 0.12

103 [ 1072 || 0.18 0.043 2.0 | 0.0071 || 0.094 | 3.5 | 0.035
102 1 0.071 0.048 8.1 | 0.014 0.041 | 1.6 | 0.065
102 | 10~ T || 0.022 0.046 | 1.91 | 0.0049 || 0.077 | 3.1 0.02

102 | 1072 || 0.019 0.070 1.4 | 0.005 0.12 1.1 | 0.0069
risy and risy: average empirical risks related for g; and h

ory and or: average oracles (empirical risks of i (resp h) over the empirical risk of the best
estimator g1, (resp B )

ty et t) : average time of computation of g; and h (times in seconds)

tsim: average times of simulation of (Xo, XA, ..., Xna) (times in seconds)
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5.3 Drift estimation by quotient

Two drift estimators are compared: the estimator by quotient defined in Section 4, denoted here
by bquot, and a penalized least-square estimator denoted by bplg The construction of the last
estimator is done in Comte et al. [6]. It only converges when the sampling interval A is small, but
in that case, it reaches the minimax rate of convergence: if b belongs to a Besov space %5, then

the risk of the estimator Bpls is bounded by

E (pr, . bHi) <C ((nA)—Qa/(Q““) + A) .

Figures 6-10 show that, for low-frequency data, the quotient estimator l;quot is better than Epls.
For various values of n and A, 50 exact simulations of (X, ..., X,a) are realized and estimators
bguot and by, are computed. Table 4 and 5 give the average empirical risk for these estimators and
the average computation times. The lowest risk is set in bold.

Tables 4 and 5 underline that the first estimator is always faster than the second one: to
compute Epls, we have to inverse a matrix m X m over each space S,,. When A is small and the
time of observation nA is large, the penalized least square contrast estimator converges better than
the quotient estimator. Of course, when A is fixed, bgyuot converges faster than bps.

Table 4: Ornstein-Uhlenbeck: estimation of b
quotient estimator || least-square estimator

n A i8S quot | tquot TiSpls | tpls
10% 1 0.0022 3.6 0.089 7.3
10 | 10=T || 0.0086 1.2 0.0049 1.7
10 | 1072 || 0.069 0.4 0.031 0.7
103 1 0.011 0.2 0.090 0.7
103 | 1071 0.061 0.06 0.022 0.3
10% | 102 0.31 0.02 0.50 0.004
102 1 0.073 0.03 0.085 0.3
102 | 1071 0.25 0.01 0.34 0.003

Table 5: Hyperbolic tangent: estimation of b
quotient estimator || least-square estimator

n A risquot | tquot rispls | tpls
10% 1 0.0023 3.6 0.086 7.2
10* | 1071 0.019 1.2 0.017 1.8
102 | 1072 || 0.078 0.4 0.052 0.7
103 1 0.036 0.2 0.18 0.7
103 | 1071 0.12 0.06 0.065 0.3
10% | 102 0.17 0.02 0.61 0.004
102 1 0.24 0.03 0.10 0.3
102 | 1071 0.20 0.01 0.53 0.003

TiSquot and Tisps: average empirical risks for ?quot and ?pls
tquot and t,;s : average computation times of bgyor and bys (times in seconds)

6 Proofs

6.1 Important lemmas

Lemma 6.1 : Variance of S-mixing variables.

Let us set

1 n
==Y 9(Xka) —E(9(Xxa))-
k=1

3
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Figure 6: Ornstein-Uhlenbeck: estimation of b
n=10% A=1
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Figure 7: Hyperbolic tangent: estimation of b
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Figure 8: Square root: estimation of b
n=10%" A=1

0.8

0.6

0.2r

- : true drift b ~
—— : estimation of b by quotient: bgyot
. estimation of b like in Comte et al. [6]: bpis

17



Figure 9: Model 4: estimation of b
n=10* A=10"1
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Figure 10: Sine function: estimation of b
n=10% A =1
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If the random variables (Xya) are strictly stationary and B-mixing, then there exists a function B

such that
—+o0

E(B(X0)) <Y Bea and E(B*(X)) Zkﬁm
k=1

and, for any function g such that E (gQ(XO)) < 400,

e

Var(A) < EE (B(X0)g”(X0))

Moreover, if the B-mizing coefficients are such that Bx (k) < Boe™F (that is if (Xra) are expo-
nentially 5-mizing), then if 6A > 1:

+oo +oo
D Bia <260 and Y kBra <26

k=1 k=1

and if A9 <1 and nA — oo:

Z" 260 Z 250
< ==
k:1ﬁmx_ Ad and kﬂm;__Azm

If the random variables (Xxa) are arithmetically B-mizing, then:

“+o0
2
if OA > 1, then;ﬁm<26o and if 0 > 1, z_:kﬁm_aﬁo
200 200
A <1, <— 1, Y CY7 Y
if 0 then;ﬂm ~g ndif0> ;kﬁm_Nw o)

This lemma is proved in Viennet [24].

Lemma 6.2 : Coupling method for the construction of independent variables.
Let us consider a stationary and B-mizing process (Xt)tZO observed at discrete timest = 0, A, ..., nA.

Let us set n = 2q,p, where q, = w and, for a € {0,1}, 1 <k < p,,
Uk = (X(@k-1)+a)gnt1)as - X(2k-14a)gn ) -

According to Berbee’s Lemma (see Viennet [24]), there exist random variables (XX, ..., X}

FA) such
that the random vectors

Upa= (X(*(Q(k_lHa)an)A, . '7X(*2k—1+a)an) where a € {0,1}, 1 <k <p,
satisfy:

e For any a € {0,1} , vectors Uy, .. UG

1), OT€ independent.

e For any a € {0,1}, any k, 1 < k < p,, Uy o and Uy o have the same law.
e For anya € {0,1}, 1 <k < p,:

P (Uka # Up o) < Bx (gud)

Let us set
QF = {Uk,a =Upak=1,...,n,a= {0,1}}.

If the process is exponentially B-mizing, then P (Q*¢) < 2p,Bx(q,) < n~ 2
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Lemma 6.3 : Talagrand inequality.
Let us consider some random variables X1, ..., X, independent and identically distributed. Let us
set gn it € B — g,(t) where & is a countable set and

gult) = = 3" Fi(Xe) — B (F(X0).
k=1

s
sup | Bl < My, E (sup |gn<t>|) <H, sup Var(F(X) <V,
teR teRB teRB

H? M? H
E (sup g2 (t) — 12H2> <C (— exp <—k1n > + —21 exp (—kgn—)>
te®B n n v n M,

with ky = 1/6, ka = 1/(21v/2), and C a universal constant. There exist a constant x independent
of the process (X:) and of the function F; such that:

then

A2
> < .
P(fgg|gn(t)| 2H+>\> 3exp( mnmm(m/ 7M1)> (6.1)

This proof is done in Lacour [14] p156 and in Comte and Merlevéde [7] p.224.

6.2 Proofs of Theorems 2.1 and 2.2

We only prove here Theorem 2.2 (the proof of Theorem 2.1 is very similar and easier). According
to Pythagoras, we have

~ 2 2 A~ 2
195.m.~5 = 9l72 = 19j,m.N — gll72 + |G5m.N — Gjm.Nl72 -

Let us set a>\ = [ U (2)pam(2z)dx. By Assumption S2 2., a) = (— fR cpgj)m (x)dz. Let
us set ay = 1) Sory ga(j) (Xka). We have

~ 2 ~ 2
1g5mN = Gmnlze = > (an—an)

and

where E (B(Xo)) < 26 (1V 7% ). So, by Assumption S2 3.,
. 4 2(2j+1)m 1
E (1g1m5 ~ 91m012) < SE (B, 0%0)) < 86005 T (1v 7).

6.3 Proofs of Theorems 2.3 and 2.4

As previously, only Theorem 2.4 is demonstrated. Let us set

n

v () = N0 1D () F () d
)= 2 310 (Xa) = [ 1O @)f @)

k=1
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For any m, we have

Vin(G5) + pen; (1) < ¥jn(Gjm,n,) + penj(m) < vjn(gjm,N,) + pen;(m).

As, for any t € Sy, N,
2 2
Vi () = It = gllz2 — llgllz2 + 2050 (D),
for any m € N,

~ 2 2 ~ A~
||9j - g||L2 < ng,m,Nn - g||L2 + 205 (gj,m,Nn - gj) +p€nj(m) —penj(mj)-

According to Cauchy-Schwartz, if we set B, m = {t € Sm,N,, + Sm/ N, s ||t||2LQ < 1}, we have:

1
~ 2 2 ~ 2 ~
195 = 9llz2 < lgjm. N0 = 9l + 7195 = gsm,nallze + 4f€2§p Vi (t) + penj(m) — pen;(1n;).

- 2 2 ~ 2
As 15 — gjom, N 72 < 2M|g5m,N, — gll72 + 2135 — gll72:

~ 2 A~
19— gl 72 < 3lgmn, — gll3e +8 sup 2, (t) + pen;(m) — pen;(iny).

tES m,m

Let us consider a function p;(m,m’) such that 8p;(m,m’) = pen;(m) + pen;(m’). We have that

E: = E (8 sup 17, (t) + penj(m) —penj(mj)>
fej"nf m

= 8E< sup VJQ (1) —pj(m,mj)> + 2pen;(m).
tEBm,m

Let us use the set Q* described in Lemma 6.2 where ¢, is defined later. Let us set, for a € {0,1},
0 S k S Pn — 17

* 1 o ] *
Uka= g 2t (Xiorsramsna) o+ Uka= an : Zt(” (X(2ktarg+na)
L n G
and
1 = j * * j *
= Zt(j)(XkA) —E (t(j)(XkA)) :
k=1

We have:

. N 2 N N 2
sup v2,(0) = ps(moing) < sup {(7,0)" = pitmig) }+ swp {[p20 = (.0)°]}-
tEBm,m tEBm,m tEBm,m

According to Lemma, 6.2, the random variables (Ug,o) are independent and identically distributed,

and so are the variables (U ,’;1).

Bound of E (supte%mﬁ {(V;n(t))Q —p;(m, ﬁ%)}) We have that

m’ tEB,y m!

E(teilélph(V;,n(t))Q—PJmmJ> > E <sup u;7n,<t>)2—pj<m,m'>>. (6.2)

Let us set, fora € {0,1}, 0 <k < p, — 1,
I/jna anz_:Uka_ Uka)'
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We have that:

Vj*,n(t) = V;,n,()(t) + V;,n,l(t)
We want to apply Lemma 6.3 to the random variables Uy ,. So we compute H2, V and M; such
that

sup || U

m,m/

<My, Var(Up;) <V and IE( sup (v (t))2> < H2

J,n
t€Bpy

Let us denote by {¢x, A € A} an orthonormal basis of S, x + Sy and set D = 2™ + 2™, By
Assumption S2 3.-4., we have

sup ||| Htm XO)H < /I DD/
A7 — o0
By Lemma 6.1:
% 4 G) 2 4 () 2 1/2 2 1/2
Var(Uz,) < —E((190X0) BOXo) ) < il (B (19(X0) (E (B(X0)))
, 1 1
< COD¥TY/? (— Vv ) .
- In A
Besides,
2
E( sup (V;:ma(t))Q) =E sup <Z s, o (oA ) Lo« | < ZE( Vina ( ))2)
tERB 1 ! Zaea @3S \\ea AEA
and

]E(( Jna(%\)) ) Var( ZZ%\ (X(*(zma)an)A))-

=11=1

The random variables (X}, ) are exponentially S-mixing, so according to Lemma 6.1:

8 ((na (0)%) = 3 (800 (5)000))")  where B(B0R) <200 (3 v 7).

Thus, by Assumption S2 3., we have:

‘ 2 4 9 D2i+1) 1
E (ti‘;}; (V) ) < 28 (B(X0) (¥2,0(X0) + 02, (X0))) < 16600, — (1 v G—A) |

and it follows:

(24+1)
E ( Sup (V;n(t)f) < 3250%1)% <1 v i) ,

te gg'm ,m/’

Let us set

F:=E < sup (Vin(t) —pj(m,m’)) ]lg*>
tE%’m.m/ +

We can apply Lemma 6.3 with H? = 3283,y D *V (L v L) My = |/, DFD/2 and V =
cD?I. Let us set p;(m,m’) = 12H%. We find:

D2i+1/2

D2i+1 D
< Cep?) £ PP (—e )Y
FC< A exp( cD )—|— P> exp< CM))

n

where ¢ and C' are two constants independents of D, n and A.
As D =2™+2™ and 2™ > m/ for any m’ > 0:

ZD2j+1/2 exp (—ch/z) < i k2t1/2 exp (—ckl/Q) <C.

m’ k=1
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Besides,

Djn
ZDZJJrl < Z k2j+1 < @JQJWJrQ < nA
m/ k=1
and if there exists 7 > 0 such that
_n 1/24n
an

then:
x 2 / C
tegfgnL.ﬁL + n

Bound of E (supte%mﬁ {’Vin(t) - (V;,n(t))2’}> We have that:

sup {‘V;n(t) - (V;n(t))Q‘} < Z sup {‘V?n(t) - (V;n(t))Q‘}

te%m,,ﬁw, m’ tE:@myml

and
Vi (t) = V], |_2p ZZ\UM Uka|<2Hth ZIUM#U
a=0 k=1

Moreover,

Pn

1
‘Vj,n(t)‘f' é %ZZ‘UIC,G—’_U]:’G

ol =4[]

Lemma 6.2 and Assumption S2 3. ensures that:

LE€ERB tEB y m

E( sup {\u;,n(t>—(u;,n<t>)2\}>ss sup {HMH } (Uro # Uto) < 86,227+ By (a2

then

E( sup {[v2.(0) - <u;,n<t>>2y}) < 8¢, 222 Bx (quAA).

tEBm,m

As 7272 ~ A, and Bx (gaA) < fo (1+ ¢2A) "1+, we want that:

(1+ g A) "3T9 < (nA) 2 (6.4)

Choice of ¢, The integers g, and p, = n/(2¢y) have to satisfy the inequalities (6.3) and (6.4).
If the process is exponentially S-mixing, then g, = (I 4 1)1In(n)/(6A) with [ € N~ {0} fits. If the
process is arithmetically S-mixing, let us set ¢, = (nA)” /A. According to inequalities (6.3) and
(6.4), we need:

1
In >0, oz<§—r] and a>1+9

This condition can only be fulfilled if 6 > 3. In that case, we can set o =2/(1+ 0).
Collecting the results, we obtain:
1
1v—).
(13)

Slo

~ 2 . 2
E (g = g5ll3:) <€ inf (llgsar, = g5ll3 +pens(m)) +
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6.4 Proof of Theorems 3.1 and 3.2

We only prove Theorem 3.2. We have that A~ (X (p31)a — Xka) = Ina+Zra+b(Xia) (see(3.5)).
Then

n

Palt) = () = 613 0122 = D (ks + Zia + b(Xea)) (H(Xka) — (X))

k=1
Moreover,
It =hlz= = Ntz +1Pl72 - 2/t(x)h(w)dw = [ltl17 + l1l172 — 4/t(w)b(w)f(x)dw
= [[tl7e + I1Pl7 — 4B (b(Xa)t(Xka)) -
Then ) )
Ln(t) = Tn(s) = It = hllp2 — lls = hllz2 = 2va(t — s) = 2pn(t — s) — 26u(t — s)
where
2 n
va(t) = = E(Iiat(Xra))
n k=1
2 n
pult) = =) Ziat(Xia)
n k=1
2 n
&) = = Jeat(Xpa) — E (Jrat(Xpa))
k=1
and
(k+1)A
Jka = Ixa + b(Xga) = A7 b(Xs)ds. (6.5)
kA
As

we can write
~ 2 ~ ~ ~
Hhm,N - hHL2 S Hhm,N - h”iz +2Vn (hm,N - hm,N)+2pn (hm,N - hm,N) +2£n (hm,N - gm,N) .

According to Cauchy-Schwarz, if we set %, = {t € Sy, ~, [|t]| ;2 < 1}, we have:

Jioy =], < Wi =B+ 5 [ = ]|, +6 50 (2000 + 0200 + €200)

R 2 R 2
According to Pythagoras, ||, N — hm’NH = Hhm’N - hH . |, N — h||2L2 , 8O
L L

R 2
e = B|| < o = Bl +12 sup (2(8) + p208) + C2(8)
L2 tEBy,
The following lemma is very useful and is proved later.

Lemma 6.4.
We have that

1. E [Ile| ykA} =cA (1 + X%A) and E [IlilA} ykA] < cA? (1 + X;CLA) .
2 E[Zial Fial =0, E[Zs|Fia] < B and E[Z0] Fia] < 5.
3. B [t4(Xea)b*(Xia)] < e[t 11t]3--

4. E(J25) < ¢, E(J}a) < ¢ and Var (Jpat(Xea)) < cllt])3e .
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where the filtration % = o (77, (W5)0<S<t) is defined in Proposition 3.1 and the constant ¢ depends
on b and o.

Then
1 — ’
2t = — Y E(Iyat(X
s 0 = gy (35 mmena)
1 n
< E};E(tz(Xm)E(I,fA}ﬁm))
<

A & Foo
TZE(tQ(XkA) (14 X24)) :cA/ (14 2%) f(2)t*(z)dz
k=1 -

where the constant ¢ depends on b. By (3.3), ||(1 4 2?) f(z)||__ < ¢ and we have that

sup v;(f) < eA )72 -
tEBm

As (<p,\7m)>\6Am is an orthonormal basis of S,, for the L2-norm,

sup pr() < D pa(eam)-
teBm XA

Besides,
1 < 2
E (6% (prm)) < =5 D E (93 m(Xka)E (Z2a] Fra)) < T5E (63 (X)) -
k=1
So, by Assumption S(4) 2.,

¢002Dm

0.2
(s i) < ZB (0, 00) < 27

We know that

tEBm AEAm,
As
G "
JkA = — b Xs dS,
A kA

the random sequence (Jia, Xpa) is stationary and G-mixing such that 8y x(n) < Bx(nA). Ac-
cording to Lemma 6.1, we have that

E (€2 (prm)) < %E (B(JOaXO)Jg(Pi,m(XO)) :

Then, as E (J§) < C and E (B?(Jo, Xo)) < ¢/(62A?),

B( s 20) < 2E(BUL X)) < 0B (Bl X))
tEBm n n
4¢9 Dy, 9 1/2 an1/2 _ cDy,
< n (E (B (JO’XO))) (E (JO)) < noA’

) 2 Dy (1
— < _h? Zm 2
E (Hhmw hHLz) < Wy = Bl + cB + e (0 + UO)
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Proof of Lemma 6.4 According to Proposition 3.1,
E < sup  (b(Xka+s) — b(XkA))Ql’ ka) < A (14 X74),
s€[0,A]
which proves (1). Points (2) and (3) are obvious, thus we only prove (4). We know that
Var (Jrat(Xia)) < 2E (Ipat*(Xa)) + 2Var(b(Xpa ) t(Xka))

and
Var(b(Xxa JH(Xka)) < /A 0 ()1 (2) f(z)dw < [ballZ, |1 £l IIE]132
According to Proposition 3.1, we have that

E (£*(Xpa)E (Iia| Fra)) < cAE ((1+ Xia) t2(Xka))
< cA /+O<> (14 2?) f(2)t*(z)dz.
By (3.3): .
[+ r@e@s < el 66

which ends the proof.

6.5 Proofs of Theorems 3.3 and 3.4

As previously, we only demonstrate Theorem 3.4. We have:

~ 2
v, =l < inl i, = BllT2 12 sup (12 (2) + P30 + E2(2) + pen(m) — pen(in)
L2 me.Mn tEB . m

where &y m = {t € SN, + Sm/.N,., ||t 2 < 1}. Let us consider a function p(m,m’) such that
12p(m, m’) = pen(m) + pen(m’). We have that

~ 2
Hh - h‘ < inf ||hm,nN, — hHQLQ +2pen(m) +12 sup (7 (t) + p5(t) + E2(t) — p(m,1m)).
L2 meMn tEBp,m
We already prove that sup,c g, v2(t) < cA. Moreover,
2 A~ 2 /
E < sup  pj(t) — p(m, m)) < ) E ( sup  pi(t) — p(m,m ))
tE B, m m'ey tEB ! m

and

E( sup fi(t)—P(m,m)> < > E( sup 53,(t)—p(mam')>

teggﬁz,’m m'eMn te‘%ﬂll.ﬂl

The triplet (Xga, Zra, Jra) is f-mixing and its 3-mixing coefficient is smaller than Bye~%. So we
can construct a set * like in Lemma 6.2 with

_ (214 3)1In(n)
qn = 79A .
Let us set, fora =0,1 and 0 < k < p, — 1:
1 qn 1 dn
Uka = w Z J{(2hta)gn+iat (X(*(Qk—i-a)qn-l—l)A) and V', (1) = — Z Z{(2kta)gninal (X(*(Qk—i-a)qn—i-l)A) :
=1 =1
Let us set: .
2 I & X
Itz = . Zt2 (X((Qk-i-a)qn-i—l)A) (6.7)
n l:1
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As for the proof of Theorem 2.4, we denote D = 2™ + 2™ and we consider (¢x, A € A) a basis of
S + Sm. Let us consider the spaces

Qzn = {w, Vk, Va € {0,1}, YA€ A, (Vi (#3)” <2030 oal}, }
Qy =Aw, V&, | ial < 2L+ 1)In(n)} and O=Q"NQzaANQ;. (6.8)

Risk bound on O We apply Lemma 6.3 to the variables Uy , and V}*,. We have that
polt) = puo(t) +pua(t) with  poalt) = 5 - Z Viw —E (Vi)

and

En(t) = &nolt) +&na(t) with & af 2p Z Uga— Uk a) :

Applying Lemma 6.3 to the variables V" . We have that

i

Var (V;,10) < qiE(thQ(XO)) = quE(tQ(XO)E(Z(ﬂ Fy)) < WA

Let us set & := {t € Sm + Sy ||75Hi2 < 1}. By (6.8), we have that

2
sup (Vi'a(t)10)” = sup (Z GAVQQ(¢A)10> < (Valon)lo)? <2020 3 llealr,

te# aea a3S1 \\en AEA AEA

where the semi-norm ||.[|; , is defined by (6.7). So by Assumption S4 2,

tbug (Va1 )2 < 202¢00D where D =27 2™
€

Moreover, in the previous section it is demonstrated that
¢oD
E su 2(t)1 < .
(tegg'/fvn’ pn( ) O) nA

Lemma 6.3 can be applied with H? = ¢go3D/(nA), V = o2q,'A~! and M} = 203¢o0D. We
find:

‘ ¢oD 1 D1n?(n) c
([ 0232 10) < (gomicemr S (555)).

We know that >, ,exp(—cD) = . exp (—c (2’” + 2’”/)) < C where the constant C' does not
depend on m nor on m’. Besides, " , D < 22. As

we have

¢oD C
E 2 () — 12 1 < =,
za((aw_so-uig) ) <5

m,m/’



Applying Lemma 6.3 to the variables Uy ,. According to Lemma 6.1, we have that

4

Var (U o) < B (51 (Xo) B (X0) < o (8 (e (X)) (8 (8 (x0))

n n

where E (B? (X)) < 2060/ (9A). Moreover, as Jo = Iy + b(Xp), we have, by Lemma 6.4:

IN

E (it (X)) < B[t (Xo) (b (Xo) +E (1] 7))]

clt2 E([A% (1+ Xita) + 0% (X0)] £ (X)) -

N

By Equation (3.3):

E (J§t4 (Xo)) <ec ||75HC2>o /]R A? (1 + a:4) f(x)t? (z) + b* () f ()t (2)dx

and
E (Jgt* (Xo)) < eD.
Collecting terms, we obtain:

CD1/2 D1/2
1) < —— = .
Var (Uf,a1o) < gnbA Cln(n)

Moreover,
Uz ool < IJot(Xo)Loll, < (214 1)D'/?In(n)

and we have proved in the previous section that

1E< sup fi(rf)]lo) < 8%%%.

tegﬁm,m,

We can apply Lemma 6.3 with M; = CD'/?1n(n), V = C"D'/2/In(n) and H? = 88y¢poD/(nbA).
We find that

D D'/? D1n*(n) VnA
E 5 2(t) — 84 — |1 < —eDV/? Z v _
((te%ufm, Vn(t) = 8460 n9A> O) . =¢ (nGA P ( ¢ ) + n2Az P Can(n)
<

where the constant ¢ is independent of D, n and A. We have that ), D2 exp (—ch/Q)
Sopey kY% exp (—ck'/?) < 400. So, if

we have that

D C
> E ((teigup ZHOR 8460¢0719—A> 11(9>+ <X

m/!
m’ e%ﬂ m,m

Risk bound on O¢° We know that
1/2
E( sup (p2(0) + £2(1) nm) <2,/ (07 (E( sup (21 +5§<t>)2>>
te‘%nﬂﬂn tegg'm’,'m

and
P(0°) < P(Q) + P (Q%,) +P(Q5).

According to Lemma 6.2,
P (Q*) <n 2. (6.9)

The following lemma is proved later:
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Lemma 6.5.

P( %A)Si

)

c
o and P(Q9) < -

We have that

E < sup  (pa(t) +£3,(t))2> <E ((Z P () +£§(wx)> ) :
tEB,t m AEA

n 2
= Z ox(Xka) (Zka + Jea) — E (JOSDA(JO))>
=1

n

Besides,

—_

P2 (px) + €2 (o)

3

23 AR (Kea) (228 + JRa) +E (R (X0) E ()
k=1

IN

According Assumption S(4) Point 2, we know that sup, Y-, ©3(2) < ¢o, so:

m/,m

E <t€;3up (0%(t) + gz(t)f) < 27¢%% Z [E (Zea + Jia) + (E (J;?A))Q] :

k=1

By Lemma 6.4, we obtain that:

2 1
E <t6;§m (02 (1) + &2(1)) ) <1 + @) :

where ¢ does not not depend on m,m’, n, nor on A. So, by (6.9) and Lemma 6.5,
E sup + 52 ]l@c <c
(teggm’,m ( ( ) Z ZA
As 9, <nA, as soon as [ > 2:

E( wp () +E0) n) <

Cc
tERB,; Tl

m/m

Proof of Lemma 6.5

Bound of P(025): We have that
P(Q5) =P 3k, |Jeal > (20 +3)In(n)) < nP(|Jo] > (214 3)In(n)).

It is known that
P (|Jo| > (214 3)In(n)) < n~*3E (exp (| Jo])) -

For any m, by stationarity,

E (|Jo|™) < E ([b(Xo)|™ /|b
By (3.3),
E (exp (1)) < / exp ([b(@)]) f(z)dz < ¢
and
P(Q9) §n*2l.
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Bound of P (QCZA) According to Lemma 2 p.533 of Comte et al. [6], we have that
. 2
P ((Via(on)” 2 2030 [0al1,) < 2exp(—a,0).
As ¢, = (21 + 3)/(6A), we obtain:
P ((Vita(on)” = 2080 leal} ) < 207 ),
So we can write:
* 2 * 2
P(2g) =P (30, 3k 3N, (Viulpn)’ 2 2030 loallh, ) < AP (Vea(on)” = 2080 a7 ) -
As|A| < D.K,, with K,, = nA, we have:

P(Q%) < @n(nA)n’Ql*Q < (nA)3/2 n2l—2 < n2

6.6 Proof of Theorem 4.1
This proof follows the lines of Lacour [15], section 6.8. Let us set & = {w,

f= JFHOO < f0/2}-

Risk bound on €. On &, f > fo/2. We know that

i@ = % (%Z@(m)) (@),

)\EA";H k=1

SO

2
1 & )
131172 = Z (EZSDI)\(XICA)> < Z )2 < y23m
pr

AEApm, AEA 0o

As (|31 < 1h02™ [|3]2. and 251 < nA,
||§||io < o1 2™ < oty (nA)4/5

and for nA large enough, |\§|\§o < nAfo/2 < nAmingea f(z). So,on &, b= §/(2f) and:

h— 9-9 9(1_1
e (53 )

EO@—MW}M)Sﬂ?EOQ—N;)+HAMﬂuEOV—f

Therefore

2
L2) '
Risk bound on £°. As HZ;H < nA, we have that

([0l 1e:) < (00 + Ioall) Pie)

It is known that: ~ ~
= i, (1= Frloe [ = 7] )
lr= <, (1 = Fomolow + [ Fmo = 7| _
As f € %5 ., by DeVore and Lorentz [10] p182 and Barron et al. [2| (Lemma 12):

If = me”oo < Como(=o+1/2) < Cln(nA)_aH/Q.
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So || f = fmolloe < fo/4 for n large enough, and £° C {Hfm0 = fH > f0/4}. As fm, and f belongs
to the linear space Sy,, + Sm, which satisfies Assumption S2, we have that

2 , L2
oo my€Mon L2
We know:
R 2 ) 1 n
Hfmo — fmy, Lo =, Sup Vo n(t) where wg,(t) = - t(Xra) — / t(z)f(z)dz.
te‘%ﬂlo.ﬂllo k=1 R
Then

2
PE°)< sup P sup 3 ,(t) > 2_m0vm°f—0 .
mheto, \teB, ., 1649

mg,mg

As in Subsection 6.3, we use the set 2*. We have that

*C 1
PO) < —

so P (£°) <P (E°NQ*°) + -4 Let us consider the random variables

. 1 dn . . 1 dn .
Upa = w >t (X(2<k—1)qn+zm) and Uy, = . Dot <X<<2k—1>qn+l)A) :
=1 =1
The random variables (U,: a) i are independent and identically distributed. It is demon-
7/ 1<k<pn

strated in Subsection 6.3 that

sup ||U,:l

mqg,m 6

’ <\ D3? | Var (Uy ;) <c and H”:=E sup v ,(t) §C£
o0 7 te ' nA

mQ .m6

where D = 270 4 2™ As, by assumption, D? < nA/log?(nA) for n large enough, we have that
H? =CD/(nA) < f2/64¢0D. then

/3
PENQ )< sup P sup I/znt >2H? + .
( ) mhEMo,n <te% 0. ®) 641pg D

mqg,m 6

According to (6.1), we have that

cnA
P(ENQ* )< sup exp (—7)
Enas o hm

where the constant c is independent of n and D,,.By assumption, D? < n?nA/In*(nA), so
P(E°NQY) < (nA)~T .

If n? is large enough, P (€N Q*) < (nA)~2 and if [ > 2, we have that

E(—oal” 1 L
— ¢ < —
(H AHL2 € ) — nA

which ends the proof.

A Linear subspaces

A.1 Linear subspaces satisfying Assumptions S1 or S3

To use simple notations, we set in this section A = [0, 1].
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Trigonometric polynomials

The trigonometric polynomial linear subspaces V;;, = Vect {1, cos(mAx)}; -\ o, satisfy Assumption
S3. The linear subspaces S, = {sin(7Az)}, <o, satisfy Assumption S1 for k =0, 1.

Proof. DeVore and Lorentz [10] (Corollary 2.5 p205) and Barron et al. [2] (p120) prove that As-
sumption S3 is satisfied by subspaces V.
Points 1. et 2. of Assumption S1 are fulfilled by the subspaces (S,,). Moreover, for any ¢t € S,,,

12 < 1122 || S sin’ ()| < Do ]2
=1 -
We have that
H\I’,Qn(x)Hoo = Z A2 cos?(\x) <m?®=D3.
=1 -

Besides, any function ¢ € Sy, can be written /(2/m) > 1", ax sin(Az), so

m m
112 = 2 32 a3 eos? )32 = 3 03N < m? )2
A=1 A=1

Points 3. and 4. of Assumption S1 are satisfied.

Piecewise polynomials
Let us set

90(33) = 1[0,1] (ﬂf)a 91(33) = 33]1[0,1] (33)7 ) gr(x) = ﬂfr]l[o,l] (33)
and pa xm = 2™/2g, (2™x — \). The linear subspaces

Vi = Vect (parm, 0<a<r, 0<A<2™—1)

satisfy Assumption S3. The linear subspaces

S, = Vect ({@a,k,m}ogag, 1<A<2m—1 U {‘Pa%m}lgagr, Ae{o,zm})
satisfy Assumption S1 for k£ < r.

Proof. DeVore and Lorentz [10] (Theorem 3.4 p362) and Barron et al. [2] (p120) prove that (V)
satisfy Assumption S3.

The linear subspaces (.S,,) satisfy Points 1. and 2. of Assumption S1. Moreover, the functions
©a,x,m have disjoint supports if A # X', and for any a, ||gal|,, < 1. So

Z Z (Spa,x,mf

AEA,, a=0

T

Z (Sﬁa,)\,m)2

a=0

2 2 2 2
1tll% < [12llZ2 = [t <(r+ 12" [t -

[e') oo

In the same way, we obtain:

Z zr: (%,,\,m)2

AEA R a=0

|97 ()

Hoo_

o0 oo

For any function t € Sy,

3 3 (@)

AEA, a=0

2

:ZQW

L2 AEA,,

2

2
112 =

doomgLra— )| =22
a=0 2

> gl (@)
a=0

L L2

Points 2., 3., and 4. are proved.
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Spline functions restricted to [0, 1]

Spline functions g¢,, where g, is the r + 1 time convolution of the indicator function of [0, 1],
generates a r-regular multi-resolution analysis of L*(R). Their supports are included in [0,7 + 1]
and they belong to €7 N€"~". Let us set oxm = 2"gr (2™x — A) Ljg,1(z). Then

Vi = Vect (oxm, A=—r+1,...,2™)
satisfies Assumption S3 for £ < r and

Sm = Vect (oxm, A=0,...,2™ —r)
satisfies Assumption S2.1 for k < r.

Proof. Schmisser [23] proved that the linear subspaces (V;,,) satisfy Assumption S3.1. The func-
tions g, have a compact support: to prove that the subspaces (S,,) fulfil Assumption S1, we use

the same arguments as in the previous paragraph.
O

A.2 Restricted spaces of wavelets
The properties of wavelets are defined in Meyer [20] p21-22 (Definitions 1 and 2).

Definition A.1.
Let us consider
S, = {@A,m = 2m/2<p(2m. —A), A€ Z}

a multi-resolution analysis of L*(R) such that (©xm)ycy is an orthonormal basis of Sy,. Let us set
Sy = {ipam 1= 2"26(27. = X), N < 2N}

and denote, for any function t € L*(R), t,, (resp tm.n) its orthogonal projection over Sy, (resp
S, N)-

Lemma A.1.
If

/a:QtQ(x)dx <+4oo , telL; and sup(|zp(r)]) < +oo,
zeR

then
c

HtM,N - tm”QLz < N
where the constant c is independent of m and N .

The proof is done in Comte et al. [§].
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