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Nonparametri estimation of the derivatives of thestationary density for stationary proessesEmeline ShmisserUniversité Paris DesartesLaboratoire MAP5 Emeline.Shmisser�math-info.univ-paris5.frAbstratIn this artile, our aim is to estimate the suessive derivatives of the stationary density
f of a stritly stationary and β-mixing proess (Xt)t≥0. This proess is observed at disretetimes t = 0, ∆, . . . , n∆. The sampling interval ∆ an be �xed or small. We use a penalizedleast-square approah to ompute adaptive estimators. If the derivative f (j) belongs to theBesov spae B

α
2,∞, then our estimator onverges at rate (n∆)−α/(2α+2j+1). Then we onsider adi�usion with known di�usion oe�ient. We use the partiular form of the stationary densityto ompute an adaptive estimator of its �rst derivative f ′. When the sampling interval ∆tends to 0, and when the di�usion oe�ient is known, the onvergene rate of our estimator is

(n∆)−α/(2α+1). When the di�usion oe�ient is known, we also onstrut a quotient estimatorof the drift for low-frequeny data.Key words: derivatives of the stationary density, di�usion proesses, mixing proesses, nonpara-metri estimation, stationary proessesAMS Classi�ation: 62G05, 60G101 IntrodutionIn this artile, we onsider a stritly stationary, ergodi and β-mixing proess (Xt, t ≥ 0) observedat disrete times with sampling interval ∆. The jth order derivatives f (j) (j ≥ 0) of the stationarydensity f are estimated by model seletion. Adaptive estimators of f (j) are onstruted thanks toa penalized least-square method and the L2 risk of these estimators is omputed.Numerous artiles deal with non parametri estimation of the stationary density (or the deriva-tives of the stationary density) for a stritly stationary and mixing proess observed in ontinuoustime. For instane, Bosq [4℄ uses a kernel estimator, Comte and Merlevède [5℄ realize a projetionestimation and Leblan [16℄ utilizes wavelets. Under the Castellana and Leadbetter's onditions,when f belongs to a Besov spae Bα
2,∞, the estimator of f onverges at the parametri rate T−1/2(where T is the time of observation). The non parametri estimation of the stationary density ofa stationary and mixing proess observed at disrete times t = 0,∆, . . . , n∆ has also been studied,espeially when the sampling interval ∆ is �xed. For example, Masry [19℄ onstruts wavelets es-timators, Comte and Merlevède [7℄ and Lerasle [17℄ use a penalized least-square ontrast method.The L2 rate of onvergene of the estimator is in that ase n−α/(2α+1). Comte and Merlevède [5℄demonstrate that, if the sampling interval ∆ → 0, the penalized estimator of f onverges withrate (n∆)−α/(2α+1) and, under the onditions of Castellana and Leadbetter, the parametri rateof onvergene is reahed.There are less papers about the estimation of the derivatives of the stationary density, and themain results are for independent and identially distributed random variables. For instane, Rao[22℄ estimates the suessive derivatives f (j) of a multi-dimensional proess by a wavelet method.He bounds the L2 risk of his estimator and omputes the rate of onvergene on Sobolev spaes.This estimator onverges with rate n−α/(2α+2j+1). Hosseinioun et al. [13℄ estimate the partialderivatives of the stationary density of a mixing proess by a wavelet method, and their estimatorsonverge with rate (n∆)

−α/(2α+1+2j).Classial examples of β-mixing proesses are di�usions: if (Xt) is solution of the stohastidi�erential equation 1



dXt = b(Xt)dt+ σ(Xt)dWt and X0 = η,then, with some lassial additional onditions on b and σ, (Xt) is exponentially β-mixing. Dalalyanand Kutoyants [9℄ estimate the �rst derivative of the stationary density for a di�usion proessobserved at ontinuous time. They prove that the minimax rate of onvergene is T−2α/(2α+1)where T is the time of observation. This is the same rate of onvergene as for non parametriestimator of f .A possible appliation is, for di�usion proesses, the estimation of the drift funtion b byquotient. Indeed, when σ = 1, we have that f ′ = 2bf . The drift estimation is well-known whenthe di�usion it observed at ontinuous time or for high-frequeny data (see Comte et al. [6℄ forinstane), but it is far more di�ult when ∆ is �xed. Gobet et al. [12℄ build non parametriestimators of b and σ when ∆ is �xed and prove that their estimators reah the minimax L2 risk.However, their estimators are built with eigenvalues of the in�nitesimal generator and are di�ultto implement.In this paper, in a �rst step, we onsider a stritly stationary and β-mixing proess (Xt)t≥0observed at disrete times t = 0,∆, . . . , n∆. The suessive derivatives f (j) (0 ≤ j ≤ k) of thestationary density f are estimated either on a ompat set, or on R thanks to a penalized least-square method. We introdue a sequene of inreasing linear subspaes (Sm) and, for eah m, weonstrut an estimator of f (j) by minimising a ontrast funtion over Sm. Then, a penalty funtion
pen(m) is introdued to selet an estimator of f (j) in the olletion. When f (j) ∈ Bα

2,∞, the L2risk of this estimator onverges with rate (n∆)
−2α/(2α+2j+1) and the proedure does not requirethe knowledge of α. When j = 0, this is the rate of onvergene obtained by Comte and Merlevède[7, 5℄. Moreover, when α is known, Rao [22℄ obtained a rate of onvergene n−2α/(2α+2j+1) forindependent variables.In a seond step, we assume that the proess (Xt) is solution of a stohasti di�erential equationof known di�usion oe�ient σ. Then f ′ an be estimated by estimating 2bf and f . An estimatorof 2bf is built either on a ompat set, or on R by a penalized least-square ontrast method. Itonly onverges when the sampling interval ∆ → 0, but in this ase, its rate of onvergene is betterthan for the previous estimator: it is (n∆)

−2α/(2α+1) when f ′ ∈ Bα
2,∞ (and not (n∆)

−2α/(2α+3)).This is the minimax rate obtained by Dalalyan and Kutoyants [9℄ with ontinuous observations.Then, an estimator by quotient of the drift funtion b is onstruted. When ∆ is �xed, itreahes the minimax rate obtained by Gobet et al. [12℄.In Setion 2, an adaptive estimator of the suessive derivatives f (j) of the stationary density fof a stationary and β-mixing proess is omputed by a penalized least square method. In Setion3, only di�usions with known di�usion oe�ients are onsidered. An adaptive estimator of f ′ (infat, an estimator of 2bf) is built. In Setion 4, a quotient estimator of b is onstruted. In Setion5, the theoretial results are illustrated via various simulations using several models. Proesses
(Xt) are simulated by the exat retrospetive algorithm of Beskos et al. [3℄. The proofs are givenin Setion 6. In the Appendix, the spaes of funtions are introdued.2 Estimation of the suessive derivatives of the stationarydensity2.1 Model and assumptionsIn this setion, a stationary proess (Xt)t≥0 is observed at disrete times t = 0,∆, . . . , n∆ and thesuessive derivatives f (j) of the stationary density f = f (0) are estimated for 0 ≤ j ≤ k. Thesampling interval ∆ is �xed or tends to 0. The estimation set A is either a ompat [a0, a1], or R.Let us onsider the norms

‖.‖∞ = sup
A

|.| , ‖.‖L2 = ‖.‖L2(A) and 〈., .〉 = 〈., .〉L2(A) . (2.1)We have the following assumptions: 2



Assumption M1.The proess (Xt) is ergodi, stritly stationary and arithmetially or exponentially β-mixing.A proess is arithmetially β-mixing if its β-mixing oe�ient satis�es:
βX(t) ≤ β0 (1 + t)

−(1+θ) (2.2)where θ and β0 are some positive onstants. A proess is exponentially (or geometrially) β-mixingif there exists two positive onstants β0 and θ suh that:
βX(t) ≤ β0 exp (−θt) (2.3)Assumption M2.The stationary density f is k times di�erentiable and, for eah j ≤ k, its derivatives f (j) belongto L2(A) ∩ L1(A). Moreover, f (j) satis�es ∫

A
x2
(

f (j)(x)
)2
dx < +∞.Remark 2.1. If A = [a0, a1], Assumption M2 is only ∀j ≤ k, f (j) ∈ L2(A).Our aim is to estimate f (j) by model seletion. Therefore an inreasing sequene of �nitedimensional linear subspaes (Sm) is needed. On eah of these subspaes, an estimator of f (j) isomputed, and thanks to a penalty funtion depending on m, the best possible estimator is hosen.Let us denote by C l the spae of funtions l times di�erentiable on A and with a ontinuous ℓthderivative, and C l

m the set of the pieewise funtions C l. To estimate f (j), 0 ≤ j ≤ k on a ompatset, we need a sequene of linear subspaes that satis�es the assumption:Assumption S1 : Estimation on a ompat set. 1. The subspaes Sm are inreasing, of �-nite dimension Dm and inluded in L2(A).2. For any m, any funtion t ∈ Sm is k times di�erentiable (belongs to C k−1∩C k
m) and satis�es:

∀j ≤ k, t(j)(a0) = t(j)(a1) = 0.3. There exists a norm onnetion: for any j ≤ k, there exists a onstant ψj suh that:
∀m, ∀t ∈ Sm,

∥

∥

∥t(j)
∥

∥

∥

2

∞
≤ ψjD

2j+1
m ‖t‖2

L2 .Let us onsider (ϕλ,m, λ ∈ Λm) an orthonormal basis of Sm with |Λm| = Dm. We have that
∥

∥Ψ2
j,m(x)

∥

∥

∞
≤ ψjD

2j+1
m where Ψ2

j,m(x) =
∑

λ∈Λm

(

ϕ
(j)
λ,m(x)

)2.4. There exists a onstant c suh that, for any m ∈ N, any funtion t ∈ Sm:
∥

∥

∥t(j)
∥

∥

∥

L2

≤ cD2j
m ‖t‖2

L2 .5. For any funtion t belonging to the unit ball of a Besov spae Bα
2,∞:,

‖t− tm‖2
L2 ≤ D−2

m ∨D−2α
mwhere tm is the orthogonal (L2) projetion of t over Sm.Remark 2.2. Beause of Point 2, the projetion tm onverges very slowly to t on the boundariesof the ompat A = [a0, a1] and the inequality ‖t− tm‖2

L2 ≤ D−2α
m an not be satis�ed for any

t ∈ Bα
2,∞.In the Appendix, several sequenes of linear subspaes satisfying this property are given. Toestimate f (j) on R, slightly di�erent assumptions are needed: let us onsider an inreasing se-quene of linear subspaes Sm generated by an orthonormal basis {ϕλ,m, λ ∈ Z}. We have that

dim(Sm) = ∞, so to build estimators, we use the restrited spaes Sm,N = Vet (ϕλ,m, λ ∈ Λm,N )with |Λm,N | < +∞. The following assumption involves the sequenes of linear subspaes (Sm) and
(Sm,N). 3



Assumption S2 : Estimation on R. 1. The sequene of linear subspaes (Sm) is inreasing.2. We have that |Λm,N | := dim(Sm,N ) = 2m+1N + 1 .3. ∀m,N ∈ N, ∀t ∈ Sm,N : t ∈ C k−1 ∩ C k
m and ∀j < k, lim|x|→∞ t(j)(x) = 0.4. ∃ψj ∈ R

+, ∀m ∈ N, ∀t ∈ Sm, ∀j ≤ k, ∥∥t(j)∥∥2

∞
≤ ψj2

(2j+1)m ‖t‖2
L2 . Partiularly,

∥

∥Ψ2
m(x)

∥

∥

2

∞
=

∥

∥

∥

∥

∥

∑

λ∈Z

(

ϕ
(j)
λ,m(x)

)2
∥

∥

∥

∥

∥

2

∞

≤ ψj2
(2j+1)m.5. ∃c, ∀m ∈ N, ∀t ∈ Sm, ∀j ≤ k: ∥∥t(j)∥∥2

L2
≤ c22jm ‖t‖2

L2 .6. For any funtion t ∈ L2 ∩ L1 (R) suh that ∫ x2t2(x)dx < +∞,
‖tm − tm,N‖2

L2 ≤ c
2m

Nwhere tm is the orthogonal (L2) projetion of t over Sm and tm,N its projetion over Sm,N .7. There exists r ≥ 1 suh that, for any funtion t belonging to the unit ball of a Besov spae
Bα

2,∞ (with α < r),
‖t− tm‖2

L2 ≤ 2−2mα.Proposition 2.1.If the funtion ϕ generates a r-regular multiresolution analysis of L2, with r ≥ k, then the subspaes
Sm = Vet {ϕλ,m, λ ∈ Z} and Sm,N = Vet {ϕλ,m, λ ∈ Λm,N}(where ϕλ,m(x) = 2m/2ϕ (2mx− λ) and Λm,N = {λ ∈ Z, |λ| ≤ 2mN}) satisfy S2.For the de�nition of the multi-resolution analysis, see Meyer [20℄, hapter 2.2.2 Risk of the estimator for �xed mAn estimator ĝj,m of gj := f (j) is omputed by minimising the ontrast funtion

γj,n(t) = ‖t‖2
L2 −

2(−1)j

n

n
∑

k=1

t(j)(Xk∆).Under Assumptions S1 or S2:
E (γj,n(t)) = ‖t‖2

L2−2 (−1)j
〈

t(j), f
〉

= ‖t‖2
L2−2

〈

t, f (j)
〉

=
∥

∥

∥
t− f (j)

∥

∥

∥

2

L2

−C where C =
∥

∥

∥
f (j)

∥

∥

∥

2

L2

.If Assumption S1 is satis�ed, let us denote
ĝj,m(t) = arg inf

t∈Sm

γj,n(t),and, under Assumption S2,
ĝj,m,N(t) = arg inf

t∈Sm,N

γj,n(t).We have the two following theorems:Theorem 2.1 : Estimation on a ompat set.Under Assumptions M1-M2 and S1, the estimator risk satis�es, for any j ≤ k and m ∈ N:
E

(

‖ĝj,m − gj‖2
L2

)

≤ ‖gj,m − gj‖2
L2 + 8cβ0ψj

D2j+1
m

n

(

1 ∨ 1

θ∆

)where gj,m is the orthogonal (L2) projetion of gj over Sm. The onstants β0 and θ are de�ned in(2.2) or (2.3), ψj is de�ned in Assumption S1 and c is a universal onstant.4



Theorem 2.2 : Estimation on R.Under Assumptions M1-M2 and S2, for any j ≤ k and m ∈ N:
E

(

‖ĝj,m,N − gj‖2
L2

)

≤ ‖gj,m − gj‖2
L2 + C

2m

N
+ 8cβ0ψj

2(2j+1)m

n

(

1 ∨ 1

θ∆

)where C depends on ∫∞

−∞
x2g2(x)dx and of the hosen sequene of linear subspaes (Sm,N ). A-ording to Assumption S2 6., if N ≥ (n ∧ nθ∆),

E

(

‖ĝj,m,N − gj‖2
L2

)

≤ ‖gj,m − g‖2
L2 + cβ0

2(2j+1)m

n

(

1 ∨ 1

θ∆

)

.If the random variables (X0, . . . , Xn) are independent, the derivatives of the density an beestimated in the same way and the two previous theorems (as well as the theorems for the adaptiverisk) an be applied if we set θ = +∞.When ∆ = 1, the risk bound is the same as in Hosseinioun et al. [13℄.2.3 Optimisation of the hoie of mUnder Assumption S1 and if gj belongs to the unit ball of a Besov spae Bα
2,∞ with α ≥

1, then ‖gj,m − gj‖2
L2 ≤ cD−2

m and the best bias-variane ompromise is obtained for Dm ∼
(n (1 ∨ θ∆))1/(2j+3). In that ase,

E

(

‖ĝj,m − gj‖2
L2

)

≤ (n ∨ nθ∆)−2/(2j+3) .If Assumption S2 is satis�ed and if gj belongs to Bα
2,∞, with r ≥ α, then ‖gj,m − gj‖2

L2 ≤ c2−2mα.If N ≥ n (1 ∧ θ∆), the best bias-variane ompromise is obtained for
m ∼ 1

2j + 1 + 2α
log2(n (1 ∨ θ∆)) and then E

(

‖ĝj,m,N − gj‖2
L2

)

≤ (n ∨ n∆)
−2α/(2α+2j+1)

.Rao [22℄ builds estimators of the suessive derivatives f (j) for independent variables. This esti-mators onverge with rate n−2α/(2α+2j+1).2.4 Risk of the adaptive estimator on a ompat setAn additional assumption for the proess (Xt) is needed:Assumption M3.If the proess (Xt)t≥0 is arithmetially β-mixing, then the onstant θ de�ned in (2.2) is suh that
θ > 3.Let us set Mj,n = {m, Dm ≤ Dj,n} where Dj,n ≤ (n∆ ∧ n)1/(2j+2) is the maximal dimension.For any m ∈ Mj,n, an estimator ĝj,m ∈ Sm of gj = f (j) is omputed. Let us introdue a penaltyfuntion penj(m) depending on Dm and n:

penj(m) ≥ κβ0ψj
D2j+1

m

n

(

1 ∨ 1

θ∆

)

.Then we onstrut an adaptive estimator: hoose m̂j suh that
g̃j := ĝj,m̂j

where m̂j = arg min
m∈Mj,n

[γj,n (ĝj,m) + penj(m)] .Theorem 2.3 : Adaptive estimation on a ompat set.There exists a universal onstant κ suh that, if Assumptions M1-3 and S1 are satis�ed:
E

(

‖g̃j − gj‖2
L2

)

≤ C inf
m∈Mj,n

(

‖gj,m − gj‖2
L2 + penj(m)

)

+
c

n

(

1 ∨ 1

∆

)where C is a universal onstant and c depends on ψj , β0 and θ.5



Remark 2.3. The adaptive estimator automatially realises the bias-variane ompromise. Comteand Merlevède [5℄ obtain similar results when j = 0 and the sampling interval ∆ is �xed, and theirremainder term is smaller: it is 1/n and not ln2(n)/n.The penalty funtion depends on β0 and θ. Unfortunately, these two onstants are di�ultto estimate. However, the slope heuristi de�ned in Arlot and Massart [1℄ enables us to hooseautomatially a onstant λ suh that the penalty λD2j+1
m /(n∆) is good. It is also possible to usethe resampling penalties of Lerasle [18℄.2.5 Risk of the adaptive estimator on RLet us denote Mj,n = {m, 2m ≤ Dj,n} with D

2j+2
j,n ≤ n∆ ∧ n and �x N = Nn = (n ∧ n∆). Forany m ∈ Mj,n, an estimator ĝj,m,Nn

∈ Sm,Nn
of gj is omputed. The best dimension m̂j is hosensuh that

m̂j = arg min
m∈Mj,n

[γj,n (ĝj,m,Nn
) + penj(m)] where penj(m) = cψj

(

2(2j+1)m

n
∨ 2(2j+1)m

nθ∆

)and the resulting estimator is denoted by g̃j := ĝj,m̂j ,Nn
.Theorem 2.4 : Adaptive estimation on R.Under Assumptions M1-M3 and S2,

E

(

‖g̃j − gj‖2
L2

)

≤ C inf
m∈Mj,n

(

‖gj,m − gj‖2
L2 + penj(m)

)

+
c

n

(

1 ∨ 1

∆

)where c depends on ψj , β0 and θ.3 Case of stationary di�usion proessesLet us onsider the stohasti di�erential equation (SDE):
dXt = b(Xt)dt+ σ(Xt)dWt, X0 = η, (3.1)where η is a random variable and (Wt)t≥0 a Brownian motion independent of η. The drift funtion

b : R → R is unknown and the di�usion oe�ient σ : R → R
+∗ is known. The proess (Xt)t≥0 isassumed to be stritly stationary, ergodi and β-mixing. Obviously, we an onstrut estimators ofthe suessive derivatives of the stationary density using the previous setion. But in this setion,we use the properties of a di�usion proess to ompute a new estimator of the �rst derivative ofthe stationary density. If the sampling interval ∆ is small, this new estimator onverge faster thanthe previous one.3.1 Model and AssumptionsThe proess (Xt)t≥0 is observed at disrete times t = 0,∆, . . . , n∆.Assumption M4.The funtions b and σ are globally Lipshitz and σ ∈ C 1.Assumption M4 ensures the existene and uniqueness of a solution of the SDE (3.1).Assumption M5.The di�usion oe�ient σ belongs to C 1, is bounded and positive: there exist onstants σ0 and σ1suh that:

∀x ∈ R, 0 < σ1 ≤ σ(x) ≤ σ0.Assumption M6.There exist onstant r > 0 and 1 ≤ α ≤ 2 suh that
∃M0 ∈ R

+, ∀x, |x| ≥M0, xb(x) ≤ −r |x|α .6



Under Assumptions M4-M6, there exists a stationary density f for the SDE (3.1), and
f(x) ∝ σ−2(x) exp

(

2

∫ x

0

b(s)σ−2(s)ds

)

. (3.2)Then f has moments of any orders and:
∫

|f ′(x)|2 dx <∞, ∀m ∈ N,

∫

|x|m |f ′(x)| dx <∞ (3.3)
∀m ∈ N, ‖xmf(x)‖∞ <∞,

∥

∥b4(x)f(x)
∥

∥

∞
<∞ and ∫

exp (|b(x)|) f(x)dx <∞. (3.4)Assumption M7.The proess is stationary: η ∼ f .Aording to Pardoux and Veretennikov [21℄, Proposition 1 p.1063, under Assumptions M5-M6, the proess (Xt) is exponentially β-mixing: there exist onstants β0 and θ suh that βX(t) ≤
β0e

−θt. Moreover, Gloter [11℄ prove the following property:Proposition 3.1.Let us set Ft = σ (η, Ws, s ≤ t) . Under Assumptions M4 and M7, for any k ≥ 1, there exists aonstant c(k) depending on b and σ suh that:
∀h, 0 < h ≤ 1, ∀t ≥ 0 E

(

sup
s∈[t,t+h]

|b(Xs) − b(Xt)|k
∣

∣

∣

∣

∣

Ft

)

≤ c (k)hk/2
(

1 + |Xt|k
)

.Remark 3.1. To estimate f ′, it is enough to have an estimator of 2bf and an estimator of f . Indeed,aording to equation (3.2), the �rst derivative f ′ satis�es:
f ′(x)

f(x)
∝ 2b(x)

σ2(x)
− 2

σ′(x)

σ(x)
.By assumption, the di�usion oe�ient σ is known. Besides, aording to Assumptions M4 andM5, σ′ and σ−1 are bounded. As we have already onstruted an estimator of f = g0 in Setion2, it remains to estimate 2bf .In this setion, we onstrut an estimator h̃ of h := 2bf either on a ompat set [a0, a1], or on

R.3.2 Sequene of linear subspaesLike in the previous setion, estimators ĥm of h are omputed on some linear subspaes Sm or
Sm,N , then a penalty funtion pen(m) is introdued to hoose the best possible estimator h̃. If his estimated on a ompat set A = [a0, a1], the following assumption is needed:Assumption S3 : Estimation on a ompat set. 1. The sequene of linear subspaes Sm isinreasing, Dm = dim(Sm) <∞ and ∀m, Sm ⊆ L2(A).2. There exists a norm onnetion: for any m ∈ N, any funtion t ∈ Sm satis�es

‖t‖2
∞ ≤ φ0Dm ‖t‖2

L2 .Partiularly, if we note Φm(x) =
∑

λ∈Λm
(ϕλ,m(x))

2 where (ϕλ,m, λ ∈ Λm) is an orthonor-mal basis of Sm, then ∥∥Φ2
m(x)

∥

∥

∞
≤ φ0Dm.3. There exists r ≥ 1 suh that, for any funtion t belonging to Bα

2,∞ with α ≤ r,
‖t− tm‖2

L2 ≤ D−2α
mwhere tm is the orthogonal projetion of t over Sm.7



In the Appendix, several examples of sequene of linear subspaes satisfying this assumptionare given. To estimate h on R, an inreasing sequene of linear subspaes Sm = Vet (ϕλ,m λ ∈ Z)(where {ϕλ,m}λ∈Z
is an orthonormal basis of Sm) is onsidered. As the dimension of those sub-spaes is in�nite, the trunated subspaes Sm,N = Vet (ϕλ,m, λ ∈ Λm,N) are used.Assumption S4 : Estimation on R. 1. The sequene of linear subspaes (Sm) is inreasing.2. The dimension of the subspae Sm,N is 2m+1N + 1.3. ∃φ0 , ∀m, ∀t ∈ Sm , ‖t‖2

∞ ≤ φ02
m ‖t‖2

L2 . Let us set Φm(x) =
∑

λ∈Z
(ϕλ,m(x))2, then

∥

∥Φ2
m(x)

∥

∥

∞
≤ φ02

m where φ0 is a onstant independent of N .4. For any funtion t ∈ L2 ∩ L1 (R) suh that ∫ x2t2(x)dx < +∞,
‖tm − tm,N‖2

L2 ≤ c
2m

Nwhere tm is the orthogonal (L2) projetion of t over Sm and tm,N its projetion over Sm,N .5. There exists r ≥ 1 suh that for any funtion t belonging to the unit ball of a Besov spae
Bα

2,∞ with α ≤ r,
‖t− tm‖2

L2 ≤ c2−2mα.Proposition 3.2.Let us onsider a funtion ϕ generating a r-regular multi-resolution analysis of L2 with r ≥ 0. Letus set
Sm = Vet {ϕλ,m, λ ∈ Z} and Sm,N = Vet {ϕλ,m, λ ∈ Λm}where ϕλ,m(x) = 2m/2ϕ (2mx− λ) and Λm = {λ ∈ Z, |λ| ≤ 2mN}. Then the subspaes Sm,Nsatisfy Assumption S4.Funtions ϕ(x) = sin(x)/x also generate a multi-resolution of L2(R), but they are not even0-regular. However, they satisfy Assumption S4 if Sobolev spaes take the plae of Besov spaes inPoint 5. The de�nition of Sobolev spaes of regularity α is realled here:

Wα =

{

g,

∫ ∞

−∞

|g∗(x)|2
(

x2 + 1
)α
dx <∞

}where g∗ is the Fourier transform of g.3.3 Risk of the estimator with m �xedFor any m ∈ Mn, where Mn = {m, Dm ≤ Dn}, an estimator ĥm of h = 2bf is omputed. Themaximal dimension Dn is spei�ed later. The following ontrast funtion is onsidered:
Γn(t) = ‖t‖2

L2 −
4

n∆

n
∑

k=1

(

X(k+1)∆ −Xk∆

)

t (Xk∆) .As ∆−1
(

X(k+1)∆ −Xk∆

)

= Ik∆ + Zk∆ + b(Xk∆) with
Ik∆ =

1

∆

∫ (k+1)∆

k∆

(b(Xs) − b(Xk∆)) ds and Zk∆ =
1

∆

∫ (k+1)∆

k∆

σ(Xs)dWs, (3.5)we have that E (Γn(t)) = ‖t‖2
L2−4 〈bf, t〉−4E (I∆t(X∆)) . Aording to Lemma 6.4, |E (Ik∆t(Xk∆))| ≤

c∆1/2. Moreover, h = 2bf , so
E (Γn(t)) = ‖t‖2

L2 − 2 〈h, t〉 +O
(

∆1/2
)

.This inequality justi�es the hoie of the ontrast funtion if the sampling interval ∆ is small. IfAssumption S3 is satis�ed, we onsider the estimator
ĥm = arg min

t∈Sm

Γn(t)8



and, under Assumption S4, we set
ĥm,N = arg min

t∈Sm,N

Γn(t).Theorem 3.1 : Estimation on a ompat set.Under Assumptions M4-M7 and S3,
E

(

∥

∥

∥ĥm − h
∥

∥

∥

2

L2

)

≤ ‖hm − h‖2
L2 + c∆ +

(

σ2
0 ‖f‖∞ +

2β0φ0

θ

)

Dm

n∆where hm is the orthogonal projetion of h over Sm and c a onstant depending on b and σ. Weremind that the β-mixing oe�ient of the proess (Xt) is suh that βX(t) ≤ β0e
−θt.Theorem 3.2 : Estimation on R.Under Assumptions M4-M7 and S4

E

(

∥

∥

∥ĥm,N − h
∥

∥

∥

2

L2

)

≤ ‖hm,N − h‖2
L2 + c

2m

N
+ c∆ +

(

‖f‖∞ +
2β0φ0

θ

)

2m

n∆
.where hm,N is the orthogonal projetion of h on the spae Sm,N . If N = Nn = n∆, then

E

(

∥

∥

∥ĥm,Nn
− h
∥

∥

∥

2

L2

)

≤ ‖hm − h‖2
L2 + c∆ +

(

‖f‖∞ +
2β0φ0

θ

)

2m

n∆where hm is the orthogonal projetion of h over Sm.3.4 Optimisation of the hoie of mUnder Assumption S3, if h1A belongs to the unit ball of a Besov spae Bα
2,∞, then ‖h− hm‖2

L2 ≤
D−2α

m . To minimise the bias-variane ompromise, one have to hoose
Dm ∼ (n∆)1/(1+2α)and in that ase the estimator risk satis�es:

E

(

∥

∥

∥ĥm − h
∥

∥

∥

2

L2

)

≤ C (n∆)
−2α/(1+2α)

+ c∆.Under Assumption S4, if h belongs to Bα
2,∞, then ‖h− hm‖2

L2 ≤ 2−2mα and
E

(

∥

∥

∥ĥm,n∆ − h
∥

∥

∥

2

L2

)

≤ C (n∆)
−2α/(1+2α)

+ c∆.Remark 3.2. Dalalyan and Kutoyants [9℄ estimate the �rst derivative of the stationary densityobserved at ontinuous time (they observe Xt for t ∈ [0, T ]). In that framework, the di�usionoe�ient σ2 is known. The minimax rate of onvergene of the estimator is T−α/(1+2α). It is therate that we obtain when ∆ tends to 0.Let us set ∆ ∼ n−β. We obtain the following onvergene table:
β prinipal term of the bound rate of onvergene of the estimator

0 < β ≤ 2α
4α+1 ∆ n−β

2α
4α+1 ≤ β < 1 (n∆)

−2α/(1+2α)
n−2α(1−β)/(4α+1)Those rates of onvergene are the same as for the estimator of the drift. If β ≥ 1/2, the domi-nating term in the risk bound is always (n∆)

−2α/(1+2α). The rate of onvergene is always smallerthan n−1/2. If (n,∆) is �xed and if ∆ ≤ n−2α/(4α+3), then the seond estimator ĥm onvergesfaster than the �rst one ĝ1,m. However, if the sampling interval ∆ is larger than n−2α/(4α+3), it isthe opposite. 9



3.5 Risk of the adaptive estimator on a ompat setFor any m ∈ Mn,A = {m, Dm ≤ Dn} where the maximal dimension Dn is spei�ed later, anestimator ĥm ∈ Sm of h is omputed. Let us set
pen(m) ≥ κ

Dm

n∆

(

1 +
8β0

θ

) and m̂ = inf
m∈Mn,A

{

γn

(

ĥm

)

+ pen(m)
}

.The resulting estimator is denoted by h̃ := ĥm̂. Let us onsider the asymptoti framework:Assumption S5.
n∆

ln2(n)
→ ∞ and D

2
n ≤ n∆

ln2(n)
.Theorem 3.3 : Adaptive estimation on a ompat set.There exists a onstant κ depending only on the hosen sequene of linear subspaes (Sm) suhthat, under Assumptions M4-M7 , S3 and S5,

E

(

∥

∥

∥h̃− h
∥

∥

∥

2

L2

)

≤ C inf
m∈Mn,A

{

‖hm − h‖2
L2 + pen(m)

}

+ c∆ +
c′

n∆where C is a numerial onstant, c′ depends on φ0 and ‖f‖∞ and c depends on b.Remark 3.3. The estimator is only onsistent if ∆ → 0. Moreover, the adaptive estimator h̃automatially realises the bias-variane ompromise.3.6 Risk of the adaptive estimator on RAn estimator ĥm,n∆ ∈ Sm,n∆ is omputed for any m ∈ Mn,R = {m, 2m ≤ Dn}. The followingpenalty funtion is introdued:
pen(m) ≥ κ

2m

n∆

(

1 +
2β0

θ

) and we set m̂ = inf
m∈Mn

{

γn

(

ĥm,n∆

)

+ pen(m)
}Let us denote by h̃n∆ the resulting estimator.Theorem 3.4 : Adaptive estimation on R.There exists a onstant κ depending only on the sequene of linear subspaes (Sm) suh that, ifAssumptions M4-M7 , S4 and S5 are satis�ed:

E

(

∥

∥

∥h̃n∆ − h
∥

∥

∥

2

L2

)

≤ C inf
m∈Mj,n,R

{

‖hm − h‖2
L2 + pen(m)

}

+ c∆ +
c′

n∆
.4 Drift estimation by quotientIf the proess (Xt)t≥0 is the solution of the stohasti di�erential equation (SDE)

dXt = b(Xt)dt+ dWtand satis�es Assumptions M4-M7, then
b = f ′/2f.An estimator of the drift by quotient an therefore be onstruted. For high-frequeny data,Comte et al. [6℄ build an adaptive drift estimator thanks to a penalized least-square method. Theirestimator onverges with the minimax rate (n∆)

−2α/(2α+1) if b belongs to the Besov spae Bα
2,∞.On the ontrary, there exist few results on the drift estimation where the sampling interval ∆ is�xed. Gobet et al. [12℄ build a drift estimator for low-frequeny data, however, their estimator isnot easy to implement. In this setion, a drift estimator by quotient is onstruted and its risk isomputed. 10



We estimate f and f ′ on R in order to avoid onvergene problems on the boundaries of the om-pat. Let us onsider two sequenes of linear subspaes (S0,m, m ∈ M0,n) and (S1,m, m ∈ M1,n)satisfying Assumption S2 for k = 1 and suh that
M0,n =

{

m0, log(n) ≤ 2m0 ≤ η
√
n∆/ log(n∆)

} and M1,n =
{

m1, 2m1 ≤ (n∆)1/5
}where the onstant η does not depend on b neither σ.As in Setion 2, adaptive estimators f̃ := g̃0,n∆ and g̃ := g̃1,n∆ of f = g0 and f ′ = g1are omputed. As b belongs to Bα

2,∞, f and f ′ also belong to Bα
2,∞ and the best bias-varianeompromise for ĝ0,m is obtained for 2m0 ∼ (n∆)1/(1+2α), and for ĝ1,m it is obtained for 2m1 ∼

(n∆)1/(3+2α). If α > 1, the restritions on M0,n and M1,n do not modify the rate of onvergeneof ours estimators. Let us onsider the estimator
b̃ =

g̃

2f̃
if g̃ ≤ 2n∆f̃ and b̃ = 0 otherwise.Theorem 4.1.If b ∈ Bα

2,∞ with α > 1, then
E

(

∥

∥

∥
b̃− b

∥

∥

∥

2

L2

)

≤ c

(

E

(

∥

∥

∥
f̃ − f

∥

∥

∥

2

L2

)

+ E

(

‖g̃ − g‖2
L2

)

+
1

n∆

)where the onstant c does not depend on n nor on ∆. Then, by Theorem 2.4,
E

(

∥

∥

∥
b̃− b

∥

∥

∥

2

L2

)

≤ c(n∆)−2α/(2α+3)So b̃ onverges towards b with the minimax rate de�ned by Gobet et al. [12℄.5 Simulations5.1 ModelsOrnstein-Uhlenbek: Let us onsider the SDE dXt = −bXt +dWt with b > 0. The stationarydensity is a Gaussian distribution N

(

0, (2b)
−1
) and its derivative is

f ′(x) = −2b3/2

√
π
xe−bx2

.Hyperboli tangent: We onsider a proess (Xt) satisfying the SDE
dXt = −a tanh(aXt)dt+ dWt.The stationary density related to this SDE is

f(x) =
a

2 cosh2(ax)
and f ′(x) = −a

2 tanh(ax)

cosh2(ax)
.Square root: Let us onsider the di�usion with parameters

b(x) = − ax√
1 + x2

and σ = 1.The stationary density is
f(x) = c exp

(

−2a
√

1 + x2
) and f ′(x) = 2b(x)f(x)11



Model 4: We onsider the following SDE:
dXt = − 2aXt

1 +X2
t

dt+ dWt.The proess (Xt)t≥0 does not satisfy Assumption M6 neither the su�ient onditions to be expo-nentially β-mixing. If a > 1/2, it admits the stationary density
f(x) = ca

(

1 + x2
)−2a and f ′(x) = − 4caax

(1 + x2)1+2a .Sine funtion: Let us onsider the di�usion with parameters:
b(x) = sin(ax) − x√

1 + x2
and σ = 1.Its stationary density f satis�es:

f(x) = ca exp
(

−2a−1 cos(ax) − 2
√

1 + x2
) and f ′(x) = 2cab(x)f(x)5.2 Estimation of the �rst derivative f ′Here, we estimate the �rst derivative f ′ of the stationary density on a ompat set and we omparethe two estimators g̃1 and h̃ de�ned in Setions 2 and 3. The subspaes Sm are generated bytrigonometri polynomials: those funtions are orthonormal, very regular and enable very fastomputations: to ompute ĝ1,m (resp ĥm) when ĝ1,m−1 (resp ĥm−1) is known, it is only neessaryto ompute one or two oe�ients.Figures 1-5 show the di�erenes between the two estimators: g̃1 onverges whatever the sam-pling interval, and h̃ onverges only if ∆ is small. In that ase, h̃ is better than g̃1: the varianeterm is greater for ĝ1,m (is proportional to D3

m/(n∆)) than for ĥm (is p proportional to Dm/n∆).In Tables 1-3, for eah value of n and ∆, 50 exat simulations of a di�usion proess are realizedusing the retrospetive exat algorithm of Beskos et al. [3℄ (exept for the Ornstein-Uhlenbekproess whih is simulated using Gaussian variables). For eah path, we ompute the empirialrisks of the estimators g̃1 and h̃:
‖g̃1 − g1‖2

E :=
1

M

M
∑

k=1

(g̃1(xk) − g1(xk))
2 and ∥

∥

∥h̃− h
∥

∥

∥

2

E
:=

1

M

M
∑

k=1

(

h̃(xk) − h(xk)
)2

,where the points xk are equidistributed over A. To hek that the estimator is adaptive, the orales
org =

‖g̃1 − g1‖2
E

minm∈Mn
‖ĝ1,m − g1‖2

E

and orh =

∥

∥

∥h̃− h
∥

∥

∥

2

E

minm∈Mn

∥

∥

∥ĥm − h
∥

∥

∥

2

Eare omputed. The mean time of simulation tsim of a proess is measured, and for eah kindof estimator, the means of the empirial risk risg or rish, of the orales ōrg or ōrh and of theomputation times tg or th or omputed.The omplexity of the retrospetive exat algorithm of Beskos et al. [3℄ is proportional to
nec∆ where c depends on the model. Table 3 shows that for Model 4, tsim inreases when n or
∆ inreases. For the hyperboli tangent, the time of simulation only depends on n beause theonstant c is exatly equal to 0. The Ornstein-Uhlenbek proess is not simulated thanks to theretrospetive algorithm, so its time of simulation does not depend on ∆. Tables 1-3 show that the�rst estimator g̃1 is always faster to ompute than the seond one h̃. This is mainly beause wehave less models to test: for the �rst estimator, the maximal dimension Dn is bounded by (n∆)1/4whereas for the seond estimator, Dn ≤ (n∆)

1/2.When ∆ = 1, g̃1 is better than h̃. If not, the estimators are similar and beome better when
n∆ inreases. For the Ornstein-Uhlenbek proess and the hyperboli tangent, the proess (Xt)t≥0is exponentially β-mixing and g̃1 is in general better than h̃. For Model 4, the proess (Xt) is notexponentially β-mixing and when ∆ < 1, h̃ is (in general) better than g̃1.12



Figure 1: Ornstein-Uhlenbek: estimation of f ′

n = 104, ∆ = 1 n = 105, ∆ = 10−2
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Figure 2: Hyperboli tangent: estimation of f ′

n = 104, ∆ = 1 n = 105, ∆ = 10−2

−5 −4 −3 −2 −1 0 1 2 3 4 5
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

−4 −3 −2 −1 0 1 2 3 4
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Figure 3: Square root: estimation of f ′

n = 104, ∆ = 1 n = 104, ∆ = 10−1
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· · · : estimator g̃1 (di�erentiating an estimator of f)-. : estimator h̃ (using to f ′ = 2bf)13



Figure 4: Model 4: estimation of f ′

n = 104, ∆ = 1 n = 104, ∆ = 10−1
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Figure 5: Sine funtion: estimation of f ′

n = 104, ∆ = 1 n = 105, ∆ = 10−2
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Table 1: Estimation of f ′ for Ornstein-Uhlenbek�rst estimator seond estimator
n ∆ tsim risg ōrg tg rish ōrh th

104 1 0.10 0.00025 2.5 0.33 0.0090 1.0 0.73
104 10−1 0.10 0.0010 1.8 0.17 0.00091 1.2 0.68
104 10−2 0.099 0.0060 2.6 0.097 0.0067 2.3 0.66
103 1 0.0027 0.0023 4.2 0.034 0.0097 1.0 0.12
103 10−1 0.0025 0.0058 3.0 0.020 0.0077 2.3 0.12
103 10−2 0.0026 0.037 3.0 0.0070 0.078 4.0 0.035
102 1 0.00022 0.0080 2.0 0.013 0.019 1.5 0.062
102 10−1 0.00021 0.035 2.4 0.0046 0.078 5.5 0.019
102 10−2 0.00023 0.067 2.1 0.0048 0.11 1.4 0.0068Table 2: Hyperboli tangent: estimation of f ′�rst estimator seond estimator
n ∆ tsim risg ōrg tg rish ōrh th

104 1 6.2 0.0027 1.1 0.33 0.0087 1.03 0.71
104 10−1 1.2 0.0018 3.7 0.17 0.0014 1.4 0.68
104 10−2 1.7 0.0065 2.8 0.10 0.0056 1.8 0.65
103 1 0.61 0.0040 1.5 0.034 0.0097 1.1 0.12
103 10−1 0.19 0.0067 2.8 0.020 0.0087 2.1 0.12
103 10−2 0.16 0.022 2.5 0.0068 0.036 2.6 0.03
102 1 0.066 0.011 1.7 0.014 0.021 1.80 0.063
102 10−1 0.020 0.023 2.3 0.0048 0.044 3.4 0.020
102 10−2 0.018 0.033 1.6 0.0054 0.078 1.2 0.0080Table 3: Model 4: estimation of f ′�rst estimator seond estimator
n ∆ tsim risg ōrg tg rish ōrh th

104 1 6.6 0.00073 1.8 0.33 0.020 1.0 0.71
104 10−1 2.3 0.0032 4.2 0.17 0.0019 1.3 0.70
104 10−2 2.1 0.016 3.8 0.10 0.0090 1.7 0.68
103 1 0.67 0.0049 2.4 0.035 0.022 1.1 0.12
103 10−1 0.24 0.017 3.6 0.021 0.013 2.0 0.12
103 10−2 0.18 0.043 2.0 0.0071 0.094 3.5 0.035
102 1 0.071 0.048 8.1 0.014 0.041 1.6 0.065
102 10−1 0.022 0.046 1.91 0.0049 0.077 3.1 0.02
102 10−2 0.019 0.070 1.4 0.005 0.12 1.1 0.0069

risg and rish: average empirial risks related for g̃1 and h̃
ōrg and ōrh: average orales (empirial risks of g̃1 (resp h̃) over the empirial risk of the bestestimator ĝ1,m (resp ĥm ))
tg et th : average time of omputation of g̃1 and h̃ (times in seonds)
tsim: average times of simulation of (X0, X∆, . . . , Xn∆) (times in seonds)
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5.3 Drift estimation by quotientTwo drift estimators are ompared: the estimator by quotient de�ned in Setion 4, denoted hereby b̃quot, and a penalized least-square estimator denoted by b̃pls. The onstrution of the lastestimator is done in Comte et al. [6℄. It only onverges when the sampling interval ∆ is small, butin that ase, it reahes the minimax rate of onvergene: if b belongs to a Besov spae Bα
2,∞, thenthe risk of the estimator b̃pls is bounded by

E

(

∥

∥

∥b̃pls − b
∥

∥

∥

2

L2

)

≤ C
(

(n∆)
−2α/(2α+1)

+ ∆
)

.Figures 6-10 show that, for low-frequeny data, the quotient estimator b̃quot is better than b̃pls.For various values of n and ∆, 50 exat simulations of (X0, . . . , Xn∆) are realized and estimators
b̃quot and b̃pls are omputed. Table 4 and 5 give the average empirial risk for these estimators andthe average omputation times. The lowest risk is set in bold.Tables 4 and 5 underline that the �rst estimator is always faster than the seond one: toompute b̃pls, we have to inverse a matrix m ×m over eah spae Sm. When ∆ is small and thetime of observation n∆ is large, the penalized least square ontrast estimator onverges better thanthe quotient estimator. Of ourse, when ∆ is �xed, b̃quot onverges faster than b̃pls.Table 4: Ornstein-Uhlenbek: estimation of bquotient estimator least-square estimator

n ∆ risquot tquot rispls tpls

104 1 0.0022 3.6 0.089 7.3
104 10−1 0.0086 1.2 0.0049 1.7
104 10−2 0.069 0.4 0.031 0.7
103 1 0.011 0.2 0.090 0.7
103 10−1 0.061 0.06 0.022 0.3
103 10−2 0.31 0.02 0.50 0.004
102 1 0.073 0.03 0.085 0.3
102 10−1 0.25 0.01 0.34 0.003Table 5: Hyperboli tangent: estimation of bquotient estimator least-square estimator
n ∆ risquot tquot rispls tpls

104 1 0.0023 3.6 0.086 7.2
104 10−1 0.019 1.2 0.017 1.8
104 10−2 0.078 0.4 0.052 0.7
103 1 0.036 0.2 0.18 0.7
103 10−1 0.12 0.06 0.065 0.3
103 10−2 0.17 0.02 0.61 0.004
102 1 0.24 0.03 0.10 0.3
102 10−1 0.20 0.01 0.53 0.003

risquot and rispls: average empirial risks for b̃quot and b̃pls

tquot and tpls : average omputation times of b̃quot and b̃pls (times in seonds)6 Proofs6.1 Important lemmasLemma 6.1 : Variane of β-mixing variables.Let us set
A =

1

n

n
∑

k=1

g(Xk∆) − E (g(Xk∆)) .16



Figure 6: Ornstein-Uhlenbek: estimation of b
n = 104, ∆ = 1
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Figure 7: Hyperboli tangent: estimation of b
n = 104, ∆ = 1
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Figure 8: Square root: estimation of b
n = 104, ∆ = 1
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- : true drift b
−− : estimation of b by quotient: b̃quot.. : estimation of b like in Comte et al. [6℄: b̃pls17



Figure 9: Model 4: estimation of b
n = 104, ∆ = 10−1
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Figure 10: Sine funtion: estimation of b
n = 104, ∆ = 1
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- : true drift b
−− : estimation of b by quotient: b̃quot.. : estimation of b like in Comte et al. [6℄: b̃pls
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If the random variables (Xk∆) are stritly stationary and β-mixing, then there exists a funtion Bsuh that
E (B(X0)) ≤

+∞
∑

k=1

βk∆ and E
(

B2(X0)
)

≤
+∞
∑

k=1

kβk∆and, for any funtion g suh that E
(

g2(X0)
)

< +∞,Var (A) ≤ 4

n
E
(

B(X0)g
2(X0)

)Moreover, if the β-mixing oe�ients are suh that βX(k) ≤ β0e
−θ∆k (that is if (Xk∆) are expo-nentially β-mixing), then if θ∆ ≥ 1:

+∞
∑

k=1

βk∆ ≤ 2β0 and +∞
∑

k=1

kβk∆ ≤ 2β0and if ∆θ ≤ 1 and n∆ → ∞:
n
∑

k=1

βk∆ ≤ 2β0

∆θ
and n

∑

k=1

kβk∆ ≤ 2β0

∆2θ2
.If the random variables (Xk∆) are arithmetially β-mixing, then:if θ∆ > 1, then +∞

∑

k=1

βk∆ ≤ 2β0 and if θ > 1,

+∞
∑

k=1

kβk∆ ≤ 2β0

θ − 1if θ∆ ≤ 1, then n
∑

k=1

βk∆ ≤ 2β0

∆θ
and if θ > 1,

n
∑

k=1

kβk∆ ≤ 2β0

∆2 (θ − 1)
.This lemma is proved in Viennet [24℄.Lemma 6.2 : Coupling method for the onstrution of independent variables.Let us onsider a stationary and β-mixing proess (Xt)t≥0 observed at disrete times t = 0,∆, . . . , n∆.Let us set n = 2qnpn where qn = (2l+1) ln(n)

θ∆ and, for a ∈ {0, 1}, 1 ≤ k ≤ pn,
Uk,a =

(

X((2(k−1)+a)qn+1)∆, . . . , X(2k−1+a)qn∆

)

.Aording to Berbee's Lemma (see Viennet [24℄), there exist random variables (X∗
∆, . . . , X

∗
n∆) suhthat the random vetors

U∗
k,a =

(

X∗
((2(k−1)+a)qn+1)∆, . . . , X

∗
(2k−1+a)qn∆

) where a ∈ {0, 1}, 1 ≤ k ≤ pnsatisfy:� For any a ∈ {0, 1} , vetors U∗
0,a, . . . , U

∗
(pn−1),a are independent.� For any a ∈ {0, 1}, any k, 1 ≤ k ≤ pn, U∗

k,a and Uk,a have the same law.� For any a ∈ {0, 1}, 1 ≤ k ≤ pn:
P
(

Uk,a 6= U∗
k,a

)

≤ βX (qn∆)Let us set
Ω∗ =

{

Uk,a = U∗
k,a, k = 1, . . . , n, a = {0, 1}

}

.If the proess is exponentially β-mixing, then P (Ω∗c) ≤ 2pnβX(qn) ≤ n−2l.19



Lemma 6.3 : Talagrand inequality.Let us onsider some random variables X1, . . . , Xn independent and identially distributed. Let usset gn : t ∈ B → gn(t) where B is a ountable set and
gn(t) =

1

n

n
∑

k=1

Ft(Xk) − E (Ft(Xk)) .If
sup
t∈B

‖Ft‖∞ ≤M1, E

(

sup
t∈B

|gn(t)|
)

≤ H, sup
t∈B

Var (Ft(Xk)) ≤ V,then
E

(

sup
t∈B

g2
n(t) − 12H2

)

+

≤ C

(

V

n
exp

(

−k1
nH2

V

)

+
M2

1

n2
exp

(

−k2
nH

M1

))with k1 = 1/6, k2 = 1/(21
√

2), and C a universal onstant.There exist a onstant κ independentof the proess (Xt) and of the funtion Ft suh that:
P

(

sup
t∈B

|gn(t)| ≥ 2H + λ

)

≤ 3 exp

(

−κnmin

(

λ2

2V
,
λ

7M1

)) (6.1)This proof is done in Laour [14℄ p156 and in Comte and Merlevède [7℄ p.224.6.2 Proofs of Theorems 2.1 and 2.2We only prove here Theorem 2.2 (the proof of Theorem 2.1 is very similar and easier). Aordingto Pythagoras, we have
‖ĝj,m,N − g‖2

L2 = ‖gj,m,N − g‖2
L2 + ‖ĝj,m,N − gj,m,N‖2

L2 .Let us set aλ :=
∫

R
f (j)(x)ϕλ,m(x)dx. By Assumption S2 2., aλ = (−1)j

∫

R
f(x)ϕ

(j)
λ,m(x)dx. Letus set âλ = (−1)j

n

∑n
k=1 ϕ

(j)
λ,m(Xk∆). We have
‖ĝj,m,N − gj,m,N‖2

L2 =
∑

λ∈Λm,N

(âλ − aλ)
2and

E

(

(âλ − aλ)
2
)

= Var( 1

n

n
∑

k=1

ϕ
(j)
λ,m(Xk∆)

)

.Aording to Lemma 6.1,Var( 1

n

n
∑

k=1

ϕ
(j)
λ,m(Xk∆)

)

≤ 4

n
E

(

B(X0)
(

ϕ
(j)
λ,m(X0)

)2
)where E (B(X0)) ≤ 2β0

(

1 ∨ 1
θ∆

). So, by Assumption S2 3.,
E

(

‖ĝj,m,N − gj,m,N‖2
L2

)

≤ 4

n
E
(

B(X0)Ψ
2
j,m(X0)

)

≤ 8β0ψj
2(2j+1)m

n

(

1 ∨ 1

θ∆

)

.6.3 Proofs of Theorems 2.3 and 2.4As previously, only Theorem 2.4 is demonstrated. Let us set
νj,n(t) =

1

n

n
∑

k=1

t(j)(Xk∆) −
∫

R

t(j)(x)f(x)dx.20



For any m, we have
γj,n(g̃j) + penj(m̂j) ≤ γj,n(ĝj,m,Nn

) + penj(m) ≤ γj,n(gj,m,Nn
) + penj(m).As, for any t ∈ Sm,N ,

γj,n(t) = ‖t− g‖2
L2 − ‖g‖2

L2 + 2νj,n(t),for any m ∈ N,
‖g̃j − g‖2

L2 ≤ ‖gj,m,Nn
− g‖2

L2 + 2νj,n (gj,m,Nn
− g̃j) + penj(m) − penj(m̂j).Aording to Cauhy-Shwartz, if we set Bm,m′ =

{

t ∈ Sm,Nn
+ Sm′,Nn

, ‖t‖2
L2 ≤ 1

}, we have:
‖g̃j − g‖2

L2 ≤ ‖gj,m,Nn
− g‖2

L2 +
1

4
‖g̃j − gj,m,Nn

‖2
L2 + 4 sup

t∈Bm,m̂

νj,n (t) + penj(m) − penj(m̂j).As ‖g̃j − gj,m,Nn
‖2

L2 ≤ 2 ‖gj,m,Nn
− g‖2

L2 + 2 ‖g̃j − g‖2
L2 :

‖g̃j − g‖2
L2 ≤ 3 ‖gj,m,Nn

− g‖2
L2 + 8 sup

t∈Bm̂,m

ν2
j,n (t) + penj(m) − penj(m̂j).Let us onsider a funtion pj(m,m

′) suh that 8pj(m,m
′) = penj(m) + penj(m

′). We have that
E : = E

(

8 sup
t∈Bm,m̂

ν2
j,n(t) + penj(m) − penj(m̂j)

)

= 8E

(

sup
t∈Bm,m̂

ν2
j,n(t) − pj(m, m̂j)

)

+ 2penj(m).Let us use the set Ω∗ desribed in Lemma 6.2 where qn is de�ned later. Let us set, for a ∈ {0, 1},
0 ≤ k ≤ pn − 1,

U∗
k,a =

1

qn

qn
∑

l=1

t(j)
(

X∗
((2k+a)qn+l)∆

)

, Uk,a =
1

qn

qn
∑

l=1

t(j)
(

X((2k+a)qn+l)∆

)and
ν∗j,n(t) =

1

n

n
∑

k=1

t(j)(X∗
k∆) − E

∗
(

t(j)(X∗
k∆)
)

.We have:
sup

t∈Bm,m̂

ν2
j,n(t) − pj(m, m̂j) ≤ sup

t∈Bm,m̂

{

(

ν∗j,n(t)
)2 − pj(m, m̂j)

}

+ sup
t∈Bm,m̂

{∣

∣

∣ν2
j,n(t) −

(

ν∗j,n(t)
)2
∣

∣

∣

}

.Aording to Lemma 6.2, the random variables (U∗
k,0

) are independent and identially distributed,and so are the variables (U∗
k,1

).Bound of E

(

supt∈Bm,m̂

{

(

ν∗j,n(t)
)2 − pj(m, m̂j)

}) We have that
E

(

sup
t∈Bm,m̂

(

ν∗j,n(t)
)2 − pj(m, m̂j)

)

≤
∑

m′

E

(

sup
t∈Bm,m′

(

ν∗j,n(t)
)2 − pj(m,m

′)

)

. (6.2)Let us set, for a ∈ {0, 1}, 0 ≤ k ≤ pn − 1,
ν∗j,n,a(t) =

1

2pn

pn
∑

k=1

U∗
k,a − E

(

U∗
k,a

)

.21



We have that:
ν∗j,n(t) = ν∗j,n,0(t) + ν∗j,n,1(t)We want to apply Lemma 6.3 to the random variables U∗

k,a. So we ompute H2, V and M1 suhthat
sup

t∈Bm,m′

∥

∥U∗
k,i

∥

∥

∞
≤M1, Var (U∗

k,j

)

≤ V and E

(

sup
t∈Bm,m′

(

ν∗j,n(t)
)2

)

≤ H2.Let us denote by {ϕλ, λ ∈ Λ} an orthonormal basis of Sm,N + Sm′,N and set D = 2m + 2m′ . ByAssumption S2 3.-4., we have
sup

t∈Bm,m′

∥

∥U∗
k,a

∥

∥

∞
≤
∥

∥

∥t(j)(X0)
∥

∥

∥

∞
≤
√

ψjD
(2j+1)/2.By Lemma 6.1:Var (U∗

k,a

)

≤ 4

qn
E

(

(

t(j)(X0)
)2

B(X0)

)

≤ 4

qn
‖t‖∞

(

E

(

(

t(j)(X0)
)2
))1/2

(

E
(

B2(X0)
))1/2

≤ CD2j+1/2

(

1

qn
∨ 1

qn∆

)

.Besides,
E

(

sup
t∈Bm,m′

(

ν∗j,n,a(t)
)2

)

= E



 sup
P

λ∈Λ
α2

λ
≤1

(

∑

λ∈Λ

αλν
∗
j,n,a(ϕλ)

)2 1Ω∗



 ≤
∑

λ∈Λ

E

(

(

ν∗j,n,a (ϕλ)
)2
)and

E

(

(

ν∗j,n,a (ϕλ)
)2
)

= Var( 1

2n

pn
∑

k=1

qn
∑

l=1

ϕ
(j)
λ

(

X∗
((2k+a)qn+l)∆

)

)

.The random variables (X∗
k∆) are exponentially β-mixing, so aording to Lemma 6.1:

E

(

(

ν∗j,n,a (ϕλ)
)2
)

≤ 4

n
E

(

B(X0)
(

ϕ
(j)
λ (X0)

)2
) where E (B(X0)) ≤ 2β0

(

1

n
∨ 1

nθ∆

)

.Thus, by Assumption S2 3., we have:
E

(

sup
t∈Bm

(

ν∗j,n,a(t)
)2
)

≤ 4

n
E
(

B(X0)
(

Ψ2
j,m(X0) + Ψ2

j,m′(X0)
))

≤ 16β0ψj
D(2j+1)

n

(

1 ∨ 1

θ∆

)

,and it follows:
E

(

sup
t∈Bm,m′

(

ν∗j,n(t)
)2

)

≤ 32β0ψj
D(2j+1)

n

(

1 ∨ 1

θ∆

)

.Let us set
F := E

(

sup
t∈Bm,m′

(

ν2
j,n(t) − pj(m,m

′)
)1Ω∗

)

+

.We an apply Lemma 6.3 with H2 = 32β0ψjD
(2j+1)

(

1
n ∨ 1

nθ∆

), M1 =
√

ψjD
(2j+1)/2 and V =

cD2j . Let us set pj(m,m
′) = 12H2. We �nd:

F ≤ C

(

D2j+1/2

n∆
exp

(

−cD1/2
)

+
D2j+1

p2
n

exp

(

−c pn√
n∆

))

.where c and C are two onstants independents of D, n and ∆.As D = 2m + 2m′ and 2m′ ≥ m′ for any m′ ≥ 0:
∑

m′

D2j+1/2 exp
(

−cD1/2
)

≤
∞
∑

k=1

k2j+1/2 exp
(

−ck1/2
)

≤ C.22



Besides,
∑

m′

D2j+1 ≤
Dj,n
∑

k=1

k2j+1 ≤ D
2j+2
j,n ≤ n∆and if there exists η > 0 suh that

pn =
n

2qn
≥ (n∆)

1/2+η
, (6.3)then:

E

((

sup
t∈Bm,m̂

(

ν∗j,n(t)
)2 − pj(m,m

′)

))

+

≤ C

n∆
.Bound of E

(

supt∈Bm,m̂

{∣

∣

∣ν2
j,n(t) −

(

ν∗j,n(t)
)2
∣

∣

∣

}) We have that:
sup

t∈Bm,m̂

{∣

∣

∣
ν2

j,n(t) −
(

ν∗j,n(t)
)2
∣

∣

∣

}

≤
∑

m′

sup
t∈Bm,m′

{∣

∣

∣
ν2

j,n(t) −
(

ν∗j,n(t)
)2
∣

∣

∣

}and
∣

∣νj,n(t) − ν∗j,n(t)
∣

∣ ≤ 1

2pn

1
∑

a=0

pn
∑

k=1

∣

∣Uk,a − U∗
k,a

∣

∣ ≤ 2
∥

∥

∥t(j)
∥

∥

∥

∞

1
∑

a=0

pn
∑

k=1

1Uk,a 6=U∗

k,a
.Moreover,

∣

∣νj,n(t) + ν∗j,n(t)
∣

∣ ≤ 1

2pn

1
∑

a=0

pn
∑

k=1

∣

∣Uk,a + U∗
k,a

∣

∣+ 2 |E (U1,0)| ≤ 4
∥

∥

∥t(j)
∥

∥

∥

∞
.Lemma 6.2 and Assumption S2 3. ensures that:

E

(

sup
t∈Bm,m′

{∣

∣

∣ν2
j,n(t) −

(

ν∗j,n(t)
)2
∣

∣

∣

}

)

≤ 8 sup
t∈Bm,m′

{

∥

∥

∥t(j)
∥

∥

∥

2

∞

}

P
(

U1,0 6= U∗
1,0

)

≤ 8ψjD
2j+1
n βX (qn∆)then

E

(

sup
t∈Bm,m̂

{∣

∣

∣ν2
j,n(t) −

(

ν∗j,n(t)
)2
∣

∣

∣

}

)

≤ 8ψjD
2j+2
n βX(qn∆).As D

2j+2
j,n ≃ n∆, and βX (qn∆) ≤ β0 (1 + qn∆)−(1+θ), we want that:

(1 + qn∆)−(1+θ) ≤ (n∆)−2 . (6.4)Choie of qn The integers qn and pn = n/(2qn) have to satisfy the inequalities (6.3) and (6.4).If the proess is exponentially β-mixing, then qn = (l + 1) ln(n)/(θ∆) with l ∈ N r {0} �ts. If theproess is arithmetially β-mixing, let us set qn = (n∆)
α
/∆. Aording to inequalities (6.3) and(6.4), we need:

∃η > 0, α ≤ 1

2
− η and α ≥ 2

1 + θ
.This ondition an only be ful�lled if θ > 3. In that ase, we an set α = 2/(1 + θ).Colleting the results, we obtain:

E

(

‖g̃j − gj‖2
L2

)

≤ C inf
m∈Mn

(

‖gj,M,Nn
− gj‖2

L2 + penj(m)
)

+
c

n

(

1 ∨ 1

∆

)

.
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6.4 Proof of Theorems 3.1 and 3.2We only prove Theorem 3.2. We have that ∆−1
(

X(k+1)∆ −Xk∆

)

= Ik∆+Zk∆+b(Xk∆) (see(3.5)).Then
Γn(t) − Γn(s) = ‖t‖2

L2 − ‖s‖2
L2 −

4

n

n
∑

k=1

(Ik∆ + Zk∆ + b(Xk∆)) (t(Xk∆) − s(Xk∆)) .Moreover,
‖t− h‖2

L2 = ‖t‖2
L2 + ‖h‖2

L2 − 2

∫

t(x)h(x)dx = ‖t‖2
L2 + ‖h‖2

L2 − 4

∫

t(x)b(x)f(x)dx

= ‖t‖2
L2 + ‖h‖2

L2 − 4E (b(Xk∆)t(Xk∆)) .Then
Γn(t) − Γn(s) = ‖t− h‖2

L2 − ‖s− h‖2
L2 − 2νn(t− s) − 2ρn(t− s) − 2ξn(t− s)where

νn(t) =
2

n

n
∑

k=1

E (Ik∆t(Xk∆))

ρn(t) =
2

n

n
∑

k=1

Zk∆t(Xk∆)

ξn(t) =
2

n

n
∑

k=1

Jk∆t(Xk∆) − E (Jk∆t(Xk∆))and
Jk∆ = Ik∆ + b(Xk∆) = ∆−1

∫ (k+1)∆

k∆

b(Xs)ds. (6.5)As
Γn

(

ĥm,N

)

≤ Γn(hm,N ),we an write
∥

∥

∥ĥm,N − h
∥

∥

∥

2

L2

≤ ‖hm,N − h‖2
L2 +2νn

(

ĥm,N − hm,N

)

+2ρn

(

ĥm,N − hm,N

)

+2ξn

(

ĥm,N − gm,N

)

.Aording to Cauhy-Shwarz, if we set Bm = {t ∈ Sm,N , ‖t‖L2 ≤ 1}, we have:
∥

∥

∥ĥm,N − h
∥

∥

∥

2

L2

≤ ‖hm,N − h‖2
L2 +

1

2

∥

∥

∥ĥm,N − hm,N

∥

∥

∥

2

L2

+ 6 sup
t∈Bm

(

ν2
n(t) + ρ2

n(t) + ξ2n(t)
)Aording to Pythagoras, ∥∥∥ĥm,N − hm,N

∥

∥

∥

2

L2

=
∥

∥

∥ĥm,N − h
∥

∥

∥

2

L2

− ‖hm,N − h‖2
L2 , so

∥

∥

∥ĥm,N − h
∥

∥

∥

2

L2

≤ ‖hm,N − h‖2
L2 + 12 sup

t∈Bm

(

ν2
n(t) + ρ2

n(t) + ζ2
n(t)

)

.The following lemma is very useful and is proved later.Lemma 6.4.We have that1. E
[

I2
k∆

∣

∣Fk∆

]

= c∆
(

1 +X2
k∆

) and E
[

I4
k∆

∣

∣Fk∆

]

≤ c∆2
(

1 +X4
k∆

)

.2. E [Zk∆|Fk∆] = 0 , E
[

Z2
k∆

∣

∣Fk∆

]

≤ σ2

0

∆ and E
[

Z4
k∆

∣

∣Fk∆

]

≤ σ4

0

∆2 .3. E
[

t4(Xk∆)b4(Xk∆)
]

≤ c ‖t‖2
∞ ‖t‖2

L2 .4. E
(

J2
k∆

)

≤ c, E
(

J4
k∆

)

≤ c and Var (Jk∆t(Xk∆)) ≤ c ‖t‖2
L2 .24



where the �ltration Ft = σ
(

η, (Ws)0≤s≤t

) is de�ned in Proposition 3.1 and the onstant c dependson b and σ.Then
sup

t∈Bm

ν2
n(t) = sup

t∈Bm

(

1

n

n
∑

i=1

E (Ik∆t(Xk∆))

)2

≤ 1

n

n
∑

k=1

E
(

t2(Xk∆)E
(

I2
k∆

∣

∣Fk∆

))

≤ c∆

n

n
∑

k=1

E
(

t2(Xk∆)
(

1 +X2
k∆

))

= c∆

∫ +∞

−∞

(

1 + x2
)

f(x)t2(x)dxwhere the onstant c depends on b. By (3.3), ∥∥(1 + x2
)

f(x)
∥

∥

∞
≤ c and we have that

sup
t∈Bm

ν2
n(t) ≤ c∆ ‖t‖2

L2 .As (ϕλ,m)λ∈Λm
is an orthonormal basis of Sm for the L2-norm,

sup
t∈Bm

ρ2
n(t) ≤

∑

λ∈Λm

ρ2
n(ϕλ,m).Besides,

E
(

ρ2
n(ϕλ,m)

)

≤ 1

n2

n
∑

k=1

E
(

ϕ2
λ,m(Xk∆)E

(

Z2
k∆

∣

∣Fk∆

))

≤ σ2

n∆
E
(

ϕ2
λ,m(X0)

)

.So, by Assumption S(4) 2.,
E

(

sup
t∈Bm

ρ2
n(t)

)

≤ σ2

n∆
E
(

Φ2
m(X0)

)

≤ φ0σ
2Dm

n∆
.We know that

sup
t∈Bm

ξ2n(t) ≤
∑

λ∈Λm

ξ2n(ϕλ,m)As
Jk∆ =

1

∆

∫ (k+1)∆

k∆

b(Xs)ds,the random sequene (Jk∆, Xk∆) is stationary and β-mixing suh that βJ,X(n) ≤ βX(n∆). A-ording to Lemma 6.1, we have that
E
(

ξ2n (ϕλ,m)
)

≤ 4

n
E
(

B(J0, X0)J
2
0ϕ

2
λ,m(X0)

)

.Then, as E
(

J4
0

)

≤ C and E
(

B2(J0, X0)
)

≤ c/(θ2∆2),
E

(

sup
t∈Bm

ξ2n (t)

)

≤ 4

n
E
(

B(J0, X0)J
2
0Φ2

m(X0)
)

≤ 4φ0Dm

n
E
(

B(J0, X0)J
2
0

)

≤ 4φ0Dm

n

(

E
(

B2(J0, X0)
))1/2 (

E
(

J4
0

))1/2 ≤ cDm

nθ∆
.So

E

(

∥

∥

∥ĥm,N − h
∥

∥

∥

2

L2

)

≤ ‖hm,N − h‖2
L2 + c∆ + c

Dm

n∆

(

1

θ
+ σ2

0

)

.25



Proof of Lemma 6.4 Aording to Proposition 3.1,
E

(

sup
s∈[0,∆]

(b(Xk∆+s) − b(Xk∆))
2l
∣

∣

∣Fk∆

)

≤ c∆l
(

1 +X2l
k∆

)

,whih proves (1). Points (2) and (3) are obvious, thus we only prove (4). We know thatVar (Jk∆t(Xk∆)) ≤ 2E
(

I2
k∆t

2(Xk∆)
)

+ 2Var(b(Xk∆)t(Xk∆))and Var(b(Xk∆)t(Xk∆)) ≤
∫

A

b2(x)t2(x)f(x)dx ≤ ‖bA‖2
∞ ‖f‖∞ ‖t‖2

L2 .Aording to Proposition 3.1, we have that
E
(

t2(Xk∆)E
(

I2
k∆

∣

∣Fk∆

))

≤ c∆E
((

1 +X2
k∆

)

t2(Xk∆)
)

≤ c∆

∫ +∞

−∞

(

1 + x2
)

f(x)t2(x)dx.By (3.3):
∫ +∞

−∞

(

1 + x2
)

f(x)t2(x)dx ≤ c ‖t‖2
L2 , (6.6)whih ends the proof.6.5 Proofs of Theorems 3.3 and 3.4As previously, we only demonstrate Theorem 3.4. We have:

∥

∥

∥h̃Nn
− h
∥

∥

∥

2

L2

≤ inf
m∈Mn

‖hm,Nn
− h‖2

L2 + 12 sup
t∈Bm̂,m

(

ν2
n (t) + ρ2

n(t) + ξ2n(t) + pen(m) − pen(m̂)
)where Bm,m′ = {t ∈ Sm,Nn

+ Sm′,Nn
, ‖t‖L2 ≤ 1}. Let us onsider a funtion p(m,m′) suh that

12p(m,m′) = pen(m) + pen(m′). We have that
∥

∥

∥h̃− h
∥

∥

∥

2

L2

≤ inf
m∈Mn

‖hm,Nn
− h‖2

L2 + 2pen(m) + 12 sup
t∈Bm̂,m

(

ν2
n (t) + ρ2

n(t) + ξ2n(t) − p(m, m̂
)

).We already prove that supt∈Bm̂,m
ν2

n(t) ≤ c∆. Moreover,
E

(

sup
t∈Bm̂,m

ρ2
n(t) − p(m, m̂)

)

≤
∑

m′∈Mn

E

(

sup
t∈Bm′,m

ρ2
n(t) − p(m,m′)

)and
E

(

sup
t∈Bm̂,m

ξ2n(t) − p(m, m̂)

)

≤
∑

m′∈Mn

E

(

sup
t∈Bm′,m

ξ2n(t) − p(m,m′)

)The triplet (Xk∆, Zk∆, Jk∆) is β-mixing and its β-mixing oe�ient is smaller than β0e
−θt. So wean onstrut a set Ω∗ like in Lemma 6.2 with

qn =
(2l+ 3) ln(n)

θ∆
.Let us set, for a = 0, 1 and 0 ≤ k ≤ pn − 1:

U∗
k,a =

1

qn

qn
∑

l=1

J∗
((2k+a)qn+l)∆t

(

X∗
((2k+a)qn+l)∆

) and V ∗
k,a(t) =

1

qn

qn
∑

l=1

Z∗
((2k+a)qn+l)∆t

(

X∗
((2k+a)qn+l)∆

)

.Let us set:
‖t‖2

k,a =
1

qn

qn
∑

l=1

t2
(

X∗
((2k+a)qn+l)∆

) (6.7)26



As for the proof of Theorem 2.4, we denote D = 2m + 2m′ and we onsider (ϕλ, λ ∈ Λ) a basis of
Sm + Sm′ . Let us onsider the spaes

ΩZ,Λ =
{

ω, ∀k, ∀a ∈ {0, 1} , ∀λ ∈ Λ,
(

V ∗
k,a(ϕ∗

λ)
)2 ≤ 2σ2

0θ ‖ϕλ‖2
k,1

}

,

ΩJ = {ω, ∀k, |J∗
k∆| ≤ (2l + 1) ln(n)} and O = Ω∗ ∩ ΩZ,Λ ∩ ΩJ . (6.8)Risk bound on O We apply Lemma 6.3 to the variables U∗

k,a and V ∗
k,a. We have that

ρn(t) = ρn,0(t) + ρn,1(t) with ρn,a(t) =
1

2pn

pn
∑

k=1

V ∗
k,a − E

(

V ∗
k,a

)and
ξn(t) = ξn,0(t) + ξn,1(t) with ξn,a(t) =

1

2pn

pn
∑

k=1

U∗
k,a − E

(

U∗
k,a

)

.Applying Lemma 6.3 to the variables V ∗
k,a. We have thatVar (V ∗

k,a1O

)

≤ 1

qn
E
(

Z2
0 t

2(X0)
)

=
1

qn
E
(

t2(X0)E
(

Z2
0

∣

∣F0

))

≤ σ2
0

qn∆
.Let us set B :=

{

t ∈ Sm + Sm′ , ‖t‖2
L2 ≤ 1

}. By (6.8), we have that
sup
t∈B

(

V ∗
k,a(t)1O

)2
= sup

P

λ∈Λ
a2

λ
≤1

(

∑

λ∈Λ

aλV
∗
k,a(ϕλ)1O

)2

≤
∑

λ∈Λ

(

V ∗
k,a(ϕλ)1O

)2 ≤ 2σ2
0θ
∑

λ∈Λ

‖ϕλ‖2
k,awhere the semi-norm ‖.‖k,a is de�ned by (6.7). So by Assumption S4 2,

sup
t∈B

(

V ∗
k,a(t)1O

)2 ≤ 2σ2
0φ0θD where D = 2m + 2m′

.Moreover, in the previous setion it is demonstrated that
E

(

sup
t∈Bm,m′

ρ2
n(t)1O

)

≤ φ0D

n∆
.Lemma 6.3 an be applied with H2 = φ0σ

2
0D/(n∆), V = σ2

0q
−1
n ∆−1 and M2

1 = 2σ2
0φ0θD. We�nd:

E

((

sup
t∈Bm,m′

ρ2
n(t) − 12

φ0D

n∆

)1O

)

+

≤ C

(

1

n∆
exp (−cD) +

D ln2(n)

n2∆2
exp

(

− c

ln(n)

))

.We know that ∑m′ exp (−cD) =
∑

m′ exp
(

−c
(

2m + 2m′

))

≤ C where the onstant C does notdepend on m nor on m′. Besides, ∑m′ D ≤ D2
n. As

D
2
n ≤ n∆

ln2(n)
,we have

∑

m′

E

((

sup
t∈Bm,m′

ρ2
n(t) − 12

φ0D

n∆

)1O

)

+

≤ C

n∆
.
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Applying Lemma 6.3 to the variables U∗
k,a. Aording to Lemma 6.1, we have thatVar (U∗

k,a1O

)

≤ 4

qn
E
(

J2
0 t

2 (X0)B (X0)
)

≤ 4

qn

(

E
(

J4
0 t

4 (X0)
))1/2 (

E
(

B2 (X0)
))1/2where E

(

B2 (X0)
)

≤ 2β0/ (θ∆). Moreover, as J0 = I0 + b(X0), we have, by Lemma 6.4:
E
(

J4
0 t

4 (X0)
)

≤ cE
[

t4 (X0)
(

b4 (X0) + E
(

I4
0

∣

∣F0

))]

≤ c ‖t‖2
∞ E

([

∆2
(

1 +X4
k∆

)

+ b4 (X0)
]

t2 (X0)
)

.By Equation (3.3):
E
(

J4
0 t

4 (X0)
)

≤ c ‖t‖2
∞

∫

R

∆2
(

1 + x4
)

f(x)t2(x) + b4(x)f(x)t2(x)dxand
E
(

J4
0 t

4 (X0)
)

≤ cD.Colleting terms, we obtain: Var (U∗
k,a1O

)

≤ cD1/2

qnθ∆
= c

D1/2

ln(n)
.Moreover,

∥

∥U∗
k,a1O

∥

∥

∞
≤ ‖J0t(X0)1O‖∞ ≤ (2l + 1)D1/2 ln(n)and we have proved in the previous setion that

E

(

sup
t∈Bm,m′

ξ2n(t)1O

)

≤ 8β0φ0
D

nθ∆
.We an apply Lemma 6.3 with M1 = CD1/2 ln(n), V = C′D1/2/ ln(n) and H2 = 8β0φ0D/(nθ∆).We �nd that

E

((

sup
t∈Bm,m′

ν2
n(t) − 84β0φ0

D

nθ∆

)1O

)

+

≤ C

(

D1/2

nθ∆
exp

(

−cD1/2
)

+
D ln4(n)

n2∆2
exp

(

−c
√
n∆

ln2(n)

))where the onstant c is independent of D, n and ∆. We have that ∑m′ D1/2 exp
(

−cD1/2
)

≤
∑∞

k=1 k
1/2 exp

(

−ck1/2
)

< +∞. So, if
Dj,n ≤ n∆

ln3(n)
,we have that

∑

m′∈Mn

E

((

sup
t∈Bm,m′

ν2
n(t) − 84β0φ0

D

nθ∆

)1O

)

+

≤ C

n∆
.Risk bound on Oc We know that

E

(

sup
t∈Bm′,m

(

ρ2
n(t) + ξ2n(t)

)1Oc

)

≤ 2
√

P (Oc)

(

E

(

sup
t∈Bm′,m

(

ρ2
n(t) + ξ2n(t)

)2

))1/2and
P (Oc) ≤ P (Ω∗c) + P

(

Ωc
Z,Λ

)

+ P (Ωc
J) .Aording to Lemma 6.2,

P (Ω∗c) ≤ n−2l. (6.9)The following lemma is proved later: 28



Lemma 6.5.
P
(

Ωc
Z,Λ

)

≤ c

n2l
and P(Ωc

J ) ≤ c

n2l
.We have that

E

(

sup
t∈Bm′,m

(

ρ2
n(t) + ξ2n(t)

)2

)

≤ E





(

∑

λ∈Λ

ρ2
n(ϕλ) + ξ2n(ϕλ)

)2


 .Besides,
ρ2

n(ϕλ) + ξ2n (ϕλ) =

(

1

n

n
∑

k=1

ϕλ(Xk∆) (Zk∆ + Jk∆) − E (J0ϕλ(J0))

)2

≤ 3

n

n
∑

k=1

ϕ2
λ(Xk∆)

(

Z2
k∆ + J2

k∆

)

+ E
(

ϕ2
λ(X0)

)

E
(

J2
0

)Aording Assumption S(4) Point 2, we know that supx

∑

λ∈Λ ϕ
2
λ(x) ≤ φ0, so:

E

(

sup
t∈Bm′,m

(

ρ2
n(t) + ξ2n(t)

)2

)

≤ 27φ2
0

1

n

n
∑

k=1

[

E
(

Z4
k∆ + J4

k∆

)

+
(

E
(

J2
k∆

))2
]

.By Lemma 6.4, we obtain that:
E

(

sup
t∈Bm′,m

(

ρ2
n(t) + ξ2n(t)

)2

)

≤ c

(

1 +
1

∆2

)

.where c does not not depend on m,m′, n, nor on ∆. So, by (6.9) and Lemma 6.5,
E

(

sup
t∈Bm̂′,m

(

ρ2
n(t) + ξ2n(t)

) 1Oc

)

≤ c
∑

m′

1

nl∆
≤ Dn

nl∆
.As Dn ≤ n∆, as soon as l ≥ 2:

E

(

sup
t∈Bm̂′,m

(

ρ2
n(t) + ξ2n(t)

)1Oc

)

≤ c

n
.Proof of Lemma 6.5Bound of P (Ωc

J ): We have that
P (Ωc

J ) = P (∃k, |Jk∆| ≥ (2l+ 3) ln(n)) ≤ nP (|J0| ≥ (2l + 3) ln(n)) .It is known that
P (|J0| ≥ (2l + 3) ln(n)) ≤ n−(2l+3)

E (exp (|J0|)) .For any m, by stationarity,
E (|J0|m) ≤ E (|b(X0)|m) ≤

∫

|b(x)|m f(x)dx.By (3.3),
E (exp (|J0|)) ≤

∫ ∞

−∞

exp (|b(x)|) f(x)dx < cand
P (Ωc

J ) ≤ n−2l.29



Bound of P
(

Ωc
Z,Λ

): Aording to Lemma 2 p.533 of Comte et al. [6℄, we have that
P

(

(

V ∗
k,a(ϕλ)

)2 ≥ 2σ2
0θ ‖ϕλ‖2

k,a

)

≤ 2 exp (−qn∆θ) .As qn = (2l + 3)/(θ∆), we obtain:
P

(

(

V ∗
k,a(ϕλ)

)2 ≥ 2σ2
0θ ‖ϕλ‖2

k,a

)

≤ 2n−(2l+3).So we an write:
P (Ωc

Z) = P

(

∃a, ∃k, ∃λ,
(

V ∗
k,a(ϕλ)

)2 ≥ 2σ2
0θ ‖ϕλ‖2

k,a

)

≤ |Λ|nP

(

(

V ∗
k,a(ϕλ)

)2 ≥ 2σ2
0θ ‖ϕλ‖2

k,a

)

.As|Λ| ≤ D.Kn with Kn = n∆, we have:
P (Ωc

Z) ≤ Dn(n∆)n−2l−2 ≤ (n∆)
3/2

n2l−2 ≤ n2l.6.6 Proof of Theorem 4.1This proof follows the lines of Laour [15℄, setion 6.8. Let us set E =
{

ω,
∥

∥

∥
f − f̃

∥

∥

∥

∞
≤ f0/2

}.Risk bound on E. On E , f̃ ≥ f0/2. We know that
g̃(x) =

∑

λ∈Λm̂1

(

1

n

n
∑

k=1

ϕ′
λ(Xk∆)

)

ϕλ(x),so
‖g̃‖2

L2 =
∑

λ∈Λm̂1

(

1

n

n
∑

k=1

ϕ′
λ(Xk∆)

)2

≤

∥

∥

∥

∥

∥

∥

∑

λ∈Λm̂1

(ϕ′
λ)

2

∥

∥

∥

∥

∥

∥

∞

≤ ψ12
3m̂1 .As ‖g̃‖2

∞ ≤ ψ02
m̂1 ‖g̃‖2

L2 and 25m̂1 ≤ n∆,
‖g̃‖2

∞ ≤ ψ0ψ12
4m̂1 ≤ ψ0ψ1 (n∆)

4/5and for n∆ large enough, ‖g̃‖2
∞ ≤ n∆f0/2 ≤ n∆minx∈A f̃(x). So, on E , b̃ = g̃/(2f̃) and:
b̃ = bA +

(

g̃ − g

2f̂
+
g

2

(

1

f̃
− 1

f

))

.Therefore
E

(

∥

∥

∥b̃− bA

∥

∥

∥

2

L2

1E

)

≤ f−2
0 E

(

‖g̃ − g‖2
L2

)

+ f−4
0

∥

∥g2
A

∥

∥

∞
E

(

∥

∥

∥f̃ − f
∥

∥

∥

2

L2

)

.Risk bound on Ec. As ∥∥∥b̂∥∥∥
∞

≤ n∆, we have that
E

(

∥

∥

∥b̃ − bA

∥

∥

∥

2

L2

1Ec

)

≤
(

(n∆)2 + ‖bA‖2
∞

)

P (Ec)It is known that: ∥

∥

∥f − f̃
∥

∥

∥

∞
≤ inf

m0∈M0,n

(

‖f − fm0
‖∞ +

∥

∥

∥fm0
− f̃

∥

∥

∥

∞

)

.As f ∈ Bα
2,∞, by DeVore and Lorentz [10℄ p182 and Barron et al. [2℄ (Lemma 12):

‖f − fm0
‖∞ ≤ C2m0(−α+1/2) ≤ C ln(n∆)−α+1/2.30



So ‖f − fm0
‖∞ ≤ f0/4 for n large enough, and Ec ⊆

{∥

∥

∥fm0
− f̃

∥

∥

∥

∞
≥ f0/4

}. As fm0
and f̃ belongsto the linear spae Sm̂0

+ Sm0
whih satis�es Assumption S2, we have that

∥

∥

∥fm0
− f̃

∥

∥

∥

2

∞
≤ ψ0 sup

m′

0
∈M0,n

2m′

0
∨m0

∥

∥

∥fm0
− f̂m′

0

∥

∥

∥

2

L2

.We know:
∥

∥

∥fm0
− f̂m′

0

∥

∥

∥

2

L2

= sup
t∈Bm0,m′

0

ν2
0,n(t) where ν0,n(t) =

1

n

n
∑

k=1

t(Xk∆) −
∫

R

t(x)f(x)dx.Then
P (Ec) ≤ sup

m′

0
∈M0,n

P

(

sup
t∈Bm0,m′

0

ν2
0,n(t) ≥ 2−m′

0
∨m0

f2
0

16ψ0

)

.As in Subsetion 6.3, we use the set Ω∗. We have that
P (Ω∗c) ≤ 1

n2lso P (Ec) ≤ P (Ec ∩ Ω∗c) + 1
n2l . Let us onsider the random variables

U∗
k,1 =

1

qn

qn
∑

l=1

t
(

X∗
(2(k−1)qn+l)∆

) and U∗
k,2 =

1

qn

qn
∑

l=1

t
(

X∗
((2k−1)qn+l)∆

)

.The random variables (U∗
k,a

)

1≤k≤pn

are independent and identially distributed. It is demon-strated in Subsetion 6.3 that
sup

t∈Bm0,m′
0

∥

∥U∗
k,i

∥

∥

∞
≤
√

ψ0D
3/2 , Var (U∗

k,j

)

≤ c and H2 := E

(

sup
t∈Bm0,m′

0

ν2
0,n(t)

)

≤ C
D

n∆where D = 2m0 + 2m′

0 . As, by assumption, D2 ≤ n∆/ log2(n∆) for n large enough, we have that
H2 = CD/(n∆) ≤ f2

0 /64ψ0D. then
P (Ec ∩ Ω∗) ≤ sup

m′

0
∈M0,n

P

(

sup
t∈Bm0,m′

0

ν2
0,n(t) ≥ 2H2 +

f2
0

64ψ0D

)

.Aording to (6.1), we have that
P (Ec ∩ Ω∗) ≤ sup

m′

0
∈Mn,0

exp

(

− cn∆

ln(n)D2

)where the onstant c is independent of n and Dm.By assumption, D2 ≤ η2n∆/ ln2(n∆), so
P (Ec ∩ Ω∗) ≤ (n∆)−cη2

.If η2 is large enough, P (Ec ∩ Ω∗) ≤ (n∆)−3 and if l ≥ 2, we have that
E

(

∥

∥

∥b̃− bA

∥

∥

∥

2

L2

1Ec

)

≤ 1

n∆whih ends the proof.A Linear subspaesA.1 Linear subspaes satisfying Assumptions S1 or S3To use simple notations, we set in this setion A = [0, 1].31



Trigonometri polynomialsThe trigonometri polynomial linear subspaes Vm = Vet {1, cos(πλx)}1≤λ≤2m satisfy AssumptionS3. The linear subspaes Sm = {sin(πλx)}1≤λ≤2m satisfy Assumption S1 for k = 0, 1.Proof. DeVore and Lorentz [10℄ (Corollary 2.5 p205) and Barron et al. [2℄ (p120) prove that As-sumption S3 is satis�ed by subspaes Vm.Points 1. et 2. of Assumption S1 are ful�lled by the subspaes (Sm). Moreover, for any t ∈ Sm,
‖t‖2

∞ ≤ ‖t‖2
L2

∥

∥

∥

∥

∥

m
∑

λ=1

sin2(λx)

∥

∥

∥

∥

∥

∞

≤ Dm ‖t‖2
L2 .We have that

∥

∥Ψ2
m(x)

∥

∥

∞
=

∥

∥

∥

∥

∥

m
∑

λ=1

λ2 cos2(λx)

∥

∥

∥

∥

∥

∞

≤ m3 = D3
m.Besides, any funtion t ∈ Sm an be written √(2/π)

∑m
λ=1 aλ sin(λx), so

‖t′‖L2 =
2

π

m
∑

λ=1

a2
λλ

2
∥

∥cos2(λx)
∥

∥

2

L2
=

m
∑

λ=1

a2
λλ

2 ≤ m2 ‖t‖2
L2 .Points 3. and 4. of Assumption S1 are satis�ed.Pieewise polynomialsLet us set

g0(x) = 1[0,1](x), g1(x) = x1[0,1](x), . . . , gr(x) = xr1[0,1](x)and ϕa,λ,m = 2m/2ga (2mx− λ). The linear subspaes
Vm = Vet (ϕa,λ,m, 0 ≤ a ≤ r, 0 ≤ λ ≤ 2m − 1)satisfy Assumption S3. The linear subspaes

Sm = Vet ({ϕa,λ,m}0≤a≤r, 1≤λ≤2m−1 ∪ {ϕa,λ,m}l≤a≤r, λ∈{0,2m}

)satisfy Assumption S1 for k ≤ r.Proof. DeVore and Lorentz [10℄ (Theorem 3.4 p362) and Barron et al. [2℄ (p120) prove that (Vm)satisfy Assumption S3.The linear subspaes (Sm) satisfy Points 1. and 2. of Assumption S1. Moreover, the funtions
ϕa,λ,m have disjoint supports if λ 6= λ′, and for any a, ‖ga‖∞ ≤ 1. So

‖t‖2
∞ ≤ ‖t‖2

L2

∥

∥

∥

∥

∥

∑

λ∈Λm

r
∑

a=0

(ϕa,λ,m)
2

∥

∥

∥

∥

∥

∞

= ‖t‖2
L2

∥

∥

∥

∥

∥

r
∑

a=0

(ϕa,λ,m)
2

∥

∥

∥

∥

∥

∞

≤ (r + 1)2m ‖t‖2
L2 .In the same way, we obtain:

∥

∥Ψ2
m(x)

∥

∥

∞
=

∥

∥

∥

∥

∥

∑

λ∈Λm

r
∑

a=0

(

ϕ′
a,λ,m

)2

∥

∥

∥

∥

∥

∞

=

∥

∥

∥

∥

∥

r
∑

a=0

(

ϕ′
a,λ,m

)2

∥

∥

∥

∥

∥

∞

=

∥

∥

∥

∥

∥

r
∑

a=0

23m (g′r (2mx− λ))
2

∥

∥

∥

∥

∥

∞

≤ (r+1)23m.For any funtion t ∈ Sm,
‖t′‖2

L2 =

∥

∥

∥

∥

∥

∑

λ∈Λm

r
∑

a=0

(

ϕ′
a,λ,m

)

∥

∥

∥

∥

∥

2

L2

=
∑

λ∈Λm

2m

∥

∥

∥

∥

∥

r
∑

a=0

2mg′a (2mx− λ)

∥

∥

∥

∥

∥

2

L2

= 22m

∥

∥

∥

∥

∥

r
∑

a=0

g′a (x)

∥

∥

∥

∥

∥

2

L2

≤ r(r+1)22m.Points 2., 3., and 4. are proved. 32



Spline funtions restrited to [0, 1]Spline funtions gr, where gr is the r + 1 time onvolution of the indiator funtion of [0, 1],generates a r-regular multi-resolution analysis of L2(R). Their supports are inluded in [0, r + 1]and they belong to C r
p ∩ C r−1. Let us set ϕλ,m = 2mgr (2mx− λ) 1[0,1](x). Then

Vm = Vet (ϕλ,m, λ = −r + 1, . . . , 2m)satis�es Assumption S3 for k ≤ r and
Sm = Vet (ϕλ,m, λ = 0, . . . , 2m − r)satis�es Assumption S2.1 for k ≤ r.Proof. Shmisser [23℄ proved that the linear subspaes (Vm) satisfy Assumption S3.1. The fun-tions gr have a ompat support: to prove that the subspaes (Sm) ful�l Assumption S1, we usethe same arguments as in the previous paragraph.A.2 Restrited spaes of waveletsThe properties of wavelets are de�ned in Meyer [20℄ p21-22 (De�nitions 1 and 2).De�nition A.1.Let us onsider

Sm =
{

ϕλ,m := 2m/2ϕ(2m.− λ), λ ∈ Z

}a multi-resolution analysis of L2(R) suh that (ϕλ,m)λ∈Z
is an orthonormal basis of Sm. Let us set

Sm,N =
{

ϕλ,m := 2m/2ϕ(2m.− λ), |λ| ≤ 2mN
}and denote, for any funtion t ∈ L2(R), tm (resp tm,N) its orthogonal projetion over Sm (resp

Sm,N).Lemma A.1.If
∫

x2t2(x)dx < +∞ , t ∈ L1 and sup
x∈R

(|xϕ(x)|) < +∞,then
‖tm,N − tm‖2

L2 ≤ c

Nwhere the onstant c is independent of m and N .The proof is done in Comte et al. [8℄.Referenes[1℄ Arlot, S. and Massart, P. (2009) Data-driven albration of penalties for least-squares regres-sion. Journal of Mahine Learning Researh, 10 pp. 245�279.[2℄ Barron, A., Birgé, L. and Massart, P. (1999) Risk bounds for model seletion via penalization.Probab. Theory Related Fields , 113 (3) pp. 301�413.[3℄ Beskos, A., Papaspiliopoulos, O. and Roberts, G.O. (2006) Retrospetive exat simulation ofdi�usion sample paths with appliations. Bernoulli , 12 (6) pp. 1077�1098.[4℄ Bosq, D. (1997) Parametri rates of nonparametri estimators and preditors for ontinuoustime proesses. Ann. Statist., 25 (3) pp. 982�1000.33
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