Titania's radius and an upper limit on its atmosphere from the September 8, 2001 stellar occultation

T. Widemann, B. Sicardy, R. Dusser, C. Martinez, W. Beisker, E. Bredner, D. Dunham, P. Maley, E. Lellouch, J.-E. Arlot, et al.

- To cite this version:

T. Widemann, B. Sicardy, R. Dusser, C. Martinez, W. Beisker, et al.. Titania's radius and an upper limit on its atmosphere from the September 8, 2001 stellar occultation. Icarus, 2009, 199 (2), pp.458. 10.1016/j.icarus.2008.09.011 . hal-00506795

HAL Id: hal-00506795

https://hal.science/hal-00506795

Submitted on 29 Jul 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Accepted Manuscript

Titania's radius and an upper limit on its atmosphere from the September 8, 2001 stellar occultation
T. Widemann et al.
$\begin{array}{ll}\text { PII: } & \text { S0019-1035(08)00340-0 } \\ \text { DOI: } & \text { 10.1016/j.icarus.2008.09.011 } \\ \text { Reference: } & \text { YICAR 8771 }\end{array}$

To appear in: Icarus
Received date: 14 April 2008
Revised date: 1 August 2008
Accepted date: 22 September 2008

Please cite this article as: T. Widemann et al., Titania's radius and an upper limit on its atmosphere from the September 8, 2001 stellar occultation, Icarus (2008), doi: 10.1016/j.icarus.2008.09.011

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Titania's radius and an upper limit on its atmosphere from the September 8, 2001 stellar occultation

T. Widemann ${ }^{1}$, B. Sicardy ${ }^{1,2}$
R. Dusser ${ }^{3}$, C. Martinez ${ }^{4}$, W. Beisker ${ }^{5}$, E. Bredner ${ }^{5}$, D. Dunham ${ }^{6}$, P. Maley ${ }^{7}$
E. Lellouch ${ }^{1}$, J.-E. Arlot ${ }^{8}$, J. Berthier ${ }^{8}$, F. Colas ${ }^{8}$, W.B. Hubbard 9, R. Hill ${ }^{9}$, J. Lecacheux ${ }^{1}$, J.-F. Lecampion ${ }^{10}$, S. Pau ${ }^{1}$, M. Rapaport ${ }^{10}$, F. Roques ${ }^{1}$, W. Thuillot ${ }^{8}$
C. R. Hills ${ }^{11}$, A.J. Elliott ${ }^{12}$, R. Miles ${ }^{12}$, T. Platt ${ }^{13}$, C. Cremaschini ${ }^{14}$, P. Dubreuil ${ }^{15}$, C. Cavadore ${ }^{16}$, C. Demeautis ${ }^{16}$, P. Henriquet ${ }^{17}$, O. Labrevoir ${ }^{17}$, G. Rau ${ }^{18}$, J.-F. Coliac ${ }^{19}$, J. Piraux ${ }^{20}$, Ch. Marlot ${ }^{21}$, C. Marlot ${ }^{21}$, F. Gorry ${ }^{21}$, C. Sire 21, B. Bayle ${ }^{22}$, E. Simian ${ }^{23}$, A.M. Blommers 24, J. Fulgence ${ }^{25}$, C. Leyrat 26, C. Sauzeaud ${ }^{26}$, B. Stephanus ${ }^{26}$, T.Rafaelli ${ }^{27}$, C. Buil ${ }^{28}$, R. Delmas ${ }^{28}$, V. Desnoux ${ }^{28}$, C. Jasinski ${ }^{28}$, A. Klotz ${ }^{28}$, D. Marchais ${ }^{28}$, M. Rieugnié ${ }^{29}$, G. Bouderand 30, J.-P. Cazard ${ }^{30}$, C. Lambin ${ }^{30}$, P.O. Pujat ${ }^{30}$, F. Schwartz ${ }^{30}$, P. Burlot ${ }^{31}$, P. Langlais ${ }^{31}$, S. Rivaud ${ }^{31}$, E. Brochard ${ }^{32}$, Ph. Dupouy ${ }^{33}$, M. Lavayssière ${ }^{33}$, O. Chaptal ${ }^{34}$, K. Daiffallah ${ }^{35}$, C. Clarasso-Llauger ${ }^{36}$, J. Aloy Doménech ${ }^{36}$, M. Gabaldá-Sánchez ${ }^{36}$, X. Otazu-Porter ${ }^{36}$, D. Fernández ${ }^{37}$, E. Masana ${ }^{37}$, A. Ardanuy ${ }^{38}$, R. Casas ${ }^{38}$, J.A. Ros ${ }^{38}$, F. Casarramona ${ }^{38}$, C. Schnabel ${ }^{38}$, A. Roca ${ }^{38}$, C. Labordena ${ }^{38}$, O. Canales-Moreno ${ }^{39}$, V. Ferrer ${ }^{40}$, L. Rivas ${ }^{41}$, J.L. Ortiz ${ }^{42}$, J. Fernández-Arozena ${ }^{43}$, L.L. Martín-Rodríguez ${ }^{43}$ A. Cidadão ${ }^{44}$, P. Coelho ${ }^{44}$, P. Figuereido ${ }^{44}$, R. Gonçalves ${ }^{44}$, C. Marciano ${ }^{44}$, R. Nunes ${ }^{44}$, P. Ré ${ }^{44}$, C. Saraiva ${ }^{44}$, F. Tonel 44, J. Clérigo ${ }^{45}$, C. Oliveira ${ }^{45}$, C. Reis ${ }^{45}$, B.M. Ewen-Smith ${ }^{46}$, S. Ward ${ }^{46}$, D. Ford ${ }^{46}$ J. Gonçalves 47, J. Porto ${ }^{47}$, J. Laurindo Sobrinho ${ }^{48}$, F. Teodoro de Gois ${ }^{48}$, M. Joaquim ${ }^{48}$, J. Afonso da Silva Mendes ${ }^{48}$, E. van Ballegoij ${ }^{24}$, R. Jones ${ }^{49}$, H. Callender ${ }^{49}$, W. Sutherland ${ }^{49}$, S. Bumgarner 6, M. Imbert ${ }^{50}$, B. Mitchell ${ }^{50}$, J. Lockhart ${ }^{50}$, W. Barrow ${ }^{50}$, D. Cornwall ${ }^{50}$, A. Arnal ${ }^{51}$, G. Eleizalde ${ }^{51}$, A. Valencia ${ }^{51}$, V. Ladino ${ }^{52}$, T. Lizardo ${ }^{52}$, C. Guillén ${ }^{52}$, G. Sánchez ${ }^{52}$, A. Peña ${ }^{52}$, S. Radaelli ${ }^{52}$, J. Santiago ${ }^{52}$, K. Vieira ${ }^{52}$, H. Mendt ${ }^{53}$, P. Rosenzweig ${ }^{54}$, O. Naranjo ${ }^{54}$, O. Contreras ${ }^{54}$, F. Díaz ${ }^{54}$, E. Guzmán ${ }^{54}$, F. Moreno ${ }^{54}$, L. Omar Porras ${ }^{54}$, E. Recalde ${ }^{55}$, M. Mascaró ${ }^{55}$, C. Birnbaum ${ }^{56}$, R. Cósias ${ }^{57}$, E. López ${ }^{57}$, E. Pallo ${ }^{57}$, R. Percz ${ }^{57}$, D. Pulupa ${ }^{57}$, X. Simbaña ${ }^{57}$, A. Yajamín ${ }^{57}$, P. Rodas ${ }^{58}$, H. Denzau ${ }^{5}$, M. Kretlow ${ }^{5}$, P. Valdés Sada ${ }^{59}$, R. Hernández ${ }^{59}$, A. Hernández ${ }^{60}$, B. Wilson ${ }^{61}$, E. Castro ${ }^{62}$, J.M. Winkel ${ }^{24}$

Accepted for publication in Icarus, MS I10463
Manuscript pages : 30
Tables: 5; Figures : 17

Correspondence and requests for materials should be addressed to :
T. Widemann (thomas.widemann@obspm.fr)

LESIA, Observatoire de Paris, UMR CNRS 8109, 92195 Meudon cedex, France

[^0][^1]
Abstract

On September 8, 2001 around 2h UT, the largest Uranian moon, Titania, occulted Hipparcos star 106829 (alias SAO 164538, a V=7.2, K0 III star). This was the first-ever observed occultation by this satellite, a rare event as Titania subtends only 0.11 arcsec on the sky. The star's unusual brightness allowed many observers, both amateurs or professionals, to monitor this unique event, providing fifty-seven occultations chords over three continents, all reported here.

Selecting the best 27 occultation chords, and assuming a circular limb, we derive Titania's radius: $R_{T}=788.4 \pm 0.6 \mathrm{~km}$ ($1-\sigma$ error bar). This implies a density of $\rho=1.711 \pm 0.005 \mathrm{~g} \mathrm{~cm}^{-3}$ using the value $G M=(2.343 \pm 0.006) \times 10^{11} \mathrm{~m}^{3} \mathrm{sec}^{-2}$ derived by Taylor (1998). We do not detect any significant difference between equatorial and polar radii, in the limit $r_{\mathrm{eq}}-r_{\mathrm{po}}=-1.3 \pm 2.1 \mathrm{~km}$, in agreement with Voyager limb image retrieval during the 1986 flyby.

Titania's offset with respect to the DE405 + URA027 (based on GUST86 theory) ephemeris is derived : $\Delta \alpha_{T} \cos \left(\delta_{T}\right)=-108 \pm 13 \mathrm{mas}$ and $\Delta \delta_{T}=-62 \pm 7 \mathrm{mas}$ (ICRF J2000.0 system). Most of this offset is attributable to a Uranus' barycentric offset with respect to DE405, that we estimate to be : $\Delta \alpha_{U} \cos \left(\delta_{U}\right)=-100 \pm 25$ mas and $\Delta \delta_{U}=-85 \pm 25$ mas at the moment of occultation. This offset is confirmed by another Titania stellar occultation observed on August 1st, 2003, which provides an offset of $\Delta \alpha_{T} \cos \left(\delta_{T}\right)=-127 \pm 20$ mas and $\Delta \delta_{T}=-97 \pm 13$ mas for the satellite.

The combined ingress and egress data do not show any significant hint for atmospheric refraction, allowing us to set surface pressure limits at the level of 10-20 nbar. More specifically, we find an upper limit of 13 nbar (1- σ level) at 70 K and 17 nbar at 80 K , for a putative isothermal CO_{2} atmosphere. We also provide an upper limit of 8 nbar for a possible CH_{4} atmosphere, and 22 nbar for pure N_{2}, again at the 1- σ level.

We finally constrain the stellar size using the time-resolved star disappearance and reappearance at ingress and egress. We find an angular diameter of $0.54 \pm 0.03 \mathrm{mas}$ (corresponding to $7.5 \pm 0.4 \mathrm{~km}$ projected at Titania). With a distance of 170 ± 25 parsecs, this corresponds to a radius of 9.8 ± 0.2 solar radii for HIP 106829, typical of a K0 III giant.

Subject headings: Occultations ; Uranus, satellites ; Satellites, shapes ; Satellites, dynamics ; Ices ; Satellites, atmospheres

[^2]
1. Introduction

Among the various techniques used to probe the physical properties of distant objects in the solar system, ground-based stellar occultations are especially powerful. They provide kilometric accuracies or better on sizes and shapes, and may reveal tenuous atmospheres down to a few tens of nbar, as stellar rays are differentially refracted by a possible rarefied gas near the surface. On September 8, 2001 the bright (V=7.2) Hipparcos-catalog star HIP 106829 - a K0 III giant - was occulted by Titania, the largest Uranian satellite (Table 1), which angular diameter subtends 0.11 arcsec only on the sky. This rare event was independently predicted by Jean Meeus (Belgium) in 1999 and later by one of us (Claudio Martinez, Argentina) in 2001.

A great variety of observations were made using both small portable telescopes and larger, fixed instruments. The brightness of HIP 106829 allowed an exceptionally high number of observers to gather timings for the event, and light curves for some of them, using a wide variety of acquisition systems and timing techniques ; proper motion and parallax measurements in Hipparcos and Tycho2 catalogs provided prediction of the stellar position in the International Celestial Reference System (ICRS) at the time of event. More than eighty reports from about seventy stations were gathered, spanning Western Europe, various islands in the northern Atlantic ocean and Caribbean region, as well as several countries in North and South America (Figures 1-3 and Table 2).

The main goals of the observations were to (i) determine Titania's radius and possible oblateness ; (ii) determine Titania's offset with respect to the DE405 + URA027 ephemeris ; (iii) to search for an atmosphere aroud Titania, or derive significant constraints (upper limits) on an atmosphere.

Another important and unique aspect of this observation is that our determination of Titania's radius can be compared to remote sensing observations by the Voyager spacecraft during its January 1986 flyby. It allows us to validate a ground-based method for which a sub-kilometric accuracy is usually claimed. We determine an upper limit for a pure CO_{2} atmosphere, along with other possible gaseous constituents $\left(\mathrm{CH}_{4}\right.$ and $\left.\mathrm{N}_{2}\right)$ on Titania.

We finally address the ability of the occultation technique to probe tenuous atmospheres down to the $\sim 10 \mathrm{nb}$ level or below in distant solar system objects. As pressure levels detected during refractive occultations are inversely proportional to distances, we discuss how this method would quantitatively apply to the detection and characterization of atmospheres of trans-Neptunian objects at a few nanobar levels.

After a presentation and discussion of observing and timing techniques and limitations (Section 2), we derive the stellar diameter in Section 3, as a few stations could record individual images of the star as it disappeared (ingress) and re- appeared (egress) from behind Titanias limb. Titania's offset with respect to the DE405 + URA027 ephemeris is given in Section 4. Titania' size and an upper limit for its oblateness is provided in Section 5. Upper limits for various types of atmospheres are given in Section 6, before concluding remarks in Section 7.

2. Occultation chords

2.1. Circumstances of the event

The observation of this occultation was attempted from more than seventy ground-based stations, totalizing more than eighty reports (Table 2). Note that not all stations actually recorded the event, due to weather conditions, technical problems, or being out of the shadow path. Figure 1 shows a post-event reconstruction of Titania's shadow trajectory on Earth. Titania's shadow was cast on Earth's night side at a velocity of $20.92 \mathrm{~km} \mathrm{~s}^{-1}$ in the plane of the sky, yielding for a maximum possible duration about 75 s . The shadow first swept at low elevation over densely populated areas of Western Europe: France, UK, Italy, Portugal, Spain, and Portugal/Madeira; Northern Africa: Morocco, Algeria, and Spain/Canary Islands (Figure 2). It was then visible at high elevation from the Caribbean: Aruba, Barbados, France/Martinique, Trinidad and Tobago, and finally South America: Ecuador, Venezuela, while being attempted from North America: Mexico and USA (Figure 3). The Moon was not visible in the sky at that moment, thus causing no interference with observations.

Among the 70 or so observing stations, nine were clouded out: Quito (Ecuador), Pompiano (Italy), Madeira and Funchal (Portugal), Santa Margarita (Trinidad), Mérida and other three amateur stations in Venezuela. Six were outside the shadow: Algiers (Algeria), Monterrey (Mexico), Greenbelt (USA), Temara (Morocco), Granada and Canary Islands (Spain) see Table 2.

Among all stations, the highest elevation recording was at Cerro El Bueran near Cuenca (Ecuador) at 3987 m altitude, followed by Llano del Hato (Mérida, Venezuela) at 3600 m , and Pic du Midi (France), at 2878 m . Lowest elevation was sea level. The largest telescope were Pic-du-Midi (France) $1.05-\mathrm{m}$, followed by Observatoire de Haute-Provence (France) $1-\mathrm{m}$ and $0.8-\mathrm{m}$, Mérida (Venezuela) 0.6-m which was clouded out, and Sabadell-1 (Spain) 0.5-m, while the Granada (Spain) 0.4-m telescope was outside the shadow. A historical refractor telescope built in 1873, the $23.8-\mathrm{cm}$ Mertz refractor in downtown Quito (Ecuador) was also set up for this observation, but was unfortunately clouded out.

2.2. Recording modes

As a wide range of telescope diameters had been used from 1.05-m (France/Pic-du-Midi) to a mere $5-\mathrm{cm}$ (Venezuela/Maracaibo), as well as a large variety of camera devices, acquisition and timing methods, including visual and audio. Only a selection of observations turned out to be relevant for astrometry and limb fitting measurements, among which an even smaller selection consisted in extended lightcurves. A reliable method to constrain astrometry and limb shape of the occulting body is to combine frame by frame analysis and absolute timing capability. Frame by frame acquisition are provided by low-noise CCD cameras from various groups or vendors, such as IOC cameras by IOTA (International Occultation and Timing Association), Audine-series cameras
by AUDE (Association des Utilisateurs de Détecteurs Electroniques), ST-series cameras by SBIG (Santa Barbara Instrument Group), among others, and in some cases, analog video tapes (Table 2).

The timing methods were either GPS-based, internet/internal PC clock, visual or audio (about 25 stations) consisting in either stopwatch visual synchronization to a radio signal (DCF-77 or local/national radio), or audio recording of time signal or beeps, on the acquisition VHS tape or a separate audio recorder with observer's commentary. Absolute timing must be provided by a Global Positioning System (GPS), or an NTP server (Matsuda 1996), directly connected to the file acquisition/recording device or to the PC clock time. Direct reading from the internet, without such precautions, should be avoided even for relative time measurements. Table 2 provides ingress and egress times, the observer's position in terrestrial coordinates, telescope diameter, acquisition instrument, visual recording and timing methods for each individual station.

3. Star properties

To reconstruct the geometry of the event we need (1) the position of the star at epoch, (2) Titania's ephemeris, (3) the observers' geocentric coordinates and (4) the timings of the occultation (star ingress and egress) at each station. These timings allow us to reconstruct the 2-D geometry of the stellar occultation by Titania's disk in the sky plane, and provide the offset between Titania's actual position and its calculated ephemeris.

3.1. Star position

The ICRS position for star HIP 106829 is provided by the Vizier site (Ochsenbein et al. 2000). This star is not documented as either variable nor multiple in the Hipparcos catalog. Its ICRS position at Hipparcos epoch (1991.25) is $\alpha=324.55809702^{\circ}, \delta=-14.91006013^{\circ}$ with error of 0.8 and 0.6 milli-arcsec (mas), respectively. The Hipparcos catalog provides a proper motion of $\mu_{\alpha} \cos (\delta)=27.703 \pm 1.314$ mas year $^{-1}$ and $\mu_{\delta}=29.5 \pm 0.72$ mas year $^{-1}$, while the Tycho 2 catalog gives $\mu_{\alpha} \cos (\delta)=28.251 \pm 0.827$ mas year $^{-1}$ and $\mu_{\delta}=29.5 \pm 0.8$ mas year ${ }^{-1}$. Weighing those proper motions according to errors, we obtain a total motion of $\Delta \alpha \cos (\delta)_{\mathrm{pm}}=295.516 \pm 7.368$ mas and $\Delta \delta_{\mathrm{pm}}=310.290 \pm 5.629$ mas between the Hipparcos epoch and the date of occultation (2001.7683).

The annual parallax of the star, from Hipparcos, is $\pi "=5.89 \pm 0.91$ mas (Perryman et al. 1997). This yields a further correction of $\Delta \alpha \cos (\delta)_{\mathrm{par}}=-2.294 \pm 0.354 \mathrm{mas}$ and $\Delta \delta_{\mathrm{par}}=-0.838 \pm 0.130$ mas, and finally:

$$
\left\{\begin{array}{l}
\alpha=324.55817850^{\circ} \pm[\Delta \alpha \cos (\delta)=7.4 \mathrm{mas}] \tag{1}\\
\delta=-14.90997417^{\circ} \pm[\Delta \delta=5.7 \mathrm{mas}]
\end{array}\right.
$$

where the uncertainties essentially come from the propagation of the proper motion error between 1991.25 and 2001. At the distance of Titania, $D=2.8504 \times 10^{9} \mathrm{~km}$ (Table 1), one arcsec corresponds to $13,819 \mathrm{~km}$. Thus, the error bars quoted above correspond to distances of $\sim 100 \mathrm{~km}$ in the plane of the sky.

3.2. Stellar diameter

A few stations could record individual images of the star as it disappeared (ingress) and reappeared (egress) from behind Titania's limb. We have selected the four best light curves in terms of timing accuracy, namely Salinas-1 ($0.25-\mathrm{m}$) and Salinas-2 ($0.20-\mathrm{m}$) in Ecuador, Arikok in Aruba island $(0.20-\mathrm{m})$, and Portimão- 1 in Portugal $(0.25-\mathrm{m})$. All four datasets were collected with IOC cameras. An example of lightcurve, obtained with the $25-\mathrm{cm}$ reflector at Salinas- 1 , is displayed in Figure 4.

Individual fits to each gradual decrease and increase in star intensity have been performed for each of those experiments, providing eight timings (Table 2). Those times correspond to the
instant when the center of the stellar disk intersects Titania' limb. Prior to the fit, the data were normalized between zero (Titania' flux only) and unity (flux of Titania plus star outside occultation). The fits include the following steps : (1) Fresnel diffraction by a point-like source at distance $D=2.8504 \times 10^{9} \mathrm{~km}$ from the observer are generated. The numerical scheme used to generate this diffraction pattern is described in details in Roques et al. (1987). Because the IOC's were used in clear (no filter) mode, convolution with the camera bandwidth were performed. The resulting diffraction pattern is shown in Figure 5, see the thin upper curve ; (2) this profile was convolved by a 2-D stellar disk, taking into account limb darkening. The limb darkening profile was taken from Claret (2000), who provides a four-parameter model for the stellar disk specific intensity $I: I(\mu)=1-\sum_{k=1}^{4} a_{k}\left(1-\mu^{k / 2}\right)$, where $\mu=\cos (\gamma)$, and γ is the the angle between the line of sight and the intensity emerging from the stellar surface. Note that the intensity is arbitrarily normalized to unity for $\mu=1$. For a K0 giant star (effective temperature $T_{e f f}=4750 \mathrm{~K}$), this author gives : $a_{1,2,3,4}=0.6699,-0.7671,1.6405,-0.6607$, respectively ; (3) a final convolution accounts for the instrumental response, namely the fact that each data point actually represents the number of photons received during a finite time step Δt. Examples of such fits to the Salinas-1, Salinas-2 and Arikok lightcurves are shown in Figure 6.

The ingress/egress timings are derived from the classical minimization of:

$$
\begin{equation*}
\chi^{2}=\sum \frac{\left(\Phi_{\mathrm{i}, \mathrm{obs}}-\Phi_{\mathrm{i}, \mathrm{cal}}\right)^{2}}{\sigma_{\mathrm{i}}^{2}}, \tag{2}
\end{equation*}
$$

where Φ is the flux, " i " refers to the $\mathrm{i}^{\text {th }}$ data point, "obs" refers to observations, "cal" refers to calculated, and σ_{i} is the expected $1-\sigma$ error of the $\mathrm{i}^{\text {th }}$ data point. The latter is estimated from the signal fluctuations observed during a typical time interval of 2 mn around the event. Quoted formal errors on timings correspond to an increase of $\Delta \chi^{2}=\chi^{2}-\chi_{\min }^{2}=1$ with respect to the best obtained value, $\chi_{\min }^{2}$, the so-called 1- σ level, or more precisely, the 68.3% confidence level (Press et al. 1986).

In order to derive the stellar size, we need to align all the eight profiles along a common radial scale. To do so, we force the extremities of the four chords to lie on a common circle, with a reference radius $R_{\mathrm{T}, \mathrm{occ}}=788.4 \mathrm{~km}$ corresponding to Titania's best fit value later determined in Section 5. This reference radius is arbitrary since small timing errors and/or topographic features along Titania's limb may induce radial scatter at the km-level. This procedure is valid, however, as long as we are interested in the local behavior of the light curve during ingress and egress of the star.

Figure 5 shows the data points plotted versus distance to Titania's shadow center. As noted before, the thin upper line shows the diffraction profile expected from a point-like star (but after convolution by the receptor bandwidth). Note that the main fringe has a width at half maximum of about 1 km . This is expected from the classical expression of the Fresnel scale, $L_{F}=\sqrt{\lambda D / 2}$, where λ is the wavelength of observation and D is the distance to Titania. Thus, L_{F} varies from 0.9 to 1.1 km when λ varies from 0.6 to $0.9 \mu \mathrm{~m}$ (the typical coverage of IOC cameras), yielding the
kilometric scale quoted above.
A χ^{2} minimization similar to that of Eq. 1 provides the best fit stellar diameter projected at Titania, $D_{\star}=7.5 \pm 0.4 \mathrm{~km}$, corresponding to an angular diameter of 0.54 ± 0.03 mas. The quoted error bar corresponds again to a variation $\Delta \chi^{2}=1$ above the best fit.

Thus, the occultation pattern is dominated by stellar diameter, not by diffraction. Note, however that the formal error bars on ingress/egress times are of the order of 0.010-0.035 sec, corresponding to radial errors of $0.1-0.7 \mathrm{~km}$ depending on the star velocity perpendicular to Titania's limb. Thus, and at least for stations where individual images are available, sub-km radial errors can be achieved.

The stellar diameter obtained here can be compared to independent estimations, e.g. using the formulae of van Belle (1999). The magnitudes provided by the Simbad astronomical database (Wenger et al. 2000) are $m_{B}=8.24, m_{V}=7.20, m_{J}=5.45, m_{H}=4.90, m_{K}=4.75$, from which we get an angular diameter of 0.59 mas, with typical errors of $10-20 \%$. This is compatible with our determination, although with a larger error bar. The annual parallax of the star is 5.89 ± 0.91 mas (Perryman et al. 1997), corresponding to a distance of 170 ± 25 parsecs. Hence, our determination of the angular diameter yields a stellar radius of 9.8 ± 0.2 solar radii, where most of the error bars comes from the error on the annual parallax. This radius is typical of a K0 III giant star, for which $\log R / R_{\odot}=+1.2$ (Allen 1976).

4. Titania's ephemeris offset

4.1. The September 8, 2001 occultation event

We first determine Titania's predicted position for the September 8, 2001 event with Horizons ephemeris provided by NASA's Jet Propulsion Laboratory (Giorgini et al. 1996). The on-line ephemeris is a combination of the DE405 motion of Uranus, and the URA027 satellite analytical ephemeris derived from the GUST86 theory (Laskar \& Jacobson 1987). As indicated in Table 1, it provides (i) the latitude of sub-Earth point at 02:00 UT (8 September 2001), B $=-24.2^{\circ}$ (IAU convention), (ii) Titania's north pole position angle, $P=260.4^{\circ}$, with respect to the local J2000.0 celestial North, and (iii) the longitude of sub-Earth point, 343.5° (Earth and the Sun being about 1.2° apart as seen from Uranus). This allows us to reconstruct Titania's orientation in the sky plane, identify the meridian facing Uranus, as shown on Figure 7, and associate a titaniacentric latitude to each ingress and egress occultation point, see Table 3. Note that the sub-occultation points provided in Table 3 represent a subset of the full dataset, as explained below.

Titania's south pole was visible from Earth in the celestial East direction. As the Uranian system was moving westward in the sky at the time of occultation, the star ingress occurred in the northern Titania hemisphere, close to equatorial and mid-northern latitudes (Figures 7 et sequ.). Egress occurred in the southern Titania hemisphere, at higher planetocentric latitudes than during ingress, in fact near the satellite's south polar region. Because the titaniacentric elevation of the observer is $\mathrm{B}=-24.2^{\circ}$, the occultation could probe latitudes between $+65.8^{\circ}$ and -65.8°.

Titania's offset is derived from a subset of ingress and egress times provided in Table 2. Each time gives the position of the observer in Titania's shadow at ingress or egress, once the star position at epoch is established (Eq. 1). Titania's motion in right ascension and declination is interpolated using a second-order polynomial, fitting twenty position steps calculated every minute and bracketting the event.

Practically, and owing to the wide variety of methods used here (CCD imaging, video, driftscan, visual, etc...), we have to establish selection criteria on the timings provided by the observing teams, in order to derive an accurate ephemeris offset through limb fitting.

We start with all the occultation chords provided in Table 2, using all possible timings at face value. The resulting fifty-seven chords are shown in Figure 7. Some of them have clearly wrong durations, due to various kinds of errors (wrong time base, confusions due to the nearby, brighter Uranus, especially for visual observations, etc...). Several chords appear to have correct durations, though, but are shifted in time due to errors in absolute time setup (due e.g. to delays of internet clocks, personal reaction timelags from manual stopwatch, misprints when writing reports, etc...). It is impossible to retrieve the exact origin of all those time shifts, and of course, to correct them afterwards. Such chords may be of interest, though, as their durations are correct to within a fraction of a second, i.e. a few kilometers in length. As such they can be included in a circular fit to Titania's limb, as described in the next Section.

Thus, we have shifted all the chords along the direction of motion, so that all the chords have a common mediatrix ${ }^{1}$. If Titania's limb is circular and all the relative timings are correct, then all the extremities of the chords should lie on a common circle, after this procedure has been applied. Because of timing errors, as alluded to just before, and also due to possible topographic features along the limb, radial residuals $\Delta r=r_{i, o b s}-r_{r e f}$ with respect to a common circle of radius $r_{r e f}$ are observed.

To proceed forward, we have selected chords which have a residual radial dispersion $\Delta r< \pm$ 10 km . This corresponds to an error of 0.5 to 2 sec in chord duration, depending on the observer's location projected on Titania's limb. The $10-\mathrm{km}$ limit is of course arbitrary, but it appears that the most deviant chords are also those which are derived from either one, or a combination of the following observing circumstances : (i) smaller instruments (less that 15 cm in diameter), (ii) large time steps (no fraction of seconds available), (iii) documented problems, and/or (iv) visual observations, for which post-occultation corrections are impossible to make. ${ }^{2}$

This step eliminates 14 chords, leaving us with 43 chords, shown in Figure 8. The circle fitted to the chord extremities has been obtained iteratively. First we fit a circle to the chord extremities, then we shift the chords so that all their mediatrixes coincide with the circle diameter perpendicular to stellar motion, repeating that operation till the circle center varies by less than one kilometer. Once this is achieved, we obtain Titania's offset with respect to its predicted position.

This offset, readily visible in Figure 8, amounts to $\Delta f=-1493 \mathrm{~km}$ (sign meaning toward celestial west) and $\Delta g=-862 \mathrm{~km}$ (toward celestial south). The internal accuracy of this offset is less than $\sim 10 \mathrm{~km}$, after the selection criterium on Δr for the 43 chords, described before. This corresponds to less than one milli-arc-second ($1 \mathrm{mas}=13.8 \mathrm{~km}$ at Titania's distance) and thus negligible compared to the accuracy on the star position of $\Delta \alpha \cos (\delta)=7.4$ mas and $\Delta \delta=5.7$ mas, see Eq. 1. In other words, the error bars on the offset is dominated by error bars on the star position, and not by the accuracy of our fit. With a range of $2.8504 \times 10^{9} \mathrm{~km}$, Titania's offset with respect to the DE405 + GUST86 prediction amounts to:

$$
\begin{cases}\Delta \alpha_{T} \cos \left(\delta_{T}\right)= & -108 \pm 7 \mathrm{mas} \tag{3}\\ \Delta \delta_{T}= & -62 \pm 6 \mathrm{mas}\end{cases}
$$

Part of this offset is due to a general offset of Uranus barycenter with respect to DE405, and part is due to an offset in Titania's motion around Uranus. To find out which of Uranus' or Titania's offsets prevail, let us consider some alternative ephemerides to DE405 and GUST86. While GUST86 was

[^3]fitted to observations made from 1911 to 1986, a new theory ("LA07") has been fitted to more recent observations made from 1948 to 2003 (including Voyager observations) for better predicting the mutual events of 2007, see Lainey (2008).

Titania's position with respect to Uranus on September 8, 2001 at 02h UT, as given by GUST86, is: $X=11.0532 \operatorname{arcsec}$ and $Y=11.4900$ arcsec, eastward and northward of Uranus ICRS J2000.0 position, respectively. A new theory LA07 gives $X=11.0456 \operatorname{arcsec}$ and $Y=11.5130$ arcsec. This yields a difference LA07-GUST86 $=-8$ mas and +23 mas in right ascension and declination, respectively, with typical accuracy of $20-25$ mas. This indicates that the offset given above (Eq. 3) is dominated by Uranus barycentric offset. Taking the LA07 theory as reference, our astrometric reconstruction discussed above yields the following Uranus offset, in the sense [our occultation observation minus DE405] of :

$$
\begin{cases}\Delta \alpha_{U} \cos \left(\delta_{U}\right)= & -100 \pm 25 \mathrm{mas} \tag{4}\\ \Delta \delta_{U}= & -85 \pm 25 \mathrm{mas}\end{cases}
$$

A survey made at the Bordeaux meridian transit circle actually shows that Uranus' offset averaged over several months around September 2001 amounts to: $\Delta \alpha_{U} \cos \left(\delta_{U}\right)=-98 \pm 10$ mas and $\Delta \delta_{U}=-122 \pm 10 \mathrm{mas}$, see Arlot et al. (2008). This is fully consistent with our result in right ascension (difference of +2 mas with respect to our result), while the difference is barely significant in declination (difference of -37 mas).

We may finally compare the DE405 ephemeris with the newly released IMCCE ephemeris "INPOP06" (Fienga et al. 2008), which improves Uranus ephemeris. We have, in the sense [INPOP - DE405] : $\Delta \alpha_{U} \cos \left(\delta_{U}\right)=-66$ mas $\Delta \delta_{U}=-75$ mas. There is now a barely significant difference (+34 mas) in right ascension when compared to our result, and a fully consistent offset in declination (difference +10 mas with our result).

4.2. Additional offset constraints from the Aug. 1, 2003 event

We have a confirmation of this systematic offset from another stellar occultation by Titania, observed on August 1st, 2003 (Figure 9). The star involved, TYC 5806-696-1 (V=10.3) has the following ICRF position at epoch, $\alpha=333.9773096^{\circ} \pm 20 \mathrm{mas}$ and $\delta=-11.6156551^{\circ} \pm 13 \mathrm{mas}$ (Table 1) with proper motion taken into account as for HIP 106829 on September 8, 2001, but not annual parallax, which is too small to be measured. The 2003 event was observed from two sites, in Mexico and USA, see Table 4 for locations, instrument characteristics and timings. With these two chords, we obtain a radius for Titania of 787.3 km , i.e. 1.1 km smaller than the radius obtained later in this paper, but with an uncertainty of $\sim 4 \mathrm{~km}$, vs. a fraction of km obtained with the September 2001 event. So, this occultation does not improve our radius determination presented in the next Section. However, the timing of the event is reliable enough to provide a significant Titania offset of -127 ± 20 mas and -97 ± 13 mas, where error bars come again from uncertainties
on the star position. This offset is fully consistent in right ascension with the offset obtained in 2001 (see Eq. 3), and barely larger - in absolute value - in declination. This difference remains marginal, however, when compared to error bars.

In summary, the offset established for the Sep. 8, 2001 occultation and confirmed by the Aug. 1, 2003 occultation is probably a manifestation of Uranus' offset slowly varying over years with respect to the DE405 ephemeris for the main part, and from Titania's uranocentric orbit for a small part.

5. Titania's size and upper limit on oblateness

The next step of our analysis involves further selection among observed chords, in order to increase the accuracy on Titania's size and shape. We keep the observations for which (i) frame by frame data acquisition and timing capability is provided, using a CCD or a video/camcorder equipment and (ii) visual observations and timings reported with radial residuals consistent with $\Delta r< \pm 5 \mathrm{~km}$, allowing us to obtain an improved timing of the star ingress and egress. Consequently, we eliminate timings obtained from drift scans observations, as the time interval during which the stellar trail disappears is actually affected by the point spread function (PSF). For instance, the occultation durations derived from the two IOC cameras at Salinas 1-2 (Ecuador) agree with each other to within 0.005 sec , while the drift scan observation made at the same site (Salinas-3, Ecuador) shows a large discrepancy of 1.8 sec , see Table 2, corresponding in that case to a difference in chord length of about 30 km . Although it might be possible to correct the effect of PSF convolution in the occultation length, even in that case, estimation of error bars would be problematical.

We noticed that the radial dispersion of the chord extremities show a marked concentration in an interval $\Delta r= \pm 5 \mathrm{~km}$ (Figure 10), with some outliers between 5 and 10 km , that we have withdrawn from the fit. We therefore retained $\Delta r< \pm 5 \mathrm{~km}$ as a selection criterium for the limb fitting analysis. All outliers, from the previous selection of 43 stations, except two, are from visual observations, for which it is now impossible to assess the degree of confidence. For the two remaining stations excluded with that method, Observatoire de Haute Provence (France) and Oeiras (Portugal), no satisfactory explanations have been given for their larger radial residuals. ${ }^{3}$ In contrast, we kept 13 visual observations reported by experienced observers for which we estimate an accuracy of about $0.2-0.3 \mathrm{sec}$ for the occultation duration (even if the absolute timing may be off by much more than that, as detailed in Table 3). To support why the remaining visual timings may equal the relative accuracy of frame-by-frame recording, on can note in Figure 11 that many remaining visual chords (shown in black solid) are far away from shadow center, which may reduce significantly the projected star velocity perpendicular to the limb down to $6-14 \mathrm{~km} \mathrm{sec}^{-1}$, depending on the chord. Consequently, typical errors of 0.2-0.3 translate into radial residuals of typically 1 4 km , i.e. less than the $5-\mathrm{km}$ limit we used to discriminate the CCD or video frame-by-frame observations for limb fitting, as explained above.

5.1. Circular fit

Twenty-seven occultation chords are finally kept for a circular limb fit. They consist in a total of 13 visual timing observations, 9 video recordings and 5 CCD recordings, plotted on Figure 11 and listed in Table 3. A first point to note is that even with the stations with the best timing accuracies, the radial residuals to a circular fit are quite larger than the expected accuracy of each

[^4]measurements. For instance, the Salinas-1, Salinas-2, Arikok, Pic du Midi and Portimão-1 chord extremities have formal radial accuracies of 0.1 to 0.4 km , while the observed radial residuals have values of $\Delta r= \pm 2 \mathrm{~km}$.

This indicates either that we grossly underestimate our error bars, or that this dispersion has a physical origin, not accounted for by our circular fit. This will be discussed later, but we can already mention here that images taken by the Voyager spacecraft in 1986 show typical r.m.s. limb radial dispersions of $\pm 1 \mathrm{~km}$, with peak to peak amplitudes of $\pm 3 \mathrm{~km}$ (Thomas 1988). Our r.m.s. residuals of $\Delta r= \pm 2 \mathrm{~km}$ are thus consistent with the Voyager images and are typical of what may be expected from the satellite topography itself, characterized by scarps $2-4 \mathrm{~km}$ high and an uneven crust. In other words, the pseudo random radial fluctuations that we observe are likely to be dominated by Titania's topography, not by the uncertainties on the durations of our 27 selected chords. There are only two stations for which the error bars exceed the typical limb radial dispersion, namely the Ponta Delgada (Azores Island, Portugal) and Marinha Grande (mainland Portugal) sites. Their timing accuracy is announced at ± 0.3 and ± 0.5 seconds, respectively, translating into radial accuracy of 3.1 and 4.1 km , respectively.

We now proceed to a circular fit to the extremities of the 27 selected chords. The free parameters of the fit are Titania's radius, $R_{\mathrm{T}, \text { occ }}$, and the location of shadow center, as given by the offset $(\Delta f, \Delta g)$. We define the χ^{2} of the fit as:

$$
\begin{equation*}
\chi^{2}=\sum_{i=1}^{54} \frac{\left(r_{\mathrm{i}, \mathrm{obs}}-R_{\mathrm{T}, \mathrm{occ}}\right)^{2}}{\sigma_{i}^{2}} \tag{5}
\end{equation*}
$$

where the $r_{\mathrm{i}, \text { obs }}$'s are the 54 radii of the 27 chords extremities.
We will assume that the error σ_{i}^{2} attached to each chord length is imposed by Titania's topography. Our best circular fit to the 27 selected chords then yields a radius $R_{\mathrm{T}, \mathrm{occ}}=788.4 \mathrm{~km}$, with a dispersion of 1.6 km (Figure 11). Since we shifted the chords prior to the fit so that they have a common mediatrix, the two extremities of a given chord have the same radius, by definition. Consequently, there are actually $N=27$ independent data points, while the fit has $M=3$ adjusted parameters ($R_{\mathrm{T}, \mathrm{occ}}, \Delta f$ and Δg), so that the expected minimum value of χ^{2} is the number of degrees of freedom, $\chi_{\text {min }}^{2}=\nu=N-M=24$.

This value is obtained for $\sigma_{i}=2.29 \mathrm{~km}$, a value that we keep for our error bar determination, except for the Ponta Delgada and Marinha Grande chords, for which we take 3.1 and 4.1 km , as explained before. Exploring the effect of fixed values of $R_{T, \text { occ }}$ on χ^{2}, while keeping Δf and Δg as free parameters, we obtain the so-called 1- σ error bar (68.3% confidence level) for $R_{\mathrm{T}, \text { occ }}$, such that $\Delta \chi^{2}=\chi^{2}-\chi_{\text {min }}^{2}=1$ (Press et al. 1986) :

$$
\begin{equation*}
R_{\mathrm{T}, \mathrm{occ}}=788.4 \pm 0.6 \mathrm{~km} \tag{6}
\end{equation*}
$$

This radius is fully compatible with the value derived by Thomas (1988) from the Voyager
images $R_{\mathrm{T}, \mathrm{Voy}}=788.9 \pm 1.8 \mathrm{~km}$. This latter value is actually an average of seven limb profiles, none of them being a priori the one that we observed during the occultation.

We finally derive a mean density $\rho=1.711 \pm 0.005 \mathrm{~g} \mathrm{~cm}^{-3}$ for Titania, based on Taylor (1998) estimate of $G M=2.343 \times 10^{11} \mathrm{~m}^{3} \mathrm{sec}^{-2}$ (Table 1). It lies within previously published value using Voyager's radius $R_{\mathrm{T}, \mathrm{Voy}}=788.9 \pm 1.8$ (Thomas 1988) and improves by a factor of 10 the value of $\rho=1.71 \pm 0.05 \mathrm{~g} \mathrm{~cm}^{-3}$ by Jacobson et al. (1992). This density represents a silicate to ice ratio of ~ 0.5 (Brown et al. 1991), a much higher silicate fraction than the satellites of Saturn, in agreement with the observed relative depletion of surface ice in the Uranian system, that we discuss in Section 6.

5.2. Upper limit on oblateness

Estimating the satellite oblateness is hampered by the fact we have shifted the occulting chords in time, so that they have a common mediatrix. In doing so, we impose the radial residuals to be the same at each extremity of a given chord, i.e. at two different latitudes. This tends to mix up any low frequency pattern present along the limb. This effect is visible in Figure 12, where the points come by pairs with same radii.

However, we may give a rough estimation for the upper limit on oblateness in a simplified situation, namely assuming that Titania is an ellipsoid of revolution, with smaller axis aligned with its pole. At lowest order in oblateness $f=\left(r_{\mathrm{eq}}-r_{\mathrm{po}}\right) / r_{\mathrm{eq}}$, where r_{eq} (resp. r_{po}) is the equatorial (resp. polar) radius, the limb shape is given by $r=r_{\text {eq }}\left[1-f \sin ^{2} \phi\right]$, where r is the radius at latitude ϕ. This limb profile is an even function of ϕ, so that the points of Figure 12 can be all folded in the interval $\left[0^{\circ}, 90^{\circ}\right]$. Furthermore, each pair of point corresponding to one chord can be replaced by a unique point with same radial residual, at a latitude which is the average of the latitudes of the two points.

Figure 13 shows the result of this operation. When the function $r_{\text {eq }}\left[1-f \sin ^{2} \phi\right]$ is fitted to these data points, the overall radial residual is decreased. However, since one new free parameter is added (namely, the oblateness f), the χ^{2} per degree of freedom of the fit actually increases, showing that no significant oblateness is detected in our data set. More precisely, we obtain an equator to pole difference of $r_{\mathrm{eq}}-r_{\mathrm{po}}=-1.3 \pm 2.1 \mathrm{~km}$, while the equatorial radius remains close to the circular fit value, $r_{\text {eq }}=788.0 \pm 0.9 \mathrm{~km}$.

A rough estimation of the oblateness f of a slowly rotating fluid satellite is given by $f \sim q$ (Murray \& Dermott 1999), where q is the dimentionless rotational factor $q=\left(4 \pi^{2} R^{3}\right) /\left(G M P^{2}\right) \sim$ 1.5×10^{-4}, using the $G M$ and rotation period $P=8.706$ days (Table 1). This would imply a difference $r_{\text {eq }}-r_{\mathrm{po}} \sim 0.1 \mathrm{~km}$, i.e., about 10 times smaller than the upper limit for $r_{\mathrm{eq}}-r_{\mathrm{po}}$ derived above from our data set. This finding is in agreement with Voyager limb image analysis by Thomas (1988) who find no observational evidence for oblateness. Another attempt was made in our analysis, assuming that Titania is elongated along the line joining the satellite to the planet
(i.e. along the suburanian point labelled "SU" in Figure 7). In this case, however, all the suboccultation points along the limb lie between 63° and 90° away from the point SU . This is a too narrow interval to yield any significant constraint on a possible elongation towards Uranus. Other directions of elongation might be possible, but the shifts of the chords described earlier make impossible a detection of such distortions.

Note that without absolute timing shifts discussed before, we would have reached a much more stringent upper limit for Titania's oblateness. This is a strong argument for the importance of getting absolute timing accuracy at the $0.1-\mathrm{sec}$ level or less.

6. Limits on an atmosphere around Titania

In this section, we use the occultation data to constrain the existence of an atmosphere around Titania. Potential origins for such an atmosphere include (i) solar-induced ice sublimation, which is strongly dependent on the surface temperature (ii) outgassing associated with hot-spot cryovolcanism. As discussed hereafter, the high sensitivity of occultation lightcurves to vertical refractivity variations allows us to derive significant constraints (upper limits) on an atmosphere.

6.1. Derivation of an initial atmospheric limit based on radius

A remarkable feature of this particular event, is the fact that we can directly compare a ground-based observation with remote sensing observations from a nearby spacecraft. The excellent agreement between the two results is a strong illustration of the power of ground-based observations, for which kilometric accuracies or better can be reached.

We used the Voyager radius of $R_{\mathrm{T}, \mathrm{Voy}}=788.9 \pm 1.8 \mathrm{~km}$ as a reference as its value derived by Thomas (1988) results from images acquired during the 1986 flyby with no detectable atmospheric effect on the limb at close range. The difference of radii derived from our experiment and from Voyager is $\Delta R=R_{\mathrm{T}, \text { occ }}-R_{\mathrm{T}, \mathrm{Voy}}=-0.5 \pm 1.9 \mathrm{~km}$ is not significant, but can nevertheless be used to set an upper limit of a faint atmosphere around Titania ${ }^{4}$. Such a tenuous atmosphere could actually refract the stellar rays, reducing the shadow radius at Earth, with respect to the actual radius. This effect is illustrated in Figure 14, where various occultation profiles are generated, assuming isothermal $(T=70 \mathrm{~K}) \mathrm{CO}_{2}$ atmospheres with surface pressures of $0,50,100,150$ and 200 nbar. Those profiles are obtained by ray tracing, using a procedure described in details by Sicardy et al. (2006). The upper limit for the difference between Voyager's and our measurement, $\Delta R \leq 2.4 \mathrm{~km}$ sets a $1-\sigma$ upper limit of $p_{s}=45$ nbar for the surface pressure of such a CO_{2} atmosphere. One must be careful, however, that we did not observe the same limb as Voyager did, and that difference of $3-4 \mathrm{~km}$ are still possible, depending on the geometry of observation (Thomas 1988). So, a value of $p_{s}=70$ nbar seems a safer $1-\sigma$ upper limit for a CO_{2} atmosphere at $T=70 \mathrm{~K}$, based on the upper limit of apparent shrinking of Titania's mean radius, see Figure 14. A tighter upper limit for an atmosphere around Uranus' largest moon can be inferred from the stellar flux refracted prior to, and after the stellar occultation by Titania's limb, as we examine in the next subsection.

[^5]
6.2. Upper limits on the surface pressure based on lightcurves

Interpreting stellar occultation lightcurves in terms of atmospheric properties requires an assumption on its composition. A sublimation atmosphere reflects the composition of the surface. Near infrared spectroscopy has demonstrated the presence of water ice (e.g. Grundy et al. 1999 for the most recent study) and carbon dioxide (Grundy et al. 2006) on the surface of Titania (and Ariel, Umbriel and Oberon, with no detected CO_{2} on Oberon). While $\mathrm{H}_{2} \mathrm{O}$ ice is clearly involatile, CO_{2} ice stability against sublimation over the course of a seasonal cycle of Titania can be considered. As shown by Grundy et al. (2006), its vapor pressure of about $p_{C O_{2}}=1.6 \times 10^{-4}$ nbar for a mean surface temperature of $\mathrm{T}=70 \mathrm{~K}$ is sufficient to induce significant sublimation-condensation cycles and seasonal redistribution.

We thus consider a CO_{2} atmosphere as our baseline case. Deriving a constraint on the surface pressure requires the knowledge of carbon dioxide molecular refractivity (Table 1) and an assumption on the vertical temperature profile. We assumed isothermal atmospheres at temperatures of 60,70 , and 80 K . These are in the range of (i) the $\mathrm{H}_{2} \mathrm{O}$ ice temperatures measured from the near-IR spectra (Grundy et al. 1999) and (ii) the mean $20-\mu \mathrm{m}$ brightness temperature ($70 \pm 7 \mathrm{~K}$) determined by Brown et al. (1982). Due to the very small pressures involved, the atmosphere must be transparent to surface thermal radiation, so we did not consider tropospheric or mesospheric cooling. With a surface gravity of $0.38 \mathrm{~m} \mathrm{~s}^{-2}$, the assumed surface temperatures correspond to pressure scale heights of 30,34 , and 39 km respectively.

To perform model fitting we have combined the stellar fluxes observed in four of our IOC datasets in Arikok (Aruba), Salinas-1 and -2 (Ecuador) and Portimão-1(Portugal). All data points with $\mathrm{r}>792 \mathrm{~km}$ were included in the fit, to the limit of significant signal drop due to partial occultation of the stellar disk by the limb, so the star remains essentially unocculted. Ingress and egress measurements were folded over, and data sets from different stations were separately fitted, taking into account their individual noise levels. The synthetic lightcurves were obtained by ray tracing, see Sicardy et al. (2006) for details. We calculate the χ^{2} while keeping CO_{2} ground pressure as free parameter, and determine the upper limit at 1- σ error bar (68.3% confidence level) so that $\Delta \chi^{2}=\chi^{2}-\chi_{\text {min }}^{2}=1$. For a pure CO_{2} isothermal atmosphere with $\mathrm{T}=60 \mathrm{~K}$, we find a maximum surface pressure $\mathrm{p}=9$ nbar. The corresponding atmospheric column density is 0.132 cm -amagat. The $1-\sigma$ pressure upper limit is 13 nbar for $\mathrm{T}=70 \mathrm{~K}$, and $\mathrm{p}=17$ nbar for $\mathrm{T}=80 \mathrm{~K}$ (Table 5). Figure 15 illustrates the effect on the light curve of an isothermal, $\mathrm{T}=80 \mathrm{~K}$ pure CO_{2} atmosphere. In this figure, the shaded area shows the difference between this upper-limit of 1- σ and an airless model. As the contribution to errors of each data point depends not only of its uncertainty, but also on the relative velocity of the star, perpendicularly to the limb, we have binned the folded-over data from the four stations at constant radius intervals $\Delta r \sim 20 \mathrm{~km}$. Note that the binning has been performed for plotting purposes only in order to readily reflect the contribution of each lightcurve to the atmospheric detection (Figure 15).

We explored the possibility of other, more volatile, constituents, namely CH_{4} and N_{2}. Al-
though such compounds are unlikely to be present as a permanent, stratified atmosphere given the unstability of their surface frosts (see below), they could be temporarily present as possible products of outgassing associated with internal heating and cryovolcanism. For a pure CH_{4} atmosphere, we assumed a "Pluto-like" stratosphere, produced by absorption of solar near-IR radiation. For definiteness, we adopted a temperature profile increasing from $\mathrm{T}=70 \mathrm{~K}$ at the surface to an isothermal $\mathrm{T}=110 \mathrm{~K}$ above 20 km . The resulting scale height is $\mathrm{H}=95 \mathrm{~km}$ at the surface. In this case, the 1- σ detection upper limit is $\mathrm{p}=8 \mathrm{nbar}$ (Figure 16), corresponding to an atmospheric column density of 0.44 cm -amagat. For a pure N_{2} atmosphere, assumed isothermal at 70 K (scale height $\mathrm{H}=55 \mathrm{~km}$), we find an upper limit $\mathrm{p}=22$ nbar with a corresponding atmospheric column density of 0.55 cm -amagat (Figure 17). On Figures $15-17$, we have included as a smooth dotted line, the expected lightcurve for a detection event at $3-\sigma$ ($\mathrm{p}=18$ nbar for $\mathrm{CH}_{4}, \mathrm{p}=27$ nbar for CO_{2} with $\mathrm{T}=80 \mathrm{~K}, \mathrm{p}=46 \mathrm{nbar}$ for N_{2}). Results are summarized in Table 5.

6.3. Discussion

As detailed above, we determine $1-\sigma$ upper limits of an atmosphere around Titania at the level of $10-20$ nbar. Is it physically significant? For a sublimation equilibrium atmosphere, the equilibrium pressure is a very steep function of the temperature. Based on saturation laws described by Brown and Ziegler (1980), CO_{2} vapor pressure $p_{\mathrm{CO}_{2}}$ is orders of magnitude below our derived surface pressure upper limits at $\mathrm{T}=70 \mathrm{~K}$. However, the surface temperature may be locally higher than this mean value. For example, Hanel et al. (1986) have measured maximum, sub-solar, temperatures of $86 \pm 1 \mathrm{~K}$ and $84 \pm 1 \mathrm{~K}$ at Miranda and Ariel from Voyager 2/IRIS measurements. Although no values are reported for Titania in that paper, even slightly higher values may be expected because Titania's Bond albedo may be slightly lower (0.15 ± 0.02) than Miranda's (0.18 $\pm 0.05)$ and Ariel's (0.20 ± 0.04), see Helfenstein et al. (1988) and Buratti et al. (1990). In fact, the maximum surface temperature that can be expected on Titania is given by the instantaneous equilibrium with solar input, as :

$$
\begin{equation*}
T=\left(\frac{\Phi_{0}\left(1-A_{B}\right)}{\epsilon_{B} \sigma r_{h}^{2}}\right)^{1 / 4} \tag{7}
\end{equation*}
$$

where Φ_{0} is the solar constant, A_{B} is Bond's bolometric albedo, r_{h} is the distance to the Sun, σ is Stefan-Boltzmann's constant and ϵ_{B} is the bolometric emissivity. With $\epsilon_{B}=0.9$, the maximum possible temperature on Titania is 88.6 K . At this extreme temperature, $p_{\mathrm{CO}_{2}}=2.9$ nbar (Brown and Ziegler 1980), still a factor of 3-6 lower than the upper limit provided by our measurement. Thus, it is not surprising that we are unable to detect an equilibrium CO_{2} atmosphere around Titania. We note also that the Voyager measurements were acquired at southern summer solstice, which is the period of maximum surface temperatures (in polar regions).

The situation is very different for N_{2} and CH_{4}, for which an equilibrium pressure of ~ 10 nbar is reached for temperatures as low as 29 K and 38 K , respectively. However, the problem is rather that Titania is too small to retain N_{2} or CH_{4} ices against a massive thermal evaporation, given their
high volatility (Jeans escape is proportional to equilibrium vapor pressure). Schaller and Brown (2007a) have recently examined the volatile loss and retention on distant icy (Kuiper Belt) Solar System objects. They find that a $\sim 800 \mathrm{~km}$ object is able to retain its volatiles $\left(\mathrm{N}_{2}, \mathrm{CH}_{4}, \mathrm{CO}\right)$ over the age of the Solar System only if its "equivalent" temperature (essentially their perihelion temperature) is less than $\sim 30 \mathrm{~K}$. Clearly, an equilibrium atmosphere of N_{2} and CH_{4} is not expected on Titania, consistent with the absence of features due to their ices in its near-infrared spectrum.

Although the above arguments seem to rule out a significant sublimation atmosphere on Ti tania, there remains, in principle, the possibility of a plume-like atmosphere, similar to Enceladus' - where the above discussion would apply as well. In Enceladus' southern pole plume, Cassini /INMS measurements have indeed revealed the presence of volatile and involatile species, namely $91 \% \mathrm{H}_{2} \mathrm{O}, 4 \% \mathrm{~N}_{2}, 3 \% \mathrm{CO}_{2}$ and $1.6 \% \mathrm{CH}_{4}$, with a total pressure in the range $10^{-1}-10^{-4}$ nbar (Waite et al. 2006). Another estimate of gas density within the plume was obtained from the stellar occultation of γ Orionis on July 14, 2005, observed with Cassini UVIS (Hansen et al. 2006), showing evidence for water vapor absorption, with a slant abundance of $1.5 \times 10^{16} \mathrm{~cm}^{-2}$, and an exponential decline of slant column abundance versus altitude with a scale length of 80 km . From this, $\mathrm{a} \sim 9 \times 10^{15} \mathrm{~cm}^{-2}$ vertical column and $\mathrm{a} \sim 10^{9} \mathrm{~cm}^{-3}$ surface density can be roughly estimated.

Converting this into a surface pressure would require an assumption on the unknown gas temperature, but for a gas temperature in the range $100-1000 \mathrm{~K}$, the above numbers typically indicate a $0.01-0.1$ nbar atmosphere. This remains significantly less than our upper limits. Titania's surface is poorly constrained by its geological features : comparison with other major Uranian satellites suggests it was globally resurfaced up to 2 Ga ago (Croft \& Soderblom (1991), see also Fig. 10 in Zahnle et al. (2003)). Crystalline water deposits may be considered as a possible indicator of recent heating episodes (e.g. Jewitt \& Luu (2004)), and relatively high destruction and loss rates of CO_{2} ice suggest a possible recent or ongoing source (Grundy et al. 2006). However, the presence of CO_{2} ice does not seem to correlate with less-cratered, younger regions and no convincing evidence can be found for outgassing activity. This is opposed to Enceladus, where an age of 10-100 million years is estimated for the southern polar region (Porco et al. 2006), and probably even much younger for the "Tiger stripes" features from which the plume seems to originate.

In summary, the non-detection of an atmosphere of Titania is not surprising. However, our search demonstrates the power of the occultation technique to probe atmospheres down to pressure levels of ~ 10 nbar, much more tenuous than on Pluto or Triton, by typical factors of 10^{3}. This is promising in view of the detection of volatile ices on several trans-Neptunian objects (TNO's). Methane has been clealy detected on dwarf planets Eris, e.g. Licandro et al. (2006b), Makemake formerly known as $2005 \mathrm{FY}_{9}$ (Licandro et al. 2006a), and recently on Quaoar (Schaller and Brown 2007b), while the presence of N_{2} on Eris is indirectly suggested (Licandro et al. 2006b; Dumas et al. 2007). At a current distance of 43 AU , and with its large size ($1260 \pm 190 \mathrm{~km}$) which makes its ices marginally stable over the age of the Solar System (Schaller and Brown 2007a), Quaoar appears to be a promising occultation target for an atmosphere.

On a longer term, a monitoring of TNO atmospheres might reveal a seasonal variability due to sublimation-condensation exchanges, as has been observed on Pluto (Elliot et al. 2003; Sicardy et al. 2003; Elliot et al. 2007) and perhaps Triton (Elliot et al. 2000). Remembering also that pressure levels detected during refractive occultations are inversely proportional to distances, and considering that better signal to noise ratios than obtained in this work can be reached, it appears that atmospheres at the nanobar level can be detected for trans-Neptunian objects, using the method described in this paper.

7. Conclusions

The 8 September 2001 stellar occultation by Titania provides a newly determined radius for Titania, $R_{T}=788.4 \pm 0.6 \mathrm{~km}$ (1- σ error bar), in agreement with the Voyager limb image retrieval which gave $R_{T}=788.9 \pm 1.8 \mathrm{~km}$ (Thomas 1988). Our value, combined to the mass $G M=2.343 \times$ $10^{11} \mathrm{~m}^{3} \mathrm{sec}^{-2}$ given by Taylor (1998), yields a density of $\rho=1.711 \pm 0.005 \mathrm{~g} \mathrm{~cm}^{-3}$. This represents a silicate to ice ratio of ~ 0.5 (Brown et al. 1991), a much higher silicate fraction than the satellites of Saturn, indicating a relative depletion of surface ice in the Uranian satellites. No oblateness is detected, down to a limit of $r_{\mathrm{eq}}-r_{\mathrm{po}}=-1.3 \pm 2.1 \mathrm{~km}$ for the difference between equatorial and polar radii, again in agreement with Voyager results. Our measurements demonstrate the capabilities of stellar occultations to retrieve kilometric or better accuracies for the size of objects in the outer solar system.

HIP 106829 angular diameter is derived : 0.54 ± 0.03 mas, corresponding to 9.8 ± 0.2 solar radii, typical of a K0 III giant star.

The offset of Titania with respect to the DE405 + URA027 (GUST86 theory) is found to be $\Delta \alpha_{T} \cos \left(\delta_{T}\right)=-108 \pm 13$ mas and $\Delta \delta_{T}=-62 \pm 7$ mas, in the ICRF J2000.0 reference frame. on Sept. 8, 2001, 2:00 UT. This is mainly attributable to an offset in Uranus barycentric ephemeris, that we estimate to $\Delta \alpha_{U} \cos \left(\delta_{U}\right)=-100 \pm 25$ mas and $\Delta \delta_{U}=-85 \pm 25$ mas. Another Titania occultation observed on August 1st, 2003, confirms this finding, as it yields an offet of $\Delta \alpha_{T} \cos \left(\delta_{T}\right)=-127 \pm 20$ mas and $\Delta \delta_{T}=-97 \pm 13$ for the satellite.

Our analysis allows to set upper limits to an atmosphere for Titania, at the level of 10-20 nbar for $\mathrm{CO}_{2}, \mathrm{CH}_{4}$ or N_{2} atmospheres. Although an atmosphere around Titania was not expected, this is 3 orders of magnitude less than the currently observed pressures on Pluto and Triton. As pressure levels detected during refractive occultations are inversely proportional to distances, the upper limits obtained on Titania open promising perspectives to constrain atmospheres of transNeptunian objects at a few nanobars level, as developed in this paper.

Acknowledgments. We thank Amanda A. S. Gulbis and an anonymous referee for extensive and constructive comments on the first version of this paper. We wish to thank Francis Kahn, director of the Institut de Recherche pour le Développement (IRD) at Quito, Ecuador, for logistics and advice. This paper is dedicated to the memory of Raymond Dusser, who passed away on September $8^{\text {th }}, 2006$, five years exactly after the event described here. Raymond actively participated to this campaign, and played a huge role in collecting results and connecting many of the people involved in this event. We vividly remember his crisp and cheerful comments on occultation issues, and others, that he used to send to many of us, over many years.

REFERENCES

Allen, C.W. 1976, Astrophysical Quantities, London: Athlone (3rd edition), p. 209.
Arlot, J.-E., Dourneau, G. \& Le Campion, J.F. 2008, An analysis of Bordeaux meridian transit circle observations of planets and satellites (1997-2007), A\&A, 484, 869-877

Brown Jr, G. N. \& Ziegler, W.T. 1980, Vapor pressure and heats of vaporization and sublimation of liquids and solids of interest in cryogenics below 1-atm pressure, Adv. Cryogen. Eng. 25, 662-670

Brown, R.H., Cruikshank, D.P. \& Morrison D. 1982, Diameters and albedos of satellites of Uranus, Nature, 300, 423-425

Brown, R.H. \& Cruikshank, D.P. 1983, The Uranian satellites Surface compositions and opposition brightness surges, Icarus, 55, 83-92

Brown, R.H., Johnson, T.V., Synnott, S., Anderson, J.D., Jacobson, R.A., Dermott, S.F. and Thomas, P.C. 1991, Physical properties of the Uranian satellites, Uranus, Bergstrahl, Miner \& Matthews Eds., Univ. of Arizona Press : Tucson, pp. 513-527

Buratti, B., Wong, F., \& Mosher, J. 1990, Surface properties and photometry of the Uranian satellites, Icarus, 84, 203-214

Claret, A. 2000, A new non-linear limb-darkening law for LTE stellar atmosphere models : Calculations for $-5.0<\log [\mathrm{M} / \mathrm{H}]<+1,2000 \mathrm{~K}<$ Teff $<50000 \mathrm{~K}$, at several surface gravities, A\&A, 363, 1081

Croft, S.K. \& Soderblom, L.A. 1991, Geology of the Uranian Satellites, Uranus, Bergstrahl, Miner \& Matthews Eds., Univ. of Arizona Press: Tucson, pp. 561-628.

Dumas, C., Merlin, F., Barucci, M. A., de Bergh, C., Hainault, O., Guilbert, A., Vernazza, P. \& Doressoundiram, A. 2007, Surface composition of the largest dwarf planet 136199 Eris (2003 UB_{313}), A\&A, 471, 331-334.

Elliot, J. L., Person, M. J., McDonald, S. W., Buie, M. W., Dunham, E. W., Millis, R. L.,Nye, R. A., Olkin, C. B., Wasserman, L. H., Young, L. A. \& 8 coauthors, 2000, The Prediction and Observation of the 1997 July 18 Stellar Occultation by Triton: More Evidence for Distortion and Increasing Pressure in Triton's Atmosphere, Icarus, 148, 347-369

Elliot, J.L., A. Ates, A., Babcock, B.A., Bosh, A.S, Buie, M.W. et al. 2003, The recent expansion of Pluto's atmosphere, Nature, 424, 165-168

Elliot, J. L., Person, M. J., Gulbis, A. A. S., Souza, S. P., Adams, E. R., Babcock, B. A., Gangestad, J. W., Jaskot, A. E., Kramer, E. A., Pasachoff, J. M., Pike, R. E., Zuluaga, C. A., Bosh, A. S., Dieters, S. W., Francis, P. J., Giles, A. B., Greenhill, J. G., Lade, B., Lucas, R. \& Ramm, D. J. 2007, Changes in Pluto's Atmosphere: 1988-2006, AJ, 134, 1-13

Fienga, A., Manche, H., Laskar, J. \& Gastineau, M. 2008, INPOP06: a new numerical planetary ephemeris, A\&A, 477, 315-327

Giorgini J.D., Yeomans D.K., Chamberlin A.B., Chodas P.W., Jacobson R.A., Keesey M.S., Lieske J.H., Ostro S.J., Standish E.M., \& Wimberly R.N. 1996, JPL HORIZONS On-Line Solar System Data and Ephemeris Computation Service, Bull. Am. Astron. Soc., 28(3), 1158. JPL/Horizons website as of Jul. 1, 2008 : http://ssd.jpl.nasa.gov/horizons.html.

Grundy et al. 1999, Near-Infrared Spectra of Icy Outer Solar System Surfaces: Remote Determination of $\mathrm{H}_{2} \mathrm{O}$ Ice Temperatures, Icarus, 142, 536-549

Grundy, W.M., Young, L.A., Spencer, J.R., Johnson, R.E., Young, E.F. \& Buie, M.W. 2006, Distributions of $\mathrm{H}_{2} \mathrm{O}$ and CO_{2} ices on Ariel, Umbriel, Titania, and Oberon from IRTF/SpeX observations, Icarus, 184, 543-555

Hanel, R., Conrath, B., Flasar, F.M., Kunde, V., Maguire, W., Pearl, J., Pirraglia, J., Samuelson, R., Cruikshank, D., Gautier, D., Gierasch, P., Horn, L., \& Schulte, P. 1986, Infrared observations of the Uranian system, Science, 233, 70-74

Hansen, C.J., Esposito, L., Stewart, A.I.F., Colwell, J., Hendrix, A., Pryor, W., Shemansky, D. \& R. West 2006, Enceladus' Water Vapor Plume, Science, 311, 1422-1425

Helfenstein, P., Ververka, J. \& Thomas, P. C 1988, Uranus satellites - Hapke parameters from Voyager disk-integrated photometry, Icarus, 74, 231-239

Jacobson, R.A., Campbell, J.K., Taylor, A.H. \& Synnott, S.P. 1992, The masses of Uranus and its major satellites from Voyager tracking data and Earth-based Uranian satellite data, AJ, 103, 2068-2078

Jewitt, D.C. and Luu, J. 2004, Crystalline water ice on the Kuiper belt object (50000) Quaoar, Nature, 432, 731-733.

Johnson, T.V., Brown, R.H. \& Pollack, J.B. 1987, Uranus satellites - Densities and composition, J. Geophys. Res., 92, 14884-14894

Lainey, V. 2008, Planet. Space Sci., submitted.
Laskar, J., \& Jacobson, R.A. 1987, GUST86 - an analytical ephemeris of the Uranian satellites, A\&A, 188, 212-224

Licandro, J., di Fabrizio, L., Pinilla-Alonso, N., de Leon, J., \& Oliva, E. 2006a, The methane ice rich surface of large TNO $2005 \mathrm{FY}_{9}$: a Pluto-twin in the trans-Neptunian belt?, A\&ALett., 445, L35-L38.

Licandro, J., Grundy, W.M., Pinilla-Alonso, N., \& Leisy, P. 2006b, Visible spectroscopy of 2003 UB_{313} : evidence for N_{2} ice on the surface of the largest TNO?, A\&ALett., 458, L5-L8.

Matsuda, K. 1996, Time keeping office and NTP servers, Astron. Her., Vol. 89, No5, pp. 210-215. Network Time Protocol website as of Jul. 1, 2008 : http://www.ntp.org

Murray, C.D., \& Dermott, S.F. 1999, Solar System Dynamics (Cambridge University Press)
Ochsenbein F., Bauer P., \& Marcout J. 2000, A\&AS, 143, 221. Vizier website as of Jul. 1, 2008 : http://vizier.u-strasbg.fr

Perryman M.A.C., et al. 1997, The Hipparcos Catalogue, A\&A, 323, L49-L52
Porco, C.C., Helfenstein, P., Thomas, P.C., Ingersoll, A.P., et al 2006, Cassini Observes the Active South Pole of Enceladus, Science, 311, 1393.

Press, W. H., Flannery, B. P., Teukolsky, S A., \& Vetterling, W. T. 1986, Numerical Recipes (Cambridge University Press)

Roques, F., Moncuquet, M., \& Sicardy, B. 1987, Stellar occultations by small bodies : diffraction effects, AJ, 93, 1549-1558

Schaller, E.L. \& Brown, M.E. 2007a, Volatile loss and retention on Kuiper Belt Objects, ApJ, 659, L61-L64

Schaller, E.L. \& Brown, M.E. 2007b, Detection of Methane on Kuiper Belt Object (50000) Quaoar, ApJ, 670, L49-L51

Sicardy, B., Widemann, T., Lellouch, E., Veillet, C., Cuillandre, J.-C et al. 2003, Large Changes In Pluto's Atmosphere As Revealed By Recent Stellar Occultations, Nature, 424, 168-170

Sicardy, B., Colas, F., Widemann, T., Bellucci, A., Beisker, W., Kretlow, M., Ferri, F., Lacour, S., Lecacheux, J., Lellouch, E., Pau, S., Renner, S. et al. 2006, The two Titan stellar occultations of 14 November 2003, J. Geophys. Res., Volume 111, Issue E11, E11S91.

Taylor, D.B. 1998, Ephemerides of the five major Uranian satellites by numerical integration, A\&A, 330, 362-374

Thomas, P.C. 1988, Radii, shapes, and topography of the satellites of Uranus from limb coordinates, Icarus, 73, 427-441
van Belle, G.T. 1999, Predicting stellar angular sizes, Publ. Astron. Soc. Pac., 111, 1515-1523
Waite, J. H., Combi, M. R., Ip, W.-H., Cravens, T. E., McNutt, R. L., Kasprzak, W., Yelle, R., Luhmann, J. et al. 2006, Cassini Ion and Neutral Mass Spectrometer : Enceladus Plume Composition and Structure, Science, 311,1419-1422

Washburn, E. W. 1930, International Critical Tables of Numerical Data : Physics, Chemistry \& Technology. Vol. 7, McGraw-Hill, New York, 11

Wenger, M., Ochsenbein, F., Egret, D., Dubois, P., Bonnarel, F., Borde, S., Genova, F., Jasniewicz, G., Laloë, S, Lesteven, S. \& Monier, R. 2000, The SIMBAD astronomical database. The CDS reference database for astronomical objects, A\&AS, 143, 9-22. Simbad website as of Jul. 1, 2008: http://simbad.u-strasbg.fr

Zahnle, K, Schenk, P. Levison, \& H., Dones, L. 2003, Cratering rates in the outer Solar System, Icarus, 163, 263-289

Table 1. Various parameters adopted in this paper.

Titania physical properties	
Gravitational constant Titania's mass ${ }^{\text {a }}$ Rotation period ${ }^{\text {a }}$ Bond albedo ${ }^{\text {b }}$	$\begin{aligned} & G=6.67259 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{sec}^{-2} \\ & G M=(2.343 \pm 0.006) \times 10^{11} \mathrm{~m}^{3} \mathrm{sec}^{-2} \\ & P=8.706 \text { days } \\ & A_{B}=0.15 \pm 0.02 \end{aligned}$
Stellar occultations geometry	
Sept. 8, 2001 02:00 UT Distance ${ }^{\mathrm{c}}$ (km)	$2.8504 \times 10^{9} \mathrm{~km}$
North pole position angle Sub-observer latitude Sub-observer longitude Star position at epoch (ICRF)	$\begin{aligned} & P=260.4^{\circ} \\ & B=-24.17^{\circ} \\ & L=343.5^{\circ} \\ & \alpha=324.55817850^{\circ} \pm 7.4 \mathrm{mas} \\ & \delta=-14.90997417^{\circ} \pm 5.7 \mathrm{mas} \end{aligned}$
$\begin{aligned} & \text { Aug. 1, } 2003 \text { 04:28 UT } \\ & \text { Distance (km) } \end{aligned}$	$2.8557 \times 10^{9} \mathrm{~km}$
North pole position angle Sub-observer latitude Sub-observer longitude Star position at epoch (ICRF)	$\begin{aligned} & P=257.6^{\circ} \\ & B=-15.67^{\circ} \\ & L=164.3^{\circ} \\ & \alpha=333.9773096^{\circ} \pm 20 \mathrm{mas} \\ & \delta=-11.6156551^{\circ} \pm 13 \mathrm{mas} \end{aligned}$
Atmospheric refractivity modeling	
Carbon dioxide molecular mass Carbon dioxide molecular refractivity ${ }^{\text {e }}$ Methane molecular mass Methane molecular refractivity ${ }^{\text {e }}$ Nitrogen molecular mass Nitrogen molecular refractivity ${ }^{\text {e }}$	$\begin{aligned} & \mu=7.308 \times 10^{-26} \mathrm{~kg} \\ & K_{C O_{2}}=1.566 \times 10^{-23} \mathrm{~cm}^{3} \text { molecule }{ }^{-1} \\ & \mu=2.664 \times 10^{-26} \mathrm{~kg} \\ & K_{C H_{4}}=1.549 \times 10^{-23} \mathrm{~cm}^{3} \text { molecule } \\ & \mu=4.652 \times 10^{-26} \mathrm{~kg} \\ & K_{N_{2}}=1.023 \times 10^{-23}+ \\ & \left(5.888 \times 10^{-26} / \lambda_{\mu \mathrm{m}}^{2}\right) \mathrm{cm}^{3} \text { molecule }^{-1} \end{aligned}$
${ }^{\text {a }}$ Taylor (1998)	
${ }^{\text {b }}$ Buratti et al. (1990)	
${ }^{\text {d}}$ Perryman et al. (1997)	per arcsec on the sky
${ }^{\text {e }}$ Washburn (1930)	
Note. - Mass determination using fix	d J_{2} solution 4 from Taylor (1998).

Table 2. Circumstances and timings of September 8, 2001 occultation of HIP 106829 by Titania, ordered by country of observing stations/datasets and event chronology from Northeast to Southwest.

Site name	Lat.(d:m:s) Lon.(d:m:s) Alt. (m)	Ingress UT Egress UT Cycle time	Telescope Instrument/Receptor Timing ref. and remarks	Observers
United Kingdom				
Teversham ${ }^{\text {b }}$	$\begin{aligned} & \text { 52:12:06 N } \\ & 00: 11: 30 \mathrm{E} \\ & 10 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { 01:54:29.75 } \\ & \text { 01:55:40-43.0 } \\ & \text { vis. } \end{aligned}$	R 0.16 m Newt. Audio recording MSF \& observer's commentary	C. R. Hills
Worth Hill Obs., Bournemouth ${ }^{\text {b,c, d }}$	$\begin{aligned} & 50: 35: 52.9 \mathrm{~N} \\ & 02: 01: 50.5 \mathrm{~W} \\ & 140 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 01: 54: 29.08 \pm 0.03 \\ & 01: 55: 42.11 \pm 0.03 \\ & 0.04 \mathrm{sec} \end{aligned}$	R 0.25 m S/C Vid. DCF-77	A.J. Elliott
Binfield ${ }^{\text {b }}$	$\begin{aligned} & \text { 51:25:26 N } \\ & 00: 47: 19.45 \mathrm{~W} \\ & 73 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 01: 54: 30 \\ & 01: 55: 41 \end{aligned}$ vis.	r 0.25 m Yolo off-axis timings Junghans "Mega" radio	R. Miles T. Platt
Italy				
Pompiano, Brescia	$\begin{aligned} & 45: 26: 14.2 \mathrm{~N} \\ & 09: 59: 30.3 \mathrm{E} \\ & 94 \mathrm{~m} \end{aligned}$	clouded out	$\begin{aligned} & \text { R } 0.2 \mathrm{~m} \mathrm{~S} / \mathrm{C} \\ & \text { n.a. } \\ & \text { n.a. } \end{aligned}$	C. Cremaschini
France				
Calern, Obs. Côte d'Azur ${ }^{\mathrm{b}, \mathrm{c}}$	$\begin{aligned} & 43: 44: 54 \mathrm{~N} \\ & 06: 55: 36 \mathrm{E} \\ & 1270 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { 01:54:28 } \\ & \text { 01:55:05 } \\ & \text { n.a. } \end{aligned}$	R $0.2 \mathrm{~m} \mathrm{~S} / \mathrm{C}$ Aud. CCD PC time from internet	P. Dubreuil
Puimichel ${ }^{\text {b,c }}$	$\begin{aligned} & 43: 58: 53.1 \mathrm{~N} \\ & 06: 02: 10.0 \mathrm{E} \\ & 680 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 01: 54: 19.7 \pm 0.4 \\ & 01: 55: 05.8 \pm 0.4 \\ & \text { n.a. } \end{aligned}$	n.a. Audine, drift scan bad seeing (10")	C. Cavadore, C. Demeautis
Obs. Haute Provence ${ }^{\text {b,c }}$	$\begin{aligned} & 43: 55: 46 \mathrm{~N} \\ & 05: 42: 45 \mathrm{E} \\ & 650 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 01: 54: 21 \\ & 01: 55: 07 \\ & 0.04 \mathrm{sec} \end{aligned}$	R $0.8 \mathrm{~m}+\mathrm{R} 0.6 \mathrm{~m}$ CCD \& vid. SVHS recorder No data on R 0.6 m	W. Thuillot, P. Henriquet, O. Labrevoir, G. Rau
Marseille ${ }^{\text {b,c }}$	$\begin{aligned} & 43: 18: 28 \mathrm{~N} \\ & 05: 24: 53 \mathrm{E} \\ & 90 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 01: 54: 26 \\ & 01: 55: 05 \\ & 0.04 \mathrm{~s} \end{aligned}$	R 0.26m, Newt. radio-piloted video \& comments	J.F. Coliac
Les Orfeuilles, Marseille ${ }^{\mathrm{b}, \mathrm{c}, \mathrm{d}}$	$\begin{aligned} & 43: 18: 57 \mathrm{~N} \\ & 05: 27: 55 \mathrm{E} \\ & 180 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 01: 54: 25.3 \pm 0.2 \\ & 01: 55: 03.5 \pm 0.2 \\ & \text { vis. } \end{aligned}$	R $0.2 \mathrm{~m} \mathrm{~S} / \mathrm{C}$, micro-calculator HP71 calibrated with speaking clock and DCF 77	J. Piraux

Table 2-Continued

Site name	Lat.(d:m:s) Lon.(d:m:s) Alt. (m)	Ingress UT Egress UT Cycle time	Telescope Instrument/Receptor Timing ref. and remarks	Observers
Notre Dame de Lamaron, Plateau d'Albion ${ }^{\mathrm{b}}$	$\begin{aligned} & 44: 00: 11.2 \mathrm{~N} \\ & 05: 04: 05.4 \mathrm{E} \\ & 1090 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 01: 54: 21.087 \\ & 01: 55: 07.765 \\ & 0.040 \mathrm{sec} \end{aligned}$	R 0.08 m Vid., digital camcorder Speaking clock, tape recorder, Stopwatch, beep every 10 sec	F. Gorry, C. Marlot, Ch. Marlot, C. Sire
Salon ${ }^{\text {b, c }}$	$\begin{aligned} & 43: 36: 00 \mathrm{~N}^{e} \\ & 05: 06: 00 \mathrm{E} \\ & 40 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 01: 54: 25 \\ & 01: 55: 09 \\ & 0.04 \mathrm{~s} \end{aligned}$	R $0.2 \mathrm{~m} \mathrm{~S} / \mathrm{C}$ Webcam Compro PS39 DCF77 timing	B. Bayle
St Martin de Crau ${ }^{\mathrm{b}, \mathrm{c}}$	$\begin{aligned} & \text { 43:38:00 } \mathrm{N}^{\mathrm{e}} \\ & 04: 49: 00 \mathrm{E} \\ & 20 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 01: 54: 25 \\ & 01: 55: 12 \\ & \text { vis. } \end{aligned}$	R $0.2 \mathrm{~m} \mathrm{~S} / \mathrm{C}$ Radio clock, accuracy 1 sec	E. Simian
St Maurice de Cazevieille b, c, d	$\begin{aligned} & 44: 00: 36 \mathrm{~N} \\ & 04: 14: 06 \mathrm{E} \\ & 190 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 01: 54: 20.9 \\ & 01: 55: 12.7 \\ & \text { vis. } \end{aligned}$	R $0.2 \mathrm{~m} \mathrm{~S} / \mathrm{C}$ DCF77, stopwatch	A.M. Blommers
Nîmes ${ }^{\text {b }}$	$\begin{aligned} & 43: 48: 05 \mathrm{~N} \\ & 04: 14: 05 \mathrm{E} \\ & 170 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 01: 54: 22 \\ & 01: 55: 18 \\ & \text { vis. } \end{aligned}$	R 0.114 m Newt. Speaking clock, stopwatch, tape recorder	J. Fulgence
Obs. de Mauguio ${ }^{\text {b,c }}$	$\begin{aligned} & \text { 43:34:07 N } \\ & \text { 03:57:07 E } \\ & \text { n.a. } \end{aligned}$	$\begin{aligned} & 01: 54: 180 \\ & 01: 55: 070 \\ & 0.015 \mathrm{sec} \end{aligned}$	R $0.305 \mathrm{~m} \mathrm{~S} / \mathrm{C}$ LX200 CCD KaF400 Time set on internet	C. Leyrat, C. Sauzeaud, B. Stephanus
Obs. Malibert, Pezenas ${ }^{\text {b,c }}$	$\begin{aligned} & \text { 43:26:48 N } \\ & \text { 03:22:46 E } \\ & \text { n.a. } \end{aligned}$	$\begin{aligned} & 01: 54: 28 \\ & 01: 55: 17 \\ & \text { vis. } \end{aligned}$	R 0.15m Mak-Cass. Speaking clock	T. Rafaelli
Guitalens ${ }^{\text {b }}$	$\begin{aligned} & 43: 38: 34.7 \mathrm{~N} \\ & 02: 02: 11.2 \mathrm{E} \\ & 148 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { 01:54:22.6 } \\ & 01: 55: 18.9 \\ & \text { n.a. } \end{aligned}$	$4 \times \mathrm{R} 0.2 \mathrm{~m} \mathrm{~S} / \mathrm{C}$ Four Audine cameras, drift scan DCF 77	C. Buil, R. Delmas, V. Desnoux, C. Jasinski, A. Klotz, D. Marchais
Rabastens	$\begin{aligned} & 43: 49: 00 \mathrm{~N}^{\mathrm{e}} \\ & 01: 43: 00 \mathrm{E} \\ & \text { (approx.) } \end{aligned}$	duration 59 sec vis.	$\begin{aligned} & \text { r } 0.4 \mathrm{~m} \\ & \text { n.a. } \end{aligned}$	M. Rieugnie
Obs. Jolimont Toulouse	$\begin{aligned} & \text { 43:36:43 N } \\ & 01: 27: 46 \mathrm{E} \\ & 189 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { n.a. } \\ & \text { 01:55:15 } \\ & \text { n.a. } \end{aligned}$	n.a. Partly cloudy	G. Bouderand, J.-P.Cazard, C. Lambin, P.O. Pujat, F. Schwartz

Table 2-Continued

Site name	Lat.(d:m:s) Lon.(d:m:s) Alt. (m)	Ingress UT Egress UT Cycle time	Telescope Instrument/Receptor Timing ref. and remarks	Observers
Chatellerault ${ }^{\text {b, c, d }}$	$\begin{aligned} & 46: 50: 21.0 \mathrm{~N} \\ & 00: 34: 02.9 \mathrm{E} \\ & 131 \mathrm{~m} \end{aligned}$	01:54:19.9 01:55:33.1 vis.	$\begin{aligned} & \text { r } 0.1 \mathrm{~m} \text {, } \\ & \text { stopwatch DCF, } \\ & \text { synchro: Cuno inserter } \end{aligned}$	E. Bredner
Poitiers	$\begin{aligned} & 46: 35: 00 \mathrm{~N}^{\mathrm{e}} \\ & 00: 20: 00 \mathrm{E} \\ & \text { (approx.) } \end{aligned}$	no data	n.a.	J. Berthier
St Maurice la Clouère ${ }^{\mathrm{b}}$	$\begin{aligned} & 46: 22: 00 \mathrm{~N} \\ & 00: 30: 00 \mathrm{E} \\ & 120 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 01: 54: 20.9 \pm 0.2 \\ & 00: 55: 12.7 \pm 0.2 \\ & \text { vis. } \end{aligned}$	R 0.12m Newt.	P. Langlais, S. Rivaud, P. Burlot
St Savinien sur Charente ${ }^{\text {b,c }}$	$\begin{aligned} & 45: 53: 26.5 \mathrm{~N} \\ & 00: 38: 58.0 \mathrm{~W} \\ & 30 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 01: 54: 24.20 \\ & 01: 55: 36.03 \\ & 0.1 \mathrm{sec} \end{aligned}$	R $0.2 \mathrm{~m} \mathrm{~S} / \mathrm{C}$ Aud. KAF 401E NTP server, poor absolute accuracy (several sec)	E. Brochard
Bordeaux ${ }^{\text {b }}$	$\begin{aligned} & 44: 50: 07 \mathrm{~N} \\ & 00: 31: 42 \mathrm{~W} \\ & 73 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 01: 54: 21 \\ & 01: 55: 27 \\ & 4.5 \mathrm{sec} \end{aligned}$	R 0.6m, CCD camera	J.-F. Lecampion, M. Rapaport
Pic $d u M i d i{ }^{\text {b, }}$ c, d	$\begin{aligned} & 42: 56: 12 \mathrm{~N} \\ & 00: 08: 32 \mathrm{E} \\ & 2870 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 01: 54: 23.046 \pm 0.02 \\ & 01: 55: 20.606 \pm 0.02 \\ & 0.17 \mathrm{sec} \end{aligned}$	R 1.0m, vid. \& CCD (not used here) GPS timing	J. Lecacheux
Obs. de Dax ${ }^{\text {b }}$	$\begin{aligned} & 43: 41: 36.4 \mathrm{~N} \\ & 01: 01: 49.8 \mathrm{~W} \\ & 11 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { Missed Ingress } \\ & \text { 01:55:34.70 } \\ & \text { n.a. } \end{aligned}$	R 0.32m Newt. Aud. CCD DCF 77 timing	Ph. Dupouy, M. Lavayssière
Fort de France ${ }^{\text {b,c }}$	$\begin{aligned} & \text { 14:37:04 N } \\ & \text { 61:04:57 W } \\ & \text { n.a. } \end{aligned}$	$\begin{aligned} & 01: 58: 12.9 \\ & 01: 59: 26.5 \\ & \text { vis. } \end{aligned}$	r 0.09 m	O. Chaptal
Algeria				
Algiers	$\begin{aligned} & 36: 45: 00 \mathrm{~N} \\ & 03: 20: 00 \mathrm{E} \\ & 200 \mathrm{~m} \end{aligned}$	no event from 01:47 to $02: 19$, vis.	R 0.114m Newt.	K. Daiffallah
Morocco				
Les Sables d'Or Temara	$\begin{aligned} & 33: 55: 07.4 \mathrm{~N} \\ & 06: 58: 08.6 \mathrm{~W} \end{aligned}$	no events for several mn	R 0.06 m DCF 77 and short wave	R. Dusser

Table 2-Continued

Site name	Lat.(d:m:s) Lon.(d:m:s) Alt. (m)	Ingress UT Egress UT Cycle time	Telescope Instrument/Receptor Timing ref. and remarks	Observers
	6 m	around 01:55, vis.	receptor, tape \& stopwatch	
Spain				
Alella ${ }^{\text {b, c, d }}$	$\begin{aligned} & 41: 29: 02.3 \mathrm{~N} \\ & 02: 18: 01.8 \mathrm{E} \\ & 45 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 01: 54: 29.03 \pm 0.1 \\ & 01: 55: 00.04 \pm 0.1 \\ & 0.04 \mathrm{sec} \end{aligned}$	R $0.24 \mathrm{~m} \mathrm{~S} / \mathrm{C}$ vid. + CCD, stopwatch, 10 MHz signals	C. Clarasso-Llauger
Barcelona-1 b, c, d	$\begin{aligned} & 41: 25: 18.9 \mathrm{~N} \\ & 02: 12: 10.0 \mathrm{E} \\ & 60 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 01: 54: 31.9 \pm 0.2 \\ & 01: 55: 01.6 \pm 0.2 \\ & \text { vis. } \end{aligned}$	R 0.258 m Dobson stopwatch DCF77	D. Fernández
Barcelona-2.1, L'Ordal ${ }^{\text {b, c, d }}$	$\begin{aligned} & 41: 23: 32.4 \mathrm{~N} \\ & 01: 52: 48.0 \mathrm{E} \\ & 540 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 01: 54: 31.7 \pm 0.2 \\ & 01: 55: 03.4 \pm 0.2 \\ & \text { vis. } \end{aligned}$	R 0.21 m Newt. stopwatch, DCF77	J. Aloy-Doménech
Barcelona-2.2, L'Ordal ${ }^{\text {b, c, d }}$	$\begin{aligned} & 41: 23: 32.4 \mathrm{~N} \\ & 01: 52: 48.0 \mathrm{E} \\ & 540 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 01: 54: 31.7 \pm 0.2 \\ & 01: 55: 03.5 \pm 0.2 \\ & \text { vis. } \end{aligned}$	R 0.203m Newt. stopwatch + DCF77	M. Gabaldá-Sánchez
Barcelona-2.3, L'Ordal b, c, d	$\begin{aligned} & 41: 23: 32.4 \mathrm{~N} \\ & 01: 52: 48.0 \mathrm{E} \\ & 540 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 01: 54: 31.5 \pm 0.2 \\ & 01: 55: 03.3 \pm 0.2 \\ & \text { vis. } \end{aligned}$	R 0.21 m Newt. stopwatch + DCF77	X. Otazu-Porter
Barcelona-3 b, c, d	$\begin{aligned} & 41: 23: 06.4 \mathrm{~N} \\ & 02: 08: 16.0 \mathrm{E} \\ & 60 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 01: 54: 32.2 \pm 0.2 \\ & 01: 55: 02.0 \pm 0.2 \\ & \text { vis. } \end{aligned}$	R 0.1m Newt. stopwatch \& radio signal	E. Masana
Esplugues de Llobregat ${ }^{\text {b }}$	$\begin{aligned} & 41: 22: 38 \mathrm{~N} \\ & 02: 05: 37 \mathrm{E} \\ & 120 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { n.a. } \\ & \text { 01:54:59.8 } \end{aligned}$	R 0.20 m CCD Cookbook, drift scan Manual set up of PC clock	F. Casarramona
St Esteve Sesrovires b,c, d	$\begin{aligned} & 41: 29: 41.5 \mathrm{~N} \\ & 01: 52: 25.7 \mathrm{E} \\ & 180 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 01: 54: 30.8 \pm 0.2 \\ & 01: 55: 04.2 \pm 0.2 \\ & \text { vis. } \end{aligned}$	R 0.2 m Newt. tape + DCF77	C. Schnabel
Obs. AAS Sabadell-1 b, c, d	$\begin{aligned} & 41: 33: 03 \mathrm{~N} \\ & 02: 05: 29 \mathrm{E} \\ & 231 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 01: 54: 30.865 \pm 0.1 \\ & 01: 55: 03.825 \pm 0.1 \\ & 0.25 \mathrm{sec} \end{aligned}$	R 0.5 m IOC, manual set up of PC clock	R. Casas, J.A. Ros
Obs. AAS Sabadell-2 b	$\begin{aligned} & \text { 41:33:03 N } \\ & 02: 05: 29 \mathrm{E} \\ & 231 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 01: 54: 31.2 \\ & 01: 54: 59.6 \\ & 0.2 \mathrm{sec} \end{aligned}$	R 0.15 m Newt., webcam, manual set up of PC clock with time beeps	A. Ardanuy

Table 2-Continued

Site name	Lat.(d:m:s) Lon.(d:m:s) Alt. (m)	Ingress UT Egress UT Cycle time	Telescope Instrument/Receptor Timing ref. and remarks	Observers
Hortoneda ${ }^{\text {b, c, d }}$	$\begin{aligned} & 42: 14: 49 \mathrm{~N} \\ & 01: 02: 35 \mathrm{E} \\ & 1001 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 01: 54: 23.2 \pm 0.2 \\ & 01: 55: 11.0 \pm 0.2 \\ & \text { vis. } \end{aligned}$	R 0.203m Newt. stopwatch, time-signal from RNE1 station	A. Roca
Castellón ${ }^{\text {b, }, ~ d ~}$	$\begin{aligned} & \text { 40:00:31.5 N } \\ & 00: 01: 48.2 \mathrm{~W} \\ & 85 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 01: 54: 40.3 \pm 0.2 \\ & 01: 54: 59.6 \pm 0.2 \\ & \text { vis. } \end{aligned}$	R 0.2m S/C \& video, DCF77	C. Labordena
Zaragoza ${ }^{\text {b,c, d }}$	$\begin{aligned} & 41: 37: 29.4 \mathrm{~N} \\ & 01: 02: 30.5 \mathrm{~W} \\ & 330 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 01: 54: 27.6 \pm 0.2 \\ & 01: 55: 18.7 \pm 0.2 \\ & \text { vis. } \end{aligned}$	R 0.12 m Newt. stopwatch, time-signal from RNE1 station	O. Canales-Moreno
Cerro Los Molinos, Alcublas ${ }^{\mathrm{b}, \mathrm{c}, \mathrm{d}}$	$\begin{aligned} & 39: 47: 41 \mathrm{~N} \\ & 00: 41: 24 \mathrm{~W} \\ & 903 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 01: 54: 39.9 \pm 0.2 \\ & 01: 55: 01.5 \pm 0.2 \\ & \text { vis. } \end{aligned}$	R 0.2 m Newt. stop watch and tape	L. Rivas, V. Ferrer
Granada	$\begin{aligned} & \text { 37:10:54 N } \\ & \text { 03:23:05 W } \\ & \text { n.a. } \end{aligned}$	no event from 01:50:08 to 02:02:37	R $0.4 m$ \& R $0.25 m$ CCD surveillance video camera	J.L. Ortiz
Roque de los Muchachos, Canaries Island	$\begin{aligned} & 28: 45: 44 \mathrm{~N} \\ & 17: 52: 42 \mathrm{~W} \\ & 2333 \mathrm{~m} \end{aligned}$	no event from 1:52 to $2: 03$, vis.	R 0.125 m Newt., R 0.2 m S/C \& R 0.25 m	J. Fernández-Arozena, L.L. Martín-Rodríguez
Portugal				
Linhaceira, Tomar ${ }^{\mathrm{b}, \mathrm{c}, \mathrm{d}}$	$\begin{aligned} & 39: 31: 22.6 \mathrm{~N} \\ & 08: 23: 01.5 \mathrm{~W} \\ & 90 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 01: 54: 36.35 \pm 0.02 \\ & 01: 55: 37.39 \pm 0.02 \\ & 0.04 \mathrm{sec} \end{aligned}$	R 0.25 m Newt. low-light vid. with AGC, VHS, DCF 77	R. Gonçalves
Almeirim ${ }^{\text {b }}$	$\begin{aligned} & 39: 10: 50 \mathrm{~N} \\ & 08: 34: 58 \mathrm{~W} \\ & 10 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 01: 5437.7 \\ & 01: 55: 34.0 \\ & 0.04 \mathrm{sec} \end{aligned}$	R 0.25 m Webcam + PC Antennal timing	C. Reis
Marinha Grande ${ }^{\mathrm{b}, \mathrm{c}, \mathrm{d}}$	$\begin{aligned} & 39: 45: 00 \mathrm{~N}^{\mathrm{e}} \\ & 09: 01: 58.8 \mathrm{~W} \\ & 30 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 01: 54: 36.98 \pm 0.5 \\ & 01: 55: 41.31 \pm 0.5 \\ & 0.04 \mathrm{sec} \end{aligned}$	$\text { R } 0.4 \mathrm{~m} \mathrm{~S} / \mathrm{C}$ vid. timing from internet	J. Clérigo
Alvito ${ }^{\text {b, c, d }}$	$\begin{aligned} & 38: 11: 01.8 \mathrm{~N} \\ & 08: 06: 11.0 \mathrm{~W} \\ & 50 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 01: 54: 40.0 \pm 0.08 \\ & 01: 55: 30.8 \pm 0.08 \\ & 0.04 \mathrm{sec} \end{aligned}$	R 0.25 m S/C, vid., PAL system, PC Compaq 10 MHz times signal	C. Oliveira

Table 2-Continued

Site name	Lat.(d:m:s) Lon.(d:m:s) Alt. (m)	Ingress UT Egress UT Cycle time	Telescope Instrument/Receptor Timing ref. and remarks	Observers
Alcácer do Sal ${ }^{\mathrm{b}, \mathrm{c}}$	$\begin{aligned} & 38: 21: 38.9 \mathrm{~N} \\ & 08: 28: 33 \mathrm{~W} \\ & 25 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 01: 54: 41 \\ & 01: 55: 34 \\ & \text { vis. } \end{aligned}$	R $0.2 \mathrm{~m} \mathrm{~S} / \mathrm{C}$, stopwatch timing origin n.a.	C. Marciano
Setúbal ${ }^{\text {b, c }}$	$\begin{aligned} & 38: 30 \mathrm{~N}^{\mathrm{e}} \\ & 08: 55 \mathrm{~W} \\ & 40 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 01: 54: 36.5 \\ & 01: 55: 33.0 \\ & 1 / 15 \mathrm{sec} \end{aligned}$	R $0.25 \mathrm{~m} \mathrm{~S} / \mathrm{C}, \mathrm{CCD}$, timing origin n.a.	R. Nunes, P. Coelho
Carcavelos ${ }^{\text {b,c }}$	$\begin{aligned} & 38: 41: 11.4 \mathrm{~N} \\ & 09: 20: 44.5 \mathrm{~W} \\ & 56 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 01: 54: 42 \\ & 01: 55: 41 \\ & 0.1 \mathrm{~s} \end{aligned}$	R $0.25 \mathrm{~m} \mathrm{~S} / \mathrm{C}, \mathrm{CCD}$, GPS	C. Saraiva, P. Figueiredo
Oeiras ${ }^{\text {b,c }}$	$\begin{aligned} & 38: 41: 07 \mathrm{~N} \\ & 09: 19: 25 \mathrm{~W} \\ & 50 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 01: 54: 36 \\ & 01: 55: 34 \\ & 1 / 3.325 \mathrm{sec} \end{aligned}$	R 0.25m SC, SBIG's ST-237 refrigerated CCD	A. Cidadão
$\begin{aligned} & \text { Portimão-1 a, b, c, d } \\ & 0.25 m \end{aligned}$	$\begin{aligned} & 37: 08: 28.7 \mathrm{~N} \\ & 08: 37: 33.2 \mathrm{~W} \\ & 64 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 01: 54: 45.611 \pm 0.035 \\ & 01: 55: 27.831 \pm 0.035 \\ & \pm 0.27 \mathrm{sec} \text { (fitted) } \end{aligned}$	R $0.25 \mathrm{~m} \mathrm{~S} / \mathrm{C}$ IOC, TC 245 chip DCF 77	H. Denzau, P. Ré, F. Tonel
COAA Algarve, ${ }^{\mathrm{b}, \mathrm{c}, \mathrm{d}}$ Portimão-2	$\begin{aligned} & \text { 37:11:24.6 N } \\ & 08: 36: 01.8 \mathrm{~W} \\ & 65 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 01: 54: 44.84 \pm 0.06 \\ & 01: 55: 27.72 \pm 0.06 \\ & 1 / 14.995 \mathrm{sec} \end{aligned}$	R 0.2m Newt. low-light vid., AVI 60 kHz timing, soundtrack	B.M. Ewen-Smith, S. Ward, D. Ford
Espada Station, Funchal, Madeira	$\begin{aligned} & 32: 38: 15.3 \mathrm{~N} \\ & 16: 56: 07.8 \mathrm{~W} \\ & 35 \mathrm{~m} \end{aligned}$	clouded out	R $0.35 \mathrm{~m} \mathrm{~S} / \mathrm{C}$	R. Hill, W.B. Hubbard, J. Laurindo Sobrinho, F. Teodoro de Gois, J. Afonso da Silva Mendes, M. Joaquim
Ponta Delgada, Açores ${ }^{\text {b, c, d }}$	$\begin{aligned} & 37: 44: 38 \mathrm{~N} \\ & 25: 40: 38 \mathrm{~W} \\ & 50 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 01: 55: 18.25 \pm 0.30 \\ & 01: 56: 31.15 \pm 0.30 \\ & 0.04 \mathrm{~s} \end{aligned}$	R $0.3 \mathrm{~m} \mathrm{~S} / \mathrm{C}$ vid. \& PC, DCF 77	J. Gonçalves, J. Porto
United States of America				
Greenbelt, Maryland	$\begin{aligned} & 38: 59: 10.1 \mathrm{~N} \\ & 76: 52: 09.9 \mathrm{~W} \\ & 53 \mathrm{~m} \end{aligned}$	no event	$\text { R } 0.2 \mathrm{~m} \mathrm{~S} / \mathrm{C}$ vid.	D. Dunham

Aruba

Arikok ${ }^{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}} \quad 12: 29: 55.6 \mathrm{~N} \quad 01: 58: 59.140 \pm 0.005 \quad$ R $0.2 \mathrm{~m} \mathrm{~S} / \mathrm{C} \quad$ T. Widemann

Table 2-Continued

Site name	Lat.(d:m:s) Lon.(d:m:s) Alt. (m)	Ingress UT Egress UT Cycle time	Telescope Instrument/Receptor Timing ref. and remarks	Observers
0.20 m	$\begin{aligned} & \text { 69:55:34.1 W } \\ & 99 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 02: 00: 08.680 \pm 0.005 \\ & \pm 0.110 \text { sec (fitted) } \end{aligned}$	IOC, TC245 chip GPS time	
Wela ${ }^{\text {b }}$	$\begin{aligned} & 12: 29: 00.5 \mathrm{~N} \\ & 69: 57: 49.6 \mathrm{~W} \\ & 30 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { 01:59:00.1 } \\ & \text { 02:00:11.3 } \\ & \text { vis. } \end{aligned}$	R 0.318m Dobson Colorado time-signal station 15 MHz , stopwatch, cassette recorder	E. van Ballegoij
Barbados				
Bridgetown ${ }^{\text {b }}$	$\begin{aligned} & 13: 05: 07 \mathrm{~N} \\ & 59: 35: 10 \mathrm{~W} \\ & 74 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { 01:58:14.4 } \\ & \text { 01:59:22.9 } \\ & \text { vis. } \end{aligned}$	R $0.35 \mathrm{~m} \mathrm{~S} / \mathrm{C}$, WWV time signal radio station, tape recorder	R. Jones, H. Callender, W. Sutherland
Trinidad \& Tobago				
Santa Margarita, Trinidad	n.a. n.a. n.a.	clouded out	$\begin{aligned} & \text { R } 0.2 \mathrm{~m} \mathrm{~S} / \mathrm{C} \\ & \text { CCD } \end{aligned}$	S. Bumgarner
Arnosvale, Tobago	$\begin{aligned} & 11: 13: 54 \mathrm{~N} \\ & 60: 45: 42 \mathrm{~W} \\ & 100 \mathrm{~m} \end{aligned}$	duration: $70.9 \mathrm{sec}$	R 0.3m S/C, CCD w/increased gain, Trinidad \& Tobago Astron. Society's VHS video recorder	M. Imbert, B. Mitchell, J. Lockhart, W. Barrow, D. Cornwall
Venezuela				
Obs. ARVAL, Caracas ${ }^{\mathrm{b}, \mathrm{c}, \mathrm{d}}$	$\begin{aligned} & \text { 10:30:08.6 N } \\ & 66: 50: 39.4 \mathrm{~W} \\ & 915 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 01: 58: 50.00 \pm 0.05 \\ & 02: 00: 04.73 \pm 0.05 \\ & 1 / 30 \mathrm{sec} \end{aligned}$	R $0.125 \mathrm{~m} \mathrm{~S} / \mathrm{C}, \mathrm{PC} 23 \mathrm{C}$, camera VHS tape (SP speed)	A. Arnal, G. Eleizalde, A. Valencia
Casetejas	$\begin{aligned} & \text { 10:04:44.91 N } \\ & 69: 14: 54.86 \mathrm{~W} \\ & 465 \mathrm{~m} \end{aligned}$	clouded out	n.a.	A. Peña, S. Radaelli
Tamaca	$\begin{aligned} & \text { 10:09:43.25 N } \\ & \text { 69:19:02.88 W } \\ & 595 \mathrm{~m} \end{aligned}$	clouded out	n.a.	J. Santiago, K. Vieira
Bobares 1 b, c	$\begin{aligned} & \text { 10:16:19.5 N } \\ & 69: 27: 20.52 \mathrm{~W} \\ & 620 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 01: 59: 00.25 \\ & 02: 00: 13.50 \end{aligned}$ vis.	R $0.275 \mathrm{~m} \mathrm{~S} / \mathrm{C}$	V. Ladino, T. Lizardo, P. Maley,

Table 2-Continued

Site name	Lat.(d:m:s) Lon.(d:m:s) Alt. (m)	Ingress UT Egress UT Cycle time	Telescope Instrument/Receptor Timing ref. and remarks	Observers
Bobares 2	$\begin{aligned} & 10: 16: 37.43 \mathrm{~N} \\ & 69: 27: 18 \mathrm{~W} \\ & 640 \mathrm{~m} \end{aligned}$	clouded out	n.a.	C. Guillén, G. Sánchez
Maracaibo, Zulia ${ }^{\text {b }}$	$\begin{aligned} & 10: 42: 53 \mathrm{~N} \\ & \text { 71:37:25 W } \\ & \text { n.a. } \end{aligned}$	about 01:59:00 about 02:00:00 vis.	r 0.05 m	H. Mendt
Mérida	$\begin{aligned} & 08: 47: 00 \mathrm{~N} \\ & 70: 52: 00 \mathrm{~W} \\ & 3600 \mathrm{~m} \end{aligned}$	clouded out	R 0.6m IOC TC245 chip + R 1.0m, video	O. Contreras, F. Díaz, E. Guzmán, M. Kretlow, F. Moreno, O. Naranjo, L. Omar Porras, P. Rosenzweig
Ecuador				
$\begin{aligned} & \text { Salinas } 1 \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \\ & 0.25 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 00: 28: 01.5 \mathrm{~N} \\ & 78: 11: 06.6 \mathrm{~W} \\ & 2040 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 02: 00: 11.341 \pm 0.01 \\ & 02: 01: 11.166 \pm 0.01 \\ & \pm 0.26 \mathrm{sec} \text { (fitted) } \end{aligned}$	R $0.25 \mathrm{~m} \mathrm{~S} / \mathrm{C}$ IOC, TC245 chip GPS time	B. Sicardy E. Recalde
$\begin{aligned} & \text { Salinas 2 }{ }^{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}} \\ & 0.20 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 00: 28: 01.5 \mathrm{~N} \\ & 78: 11: 06.6 \mathrm{~W} \\ & 2040 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 02: 00: 11.290 \pm 0.02 \\ & 02: 01: 11.120 \pm 0.02 \\ & \pm 0.22 \sec (\text { fitted }) \end{aligned}$	R $0.2 \mathrm{~m} \mathrm{~S} / \mathrm{C}$ IOC, TC245 chip GPS time	W. Beisker, M. Mascaró
Salinas-3	$\begin{aligned} & 00: 28: 01.5 \mathrm{~N} \\ & 78: 11: 06.6 \mathrm{~W} \\ & 2040 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 02: 00: 12.150 \\ & 02: 01: 10.185 \\ & \pm 0.100 \mathrm{sec} \end{aligned}$	R $0.2 \mathrm{~m} \mathrm{~S} / \mathrm{C}$ Audine camera drift scan, manual time setup	C. Birnbaum, F. Colas, S. Pau
Quito	$\begin{aligned} & 00: 12: 54.4 \mathrm{~S} \\ & 78: 30: 09.6 \mathrm{~W} \\ & 2818 \mathrm{~m} \end{aligned}$	clouded out	r 0.238m Mertz webcam	R. Cósias, E. López, E. Pallo, R. Percz, D. Pulupa, X. Simbaña, A. Yajamín
Cerro El Buerán, Cuenca ${ }^{\text {b }}$	$\begin{aligned} & 02: 39: 46.3 \mathrm{~S} \\ & 78: 58: 24.2 \mathrm{~W} \\ & 3987 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { 02:00:17.4 } \\ & \text { 02:01:36.9 } \end{aligned}$ vis.	r 0.1 m	P. Rodas

Table 2-Continued

Site name	Lat.(d:m:s) Lon.(d:m:s) Alt. (m)	Ingress UT Egress UT Cycle time	Telescope Instrument/Receptor Timing ref. and remarks	Observers
Mexico				
Monterrey	$\begin{aligned} & 25: 38: 36 \mathrm{~N} \\ & 100: 22: 26 \mathrm{~W} \\ & 659 \mathrm{~m} \end{aligned}$	no event from 01:51 to 02:05	R 0.175 m Astrovid camera	P. Valdés Sada

${ }^{\text {a }}$ The four stations/datasets used for stellar diameter (Section 3) and atmospheric model fitting (Section 6). Quoted error bars are formal errors from diffraction limb fitting and are at most 0.035 s . Larger, systematic errors on absolute timing may be present at the \pm 0.3 s level (see text).
${ }^{\mathrm{b}}$ The fifty-seven stations with reported timings (shown in Figure 7). Error bars at these stations are those reported by observers and have not been modified by us.
${ }^{\mathrm{c}}$ The forty-three stations with $\Delta r=r_{i, o b s}-r_{r e f} \leq 10 \mathrm{~km}$ used for Titania's ephemeris offset using time-shifted chords (Section 4 and Figure 8)
${ }^{d}$ The twenty-seven stations used for Titania's size and oblateness through limb fitting (Section 5, fit parameters listed in Table 3). Among them are thirteen visual observations made by experienced observers, for which we estimate an accuracy of about 0.2-0.3 sec
${ }^{\mathrm{e}}$ Undocumented site or one or more observer's coordinates at ± 1 arcmin error level.

Note. - Abbreviations and acronyms : Cycle time $=$ Recording time resolution ; Telescope : $\mathrm{R}=$ reflector ; $\mathrm{r}=$ refractor ; Newt. = Newton ; $\mathrm{S} / \mathrm{C}=$ Schmidt-Cassegrain ; Instrument/Receptor : IOC = Iota camera, Aud. = Audine camera, SBIG = Sbig camera, Vid. $=$ video/camcorder, Vis. = Visual ; Timing source/reference : MSF (or NPL) $=$ UK 60 kHz time signal, DCF77 = Germany 77.5 kHz time signal, WWVB $=$ NIST 60 kHz time signal, Colorado ; n.a. = not available/specified.

Table 3. Circular fit to 27 selected chords, Sep. 8, 2001 event. The free parameters of the fit are Titania's radius, $R_{\mathrm{T}, \text { occ }}$, and the location of shadow center, as given by the offset $\Delta f, \Delta g$ (see text).

Site ${ }^{\text {a }}$			Ingress			Egress			$\begin{aligned} & \mathrm{C} / \mathrm{A}^{\mathrm{f}} \\ & (\mathrm{~km}) \end{aligned}$	$\begin{gathered} \Delta r^{\mathrm{g}} \\ (\mathrm{~km}) \end{gathered}$
	Rec. ${ }^{\text {b }}$	$\begin{gathered} \Delta t^{\mathrm{c}} \\ (\mathrm{sec}) \end{gathered}$	$\begin{gathered} \text { Latitude }^{\mathrm{d}} \\ \text { (deg) } \end{gathered}$	$\begin{gathered} f^{\mathrm{e}} \\ (\mathrm{~km}) \end{gathered}$	$\begin{gathered} g^{\mathrm{e}} \\ (\mathrm{~km}) \end{gathered}$	$\begin{gathered} \text { Latitude }{ }^{\mathrm{d}} \\ \text { (deg) } \end{gathered}$	$\begin{gathered} f^{\mathrm{e}} \\ (\mathrm{~km}) \end{gathered}$	$\begin{gathered} g^{\mathrm{e}} \\ (\mathrm{~km}) \end{gathered}$		
Arikok, 0.2 m	ccd	+0.093	+65.7	-2275.3	-957.8	-45.4	-973.7	-271.1	+279.6	-1.37
Worth Hill, 0.25 m	vid.	+0.243	+65.6	-2261.0	-1044.5	-50.4	-911.6	-330.2	+197.3	-0.05
Ponta D., 0.3m	vid.	-0.531	+65.3	-2251.7	-1068.2	-52.0	-894.8	-354.1	+170.2	-3.17
Caracas, 0.125 m	vid.	-2.520	+59.5	-2184.4	-1248.3	-61.1	-784.9	-510.7	-020.1	+2.74
Chatellerault, 0.1 m	vis.	-0.378	+50.4	-2078.3	-1393.4	-65.6	-725.7	-678.1	-196.8	+1.57
Marinha G., 0.4 m	vid.	-0.415	+36.7	-1898.8	-1540.1	-62.5	-705.7	-911.3	-411.4	+1.56
Linhaceira, 0.25 m	vid.	$+0.235$	+33.0	-1846.4	-1565.3	-60.3	-714.5	-968.7	-458.1	-1.48
Salinas-1, 0.25m	ccd	-0.381	+32.0	-1833.6	-1573.5	-59.8	-714.6	-981.7	-470.4	+0.25
Salinas-2, 0.2m	ccd	-0.333	+32.0	-1833.7	-1573.5	-59.8	-714.6	-981.6	-470.4	$+0.29$
Pic du Midi, 1m	vid.	$+0.290$	+28.8	-1787.4	-1595.3	-57.5	-722.8	-1033.0	-511.6	+1.66
St Maurice Caz., 0.2m	vis.	-0.153	+23.2	-1705.3	-1619.9	-53.2	-748.5	-1114.1	-571.5	-1.21
Zaragoza, 0.12m	vis.	-0.018	+22.6	-1696.0	-1624.5	-52.6	-750.3	-1125.3	-580.3	+0.78
Alvito, 0.25 m	vid.	+0.455	+22.4	-1693.2	-1626.1	-52.4	-751.0	-1129.7	-583.4	+1.59
Hortoneda, 0.203 m	vis.	$+2.808$	+19.7	-1652.6	-1631.8	-50.2	-768.6	-1165.0	-606.9	-2.02
COAA, 0.2 m	vid.	+0.402	+15.5	-1590.6	-1643.3	-46.5	-794.9	-1224.2	-646.5	-0.81
Portimão-1, 0.25 m	ccd	$+0.007$	+15.0	-1583.0	-1642.8	-46.0	-799.6	-1230.2	-649.6	-2.19
Orfeuilles, 0.2 m	vis.	-0.431	+11.5	-1529.6	-1647.1	-43.0	-824.9	-1274.6	-677.7	-2.04
St Esteve, 0.2m	vis.	$+0.265$	+07.8	-1473.4	-1648.6	-39.5	-855.8	-1322.5	-705.5	-1.09
Sabadell-1, 0.5m	ccd	$+0.097$	+07.4	-1467.7	-1649.5	-39.1	-858.3	-1327.6	-708.9	-0.08
Barcelona-2.1, 0.21 m	vis.	+0.091	+06.5	-1453.4	-1648.5	-38.3	-867.2	-1338.9	-714.7	-0.49
Barcelona-2.2, 0.203 m	vis.	+0.041	+06.5	-1454.3	-1649.0	-38.3	-866.3	-1338.4	-714.7	-0.04
Barcelona-2.3, 0.21 m	vis.	+0.241	+06.5	-1454.3	-1649.0	-38.3	-866.3	-1338.4	-714.7	-0.05
Alella, 0.24 m	vid.	+2.492	+05.8	-1443.1	-1652.4	-37.6	-869.8	-1349.6	-722.9	+4.01
Barcelona-1, 0.258 m	vis.	+0.384	+04.9	-1430.2	-1647.5	-36.8	-881.0	-1357.5	-724.7	+0.12
Barcelona-3, 0.1 m	vis.	+0.111	+04.9	-1430.8	-1648.7	-36.9	-879.8	-1357.7	-725.4	+1.24
Alcublas, 0.2 m	vis.	$+0.255$	-01.0	-1341.9	-1634.4	-31.1	-942.1	-1423.4	-754.3	-0.77
Castellón, 0.2 m	vis.	-0.046	-02.7	-1316.8	-1630.1	-29.5	-959.7	-1441.7	-762.3	+0.31

${ }^{\text {a }}$ See Table 2. Chords have been sorted in order of decreasing closest approach (C/A) distances. This corresponds from top to bottom in Figure 11.
${ }^{\mathrm{b}}$ Type of recording mode : CCD, vid. $=$ video or vis. $=$ visual
${ }^{\mathrm{c}}$ Applied time shift, see text for details.
${ }^{\mathrm{d}}$ Sub-occultation titaniacentric latitude.
${ }^{e}$ Position in sky plane, see Figure 11.
${ }^{f}$ Closest approach to shadow center. Positive means observer North of shadow center, negative otherwise.
${ }^{\mathrm{g}}$ Radial residual to circular fit (plotted in Figure 12).

Note. - Best fitting circle radius $R_{T}=788.4 \mathrm{~km}$, center : $f_{c}=-1494.1 \mathrm{~km}, g_{c}=-861.6 \mathrm{~km}$, r.m.s. radial dispersion : 1.58 km , no oblateness detected. See text, Section 5 for details.

Table 4. Titania occultation, August 1, 2003, circumstances and timings. Same abbreviations as in Table 2.

Site name	Lat.(d:m:s) Lon.(d:m:s) Alt. (m)	Ingress UT Egress UT Cycle time	Telescope Instrument/Receptor Timing ref. and remarks	Observers
		Mexico		

Table 5. Modelling results for Titania's atmosphere surface pressure at equilibrium, with detection upper limits in standard deviation units for $\mathrm{CO}_{2}, \mathrm{CH}_{4}$ and N_{2}.

gas	$\begin{aligned} & (\mathrm{dz} / \mathrm{dT})_{z} \\ & \left(\mathrm{~K} \mathrm{~km}^{-1}\right) \end{aligned}$	$\begin{gathered} \mathrm{T}(\mathrm{z}>20 \mathrm{~km}) \\ (\mathrm{K}) \end{gathered}$	surface scale height (km)		surface pressure upper limit (nb)	column density (cm-amagat)
CO_{2}	0	60	30	1- σ	9	0.132
				3- σ	20	0.293
CO_{2}	0	70	35	1- σ	13	0.193
				3- σ	28	0.410
CO_{2}	0	80	40	1- σ	17	0.257
				3- σ	37	0.549
CH_{4}	2	110	95	1- σ	8	0.436
				3- σ	18	0.954
N_{2}	0	70	55	1- σ	22	0.550
				$3-\sigma$	46	1.150

Titania stellar occultation, 08 September 2001

Fig. 1.- Path of Titania's shadow on Earth on September 8, 2001, according to the post-occultation analysis presented in this paper. Motion is from upper right to lower left. The darker grey zone is for night time (Sun below -18° with respect to local horizon), lighter grey is for astronomical twilight (Sun between 0° and -18° below local horizon) and white is for day time. Dots along the centerline are plotted every minute. This is where the event duration was maximum, about 72 sec. The green star symbols indicate all the stations reported in Table 2, among which fifty-seven reported timings. The event was observed at low elevation from France, UK, Italy, Spain, Morocco, Portugal around 1:55 UT, and near zenith in the Caribbean region (Barbados, Tobago, Aruba) and from Northern South-America (Ecuador, Venezuela); around 2:00 UT.

Fig. 2.- Enlargement of Figure 1. Titania's shadow over Europe and Africa observing stations. Green star symbols are for stations where observations were attempted and/or achieved, Red star symbols mark the subset of twenty-seven stations used for limb fitting (Section 5). See Table 2 for circumstances and timings, and Table 3 for limb fitting data.

Fig. 3.- Same as Figure 2, for Central and South America. See Table 2 for circumstances and timings, and Table 3 for limb fitting data.

Fig. 4.- Example of a light curve, obtained with the 0.25 m reflector at Salinas. All data points are shown, with a cycle time of 0.26 sec , see Table 2. The flux from the star (plus the much fainter Titania) has been divided by a running average (over 5 sec) of Uranus' flux, in order to correct for low frequency sky transparency variations. Finally, the data have been normalized between zero (Titania only) and unity (full stellar + Titania flux).

Fig. 5.- Fit the stellar diameter from the Salinas-1 0.25 m (squares), Salinas- 20.20 m (bullets), Arikok 0.20 m (triangles) and Portimão-1 0.25 m (crosses) light curves (see Table 2). Data are normalized between 0 (no star) and 1 (full signal). The vertical dotted line is the location of an edge at 788.4 km , corresponding to the Titania radius obtained in this paper. The upper thin curve is shifted vertically by +0.6 for better viewing, and shows the expected diffraction pattern from a point-like source. Thin lines superimposed to the data are best fits with stellar diameter taken into account. They are slightly different from each other, as the response of each instrument varies with integration time. See text for details.

Fig. 6.- Upper panel: Fit to the Arikok, Aruba, ingress and egress light curves (solid line). The triangles are the individual data points, while the open circles are from a best fit model, taking into account diffraction, stellar diameter and instrumental response, see text for details. Besides providing the stellar diameter, see Figure 5, the fit yields the stellar half-light times at disappearance and re-appearance, and associated error bars, see Table 2. Lower panel: The same for the Salinas-1 0.25 m reflector data, where the square are individual data points, see also Figure 4 . On both plots, note the discontinuity in time at the vertical dotted line, in order for the light curves to fit into the figure. Also, note the better sampling of the Arikok light curve, due to a smaller cycle time (0.11 sec vs. 0.26 sec , see Table 2).

Fig. 7.- Fifty-seven occultation chords with reported timings (Table 2). The origin "O" of the diagram is located at the expected center of Titania's disk in ICRS J2000.0 coordinates, as derived from the star position predicted at time of event (Eq. 1) and DE405+URA027 Titania ephemeris. The arrow indicates the direction of motion in the sky plane. The horizontal and vertical bars are aligned with the local celestial ICRS J2000.0 N-S and E-W directions, respectively, and have lengths of 1000 km , with celestial North up and celestial East left. The scale is $13,819 \mathrm{~km}$ per arcsec. Label "S" stands for Titania's south pole (IAU convention). Meridians and parallels on Titania's globe are plotted every 15°, with thicker lines delineating Titania's equator and origin of longitudes (the meridian facing Uranus). The intersection of this meridian with Titania's equator defines the sub-Uranus point on Titania, labelled "SU". Sub-observer latitude at Titania is -24.2°, and north pole position angle is 260.4°, see Table 1. An offset with respect to the expected Titania's position is clearly visible, see Section 4 . The circle surrounding the chords is the best circular fit to Titania's limb (Section 5).

Fig. 8.- Same as Figure 7, but limited to the forty-three stations with radial residual $\Delta r=$ $r-r_{r e f} \leq 10 \mathrm{~km}$ used for Titania's ephemeris offset determination (Table 2 and Section 4). This corresponds to an error of 0.5 to 2 sec in chord duration, depending on the observer's location projected on the limb. The occultation chords have also been displaced along their own direction so that they share the same mediatrix. This is equivalent to applying a time shift to each of those stations, to compensate for their absolute timing error, see text for details. The offset in ICRS J2000.0 celestial coordinates, between Titania's expected position (globe at upper left) and observed position is $\Delta \alpha \cos (\delta)=-108 \pm 13$ mas and $\Delta \delta=-62 \pm 7$ mas. Like in Figure 7 the circle surrounding the chords is the best circular fit to Titania's limb.
Titania's predicted position

$$
500 \text { km }
$$

01 August 2003

Fig. 9.- The two occultation chords derived from the additional timings provided by the Aug. 1, 2003 occultation (see Table 4) and used for an additional offset constraint to Titania's ephemeris position. The Figure shows Titania's orientation and direction of motion in the sky plane in ICRS J2000.0 coordinates. Label " S " is Titania's south pole ; titaniacentric meridians and parallels are plotted every 15°. "AU" designates the anti-suburanian meridian at longitude 180°, as prime meridian is on the far side. See text, Section 4 for details.

Fig. 10. - Histogram of radial residuals for our best circular fit to both extremities of the twentyseven occultations chords of see Fig. 11, reported in Table 3. Our fitted Titania's radius, $R_{\mathrm{T}, \mathrm{occ}}=$ $788.4 \pm 0.6 \mathrm{~km}$, is shown as a black dot with associated error bars, just below the value derived from Voyager images, $R_{\mathrm{T}, \mathrm{Voy}}=788.9 \pm 1.8$ (Thomas 1988). Most of the dispersion seen in this histogram is likely to be caused by topographic features along Titania's limb, see Section 5, $\mathbb{4}$ 5.1.

Fig. 11.- The twenty-seven occultation chords used for for Titania's size and oblateness determination through limb fitting (see Section 5). The free parameters of the fit are Titania's radius, $R_{\mathrm{T}, \mathrm{occ}}$, and the location of shadow center, as given by the offset $(\Delta f, \Delta g)$. Time shifted chords have been superimposed on a figure of Titania that has been shifted by the ephemeris corrections in Eq. 3. Corresponding ground stations are listed as a subset of Table 2 (footnote "d"). Among them are thirteen visual observations reported by experienced observers (black chords). Red color indicates chords obtained from electronic, frame-by-frame recording of the event (CCD or video), Table 3 lists the applied time shift, sub-occultation titaniacentric latitude coordinate of ingress and egress points, closest approach to shadow center and radial residuals Δr.

Fig. 12.- Upper limit on Titania's oblateness.- Residuals of the best circular fit to the 27 occultation chords shown in Figure 11. X-axis is the titaniacentric latitude, with South pole on the left and North pole on the right, from -90° to $+90^{\circ}$. Y-axis is the distance to Titania's shadow center. The dotted horizontal line corresponds to the radius of our best circular fit, $R_{\mathrm{T}, \text { occ }}=788.4 \pm 0.6 \mathrm{~km}$, with its error bar ($\pm 0.6 \mathrm{~km}$, shaded rectangle). Bullets indicate the ingress and egress distances $r_{i, o b s}$ versus sub-occultation latitude on Titania, after each 27 chords has been shifted in absolute time so they have a common mediatrix. This explains why the points come by pairs (ingress at right and egress at left) with the same distance to shadow center imposing their extremities to have the same radial residuals with respect to a reference circle. The vertical lines marks the maximum latitudes $\left(\pm 65.8^{\circ}\right)$ reachable during the occultation, due to the titaniacentric elevation $B=-24.2^{\circ}$ of the observers during the Sept. 8, 2001 event. Solid bullets are from the 14 stations with an electronic record of the event (CCD or video), while open bullets are from the 13 best visual observations, see Section 5.

Fig. 13.- Same as Fig. 12, after plotting all latitudes in absolute value, and averaging them over ingress and egress values. The thicker line corresponds to the upper limit of an oblate limb of the form $r=r_{\text {eq }}\left[1-f \sin ^{2} \phi\right]$, with a difference between equatorial and polar radius of $r_{\mathrm{eq}}-r_{\mathrm{po}}=+0.8$ km . The thin line is the upper limit of a prolate limb, with $r_{\mathrm{eq}}-r_{\mathrm{po}}=-3.4 \mathrm{~km}$. See text for details.

Fig. 14.- Examples of shrinkings of Titania's shadow radius due to ray bending by a model CO_{2} isothermal atmosphere ($T=70 \mathrm{~K}$) with surface pressures of $0,50,100,150,200 \mathrm{nbar}$, in order of decreasing line thicknesses, see also labels above each curve. The model takes into account the smoothing by a 0.51 mas diameter star (but does not account for diffraction effects), and assumes the radius derived from Voyager images, 788.9 km (Thomas 1988). The Voyager radius and our own measurement are shown by black dots with associated error bars at the top. The dotted line is the diffracting model which best fits our data, see Fig. 5. For this particular model $\left(\mathrm{CO}_{2}\right.$ at $\mathrm{T}=70 \mathrm{~K}$), we find that Titania's apparent radius decreases by about 0.056 km per nbar added to the surface pressure. The stellar drop just prior to the occultation by Titania's limb amounts to about 1.1×10^{-3} per nbar. For instance, a 200 nbar atmosphere shrinks the radius by about 11.2 km , and causes a drop of 22% by the time the star reaches the satellite limb. See text, Section 6, - 6 .1.

Fig. 15. - Same as Fig. 5, but at different scales, to illustrate the effect of a faint atmosphere on the light curves. Symbols are the same as in Fig. 5, namely Salinas- $10.25 m$ (squares), Salinas-2 0.20 m (bullets), Arikok 0.20 m (triangles) and Portimão-1 0.25 m (crosses). For each of the four lightcurves, the before-ingress and after-egress data points have been folded over and binned over $\sim 20 \mathrm{~km}$ vertical bins, in order to take into account the relative velocity of the star perpendicularly to each limb, so that the radial sampling Δr is constant at each station on the plot. In this way the actual contribution of stations to vertical sampling can be assessed, although the fit to model was performed on actual data points. The point on left (Portimão) corresponds to the stellar drop behind Titania's limb at $\mathrm{r}<792 \mathrm{~km}$ (those data points were not included in the fit). The dotted vertical line corresponds to our estimate of Titania's radius best value of 788.4 km . The smooth solid line is the 1- σ upper limit for the fit of actual data points to a $C O_{2}$ isothermal ($T=80 \mathrm{~K}$) model atmosphere, with a surface pressure of 17 nbar. The dotted line is the $3-\sigma$ upper limit (p $=27$ nbar). The shaded area shows the difference between this model and an airless model. See Table 5 and text for details.

Fig. 16. - Same as Fig. 15, but for methane. The smooth solid line is the 1- σ upper limit for a heated CH_{4} atmosphere with $T=70 \mathrm{~K}$ at surface level and $T=110 \mathrm{~K}$ above 20 km , with a surface pressure of 8 nbar. The shaded area shows the difference between this model and an airless model, while the dotted line shows the $3-\sigma$ upper limit ($\mathrm{p}=18 \mathrm{nbar}$) for comparison. See Table 5 and text for details.

Fig. 17.- Same as Fig. 16, but for an isothermal, $\mathrm{T}=70 \mathrm{~K} N_{2}$ atmosphere. The 1- σ upper limit is 22 nbar , corresponding to 0.550 cm -amagat (solid line) while the $3-\sigma$ upper limit corresponds to $\mathrm{p}=46 \mathrm{nbar}$ or 1.150 cm -amagat (dotted line).

[^0]: ${ }^{1}$ Observatoire de Paris, LESIA, 5, place Jules Janssen, 92195 Meudon cedex, France
 ${ }^{2}$ Université Pierre et Marie Curie et Institut Universitaire de France
 ${ }^{3}$ European Asteroidal Occultation Network (EAON), France
 ${ }^{4}$ Instituto Superior de Ciencias Astronómicas, \& Liga Iberoamericana de Astronomía, Buenos Aires, Argentina
 ${ }^{5}$ International Occultation Timing Association, European Section (IOTA/ES), Bartold-Knaust-Strasse 8, 30459 Hannover, Germany
 ${ }^{6}$ International Occultation Timing Association (IOTA), PO Box 6356, Kent, WA 98064-6356, USA
 ${ }^{7}$ IOTA, 4535 Cedar Ridge Trail, Houston Texas 77059 USA
 ${ }^{8}$ Observatoire de Paris, IMCCE, 77 Av. Denfert-Rochereau, 75014 Paris, France
 ${ }^{9}$ Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA
 ${ }^{10}$ Observatoire de Bordeaux, 2, rue de l'Observatoire, BP 89, 33270 Floirac, France
 ${ }^{11}$ Simoco Digital System, Cambridge, United Kingdom
 ${ }^{12}$ British Astronomical Association, Asteroids and Remote Planets Section, Lower Earley, Reading, RG6 4AZ, United Kingdom
 ${ }^{13}$ Binfield, United Kingdom
 ${ }^{14}$ Pompiano, Brescia, Italy
 ${ }^{15} 06790$ Aspremont, France
 ${ }^{16}$ Observatoire du Tim, Chemin La Chapelle, 04700 Puimichel, France
 ${ }^{17}$ Centre d'astronomie, 04870 St-Michel l'Observatoire, France
 ${ }^{18}$ Observatoire de Haute-Provence/CNRS, 04870 St-Michel l'Observatoire, France
 ${ }^{19}$ Observatoire Farigourette, 13012 Marseille, France
 ${ }^{20}$ Clos des Orfeuilles, 13012 Marseille, France
 ${ }^{21}$ La Garde d'Apt, 84390 Saint Christol, France
 ${ }^{22} 13300$ Salon, France
 ${ }^{23} 13310$ St Martin de Crau, France
 ${ }^{24}$ Dutch Occultation Association, Boerenweg 32, NL 5944 EK Arcen, The Netherlands
 ${ }^{25}$ Nîmes, France
 ${ }^{26}$ Observatoire du Collège de l'Etang de l'Or, UAI 180, 34130 Mauguio, France
 ${ }^{27}$ Observatoire de Malibert, St Chinian, France
 ${ }^{28}$ Association des Utilisateurs de Détecteurs Electroniques (AUDE), c/o F. Colas, 45, Av. Reille, 75014 Paris
 ${ }^{29}$ Observatoire de Saint Caprais, Tarn, France
 ${ }^{30}$ Observatoire Jolimont, 1 avenue Camille-Flammarion, 31500 Toulouse, France

[^1]: ${ }^{31}$ Société d'Astronomie Populaire Poitevine (SAPP), France
 ${ }^{32}$ St Savinien sur Charente, France
 ${ }^{33}$ Observatoire de Dax, 40100 Dax, France
 ${ }^{34}$ Fort de France, Martinique, France
 ${ }^{35}$ Algiers, Algeria
 ${ }^{36}$ Agrupación Astronómica de Barcelona, Carrer Aragó 141-143, 2-E, 08015 Barcelona, Spain
 ${ }^{37}$ Dept. d'Astronomia i Meteorologia, IEEC-Universitat de Barcelona, Av. Diagonal 647, 08028 Barcelona, Spain
 ${ }^{38}$ Agrupación Astronómica de Sabadell, C. Prat de la Riba, s/n, Apdo 50, Sabadell (Barcelona), Spain
 ${ }^{39}$ Zaragoza, Spain
 ${ }^{40}$ Riba-Roja de Turia, Spain
 ${ }^{41} 46016$ Tavernes Blanques, Spain
 ${ }^{42}$ Instituto de Astrofísica de Andalucía, Apdo. 3004, 18080 Granada, Spain
 ${ }^{43}$ Asociación Astronómica de la Palma (AAP), Canary Island, Spain
 ${ }^{44}$ Associação Portuguesa de Astrónomos Amadores (APAA), Portugal
 ${ }^{45}$ Associação Nacional de Observação Astrónomica (ANOA), Portugal
 ${ }^{46}$ Centro de Observação Astronómica no Algarve (COAA), Poio, 8500 Portimão, Portugal
 ${ }^{47}$ Núcleo Açoriano da Associação Portuguesa de Astrónomos Amadores (NAAPAA), Açores, Portugal
 ${ }^{48}$ Funchal, Madeira, Portugal
 ${ }^{49}$ Barbados Astronomical Society, Harry Bayley Observatory, Bridgetown, St Michael, Barbados
 ${ }^{50}$ Trinidad \& Tobago Astronomical Society, Trinidad \& Tobago
 ${ }^{51}$ Observatorio Arval, Caracas, Venezuela
 ${ }^{52}$ Asociación Larense de Astronomía (ALDA), Barquisimeto, Lara, Venezuela
 ${ }^{53}$ Maracaibo, Zulia, Venezuela
 ${ }^{54}$ Universidad de Los Andes, Facultad de Ciencias, 5101, Mérida, Venezuela
 ${ }^{55}$ Cumbaya, 1722 Quito, Ecuador
 ${ }^{56}$ Cité des Sciences et de l'Industrie, 75930 Paris, France
 ${ }^{57}$ Observatorio Astronómico de Quito, Parque de la Alameda, PO Box 17-01-165, Quito, Ecuador
 ${ }^{58}$ Cuenca, Ecuador
 ${ }^{59}$ Universidad de Monterrey, Departamento de Física y
 Matemáticas, Av. I. Morones Prieto, 4500 Pte., San Pedro Garza García, N.L. 66238, México
 ${ }^{60}$ Asociación Panamena de Aficionados de la Astronomia,

[^2]: Panama
 ${ }^{61}$ George Observatory, Brazos Bend State Park, Houston TX 77030, USA
 ${ }^{62}$ Universidad Autónoma de Nuevo Leon, Facultad de Ciencias Físico Matemáticas, Av. Universidad s/n, Ciudad Universitaria, San Nicolás de los Garza, N.L. 66451 México

[^3]: ${ }^{1}$ The mediatrix of two points in a plane is the line equidistant to those two points.
 ${ }^{2}$ Two stations, however, have large radial residuals, while good accuracy is expected since ingress and egress timings come from video tapes with 0.15 to 0.35 m telescopes. They are the Almerim station (Portugal), with $\Delta \mathrm{t}=$ 1.55 s corresponding to radial residual $\Delta r=-28.8 \mathrm{~km}$, for an expected error $\leq 0.1 \mathrm{~s}$, and Sabadell-2 0.15 m station (Spain), with $\Delta \mathrm{t}=2.04 \mathrm{~s}$ and $\Delta r=-20.4 \mathrm{~km}$, for a claimed accuracy of 0.2 s . No explanation has been given for these large residuals.

[^4]: ${ }^{3} \Delta r=+5.0$ and -8.8 km , respectively.

[^5]: ${ }^{4}$ Ray bending by Titania's gravitational mass, due to general relativity, amounts to only 50 meters or so at the Earth's distance, and is thus irrelevant at our level of accuracy.

