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TRAFFIC NOISE SPECTRUM ANALYSIS: DYNAMIC MODELING VS. EXPERIMENTAL OBSERVATIONS

This paper compares two traffic representations for the assessment of urban noise frequency spectrum: (i) a static one, based on mean vehicle speeds and flow rates, (ii) a dynamic one, which considers vehicle interactions along the network. The two representations are compared on their suitability to match real on-field noise levels, recorded on a three lane quite busy street. Representation (i) fails in reproducing spectra envelopes that correspond to this site. In particular, it underestimates low frequencies, what can conceal the real impact of traffic flow on urban sound quality. Representation (ii) greatly improves estimation. It guarantees accurate environmental noise assessment, since it reproduces all traffic situations that are encountered in the site. Moreover, its 1s-based structure allows for the evaluation of spectra variations, with a good accuracy.

I Introduction

The frequency spectra highly influence sound quality [START_REF] Ishima | The impact of sound quality on annoyance caused by road traffic noise: an influence of frequency spectra on annoyance[END_REF]. In particular, low frequencies due to road traffic flow deteriorate urban soundscape [START_REF] Leventhall | A review of published research on low frequency noise and its effects[END_REF] [START_REF] Persson | Annoyance due to low frequency noise and the use of the dB(A) scale[END_REF]. High frequencies which can emerge from traffic noise also increase annoyance [START_REF] Ishima | The impact of sound quality on annoyance caused by road traffic noise: an influence of frequency spectra on annoyance[END_REF]. Moreover, frequency variations play an important role in sound quality [START_REF] Lim | Correlations between deficiencies in power window systems influencing sound quality and some psychoacoustics metrics[END_REF].

Thus traffic noise prediction models should take frequency spectra into account to precisely assess the influence of traffic flow on noise quality in urban area.

The modeling chain for noise estimation is made of four steps: (i) a traffic model that estimates the characteristics of traffic flow (speeds, flow rates, etc.), (ii) a noise emission model that gives the noise power level Lw emitted by vehicles, (iii) a sound propagation model that gives the sound pressure level Lp at a receiver, and (iv) the calculation of noise indicators to highlight sound characteristics. Each of those four steps should efficiently reproduce spectral contents to describe characteristics of urban traffic noise.

Large efforts have been invested for years to improve steps (ii) and (iii). Current noise emission models give the power level emitted by vehicles for each 1/3 octave bandwidths according to their class (light vehicles, trucks, etc.), speed, and acceleration (cruising mode [START_REF] Lelong | New vehicle noise emission for French traffic noise[END_REF] or acceleration range [START_REF] Harmonoise | Source modelling of road vehicles[END_REF] depending on the models). Sound propagation models usually consider noise attenuation for each 1/3 octave or each octave bandwidth. Moreover, the effects of noise reducers (noise barriers, road surface, etc.) are usually given in terms of an emitted spectrum [START_REF] Watts | The combined effects of porous asphalt surfacing and barriers on traffic noise[END_REF], or in terms of a given vehicle speed [START_REF] Van Renterghem | Reducing the acustical facade load from road traffic with green roofs[END_REF],

knowing that those performances highly depend on frequency. For example, noise barriers offer substantial noise attenuation for high frequencies but hardly stop low frequencies. Moreover, the influence of their shape on efficiency depends on frequency [START_REF] Defrance | Integration of the efficiency of noise barrier caps in a 3D ray tracing method. Case of a T-shaped diffracting device[END_REF]. Hence, the estimation of the noise spectrum due to the whole traffic stream is crucial to guarantee an accurate estimation of the whole modeling chain.

Nevertheless, for urban traffic noise assessment, studies often restrict step (i) to a static traffic representation which assumes a given mean vehicle speed. This could annihilate the accuracy offered by noise emission and sound propagation models. Recent developments on dynamic noise models make it possible to consider the impacts of vehicle kinematics on noise pattern [START_REF] Leclercq | Dynamic evaluation of urban traffic noise[END_REF] [START_REF] De Coensel | The influence of traffic flow dynamics on urban soundscape[END_REF] [START_REF] Oshino | Study on road traffic noise prediction model taking into account the citywide road network[END_REF]. Those models are based on a dynamic traffic model that gives vehicle kinematics at each time step (typically 1s.), coupled to noise emission and sound propagation models. [START_REF] Can | Accounting for traffic dynamics improves noise assessment: experimental evidence[END_REF] has shown through comparisons with measurements that dynamic models outperform static ones for LAeq estimation. They also allow for estimating the 1snoise levels evolution, and thus noise dynamics [START_REF] Leclercq | « Estimation dynamique du bruit de circulation en milieu urbain : étude d'un cas réel[END_REF]. This paper will extend the comparison of both approaches by focusing on spectra aspects. The aim is to: (i) show the limits of the static approach for frequency spectrum assessment, (ii) prove that the dynamic approach improves spectrum estimation and allows for the estimation of acoustical indicators that reflect the spectrum content of traffic noise. Both approaches will be applied on a three lanes quite busy street. They are compared on their suitability to reveal the characteristics of the noise spectrum spectra recorded at four different points, which correspond to four real traffic situations: in front of a traffic signal, down to a traffic signal, close to a bus station, and away from the main street.

The modeling chain and the acoustical indicators used for comparison are presented in section II. The section III is devoted to the comparison of the two approaches. Finally, the section IV points out the key elements to offer a valuable tool for the assessment of noise impact of urban traffic policies.

II Methodology

II.1 Experimentation

The experiment consists in traffic and acoustic measurements, carried out from 15.30 h to 17.30 h on a weekday, in the Cours Lafayette (Lyon, France). It is explained in details in [START_REF] Can | Accounting for traffic dynamics improves noise assessment: experimental evidence[END_REF]. The site is a one-way three-lane urban corridor (the shoulder lane is shared by buses and passenger cars) with 5 signalized intersections. The street is U-shaped with 5-floor buildings. It is quite busy, with about 1400 veh/h during the experiment. Nevertheless, these flow rates are too low to observe residual congestion during the experiment. The traffic signals are coordinated through a green wave: a vehicle that arrives at the first intersection at its free flow speed faces a green signal at the next traffic light. Detailed characteristics of traffic signals are given in Figure 1.

The recorded traffic data is the number of vehicles per cycle at each intersection and for each movement, and the precise bus trajectories (including stopping times at bus stations). Acoustic recordings are the 1s-evolution of the octave bandwidth sound spectra, for the selected points. Points for noise levels measurements are located on the curb, at a distance of 2.5m from the building. The four selected points are typical of urban situations:

-in front of a bus station downstream of a traffic signal (P1), -in front of a traffic signal (P2), -down to a traffic signal (P3) and -set back from the major street (P4) (flow rate on the perpendicular street is 250veh/h).

Measurement points are 2 m-high. Their exact location is given in Fig. 1. length since this size is suitable for dynamic noise prediction [START_REF] Can | Selecting noise source and traffic representations that capture urban traffic noise dynamics[END_REF]. Cell lengths vary from one link to another due to differences in link sizes, but have the same size within a given traffic link. Noise cells are defined by their sound power level Lw,i, which is calculated by gathering the emissions of all vehicles present inside the cell. The Harmonoise model is used to predict the sound power level Lw,k of one given vehicle k, in terms of its speed vk and its acceleration ak [START_REF] Harmonoise | Source modelling of road vehicles[END_REF]; see The contribution Lp,i of each cell for a receiver P is then determined thanks to the propagation model NMPB-routes-96 implemented in Mithra [16], which gives the sound attenuation from i to P. Finally, the sound pressure level Lp at P (which is also a 8 element vector) is the sum of the contributions of each cell:
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II.2.2 Traffic flow representations

The static and the dynamic models have a different approach and resolution. The dynamic model allows for Lp,1s evolution estimation since it describes the evolution of traffic variables in time. The static model only allows for the Lp,2h estimation, since it considers mean values for traffic variables over the 2h simulation period. Hence, only the former allows for specific descriptors calculation, based on Lp,1s values.

II.2.2.1 Static representation

Two classes c of vehicles are considered: light vehicles lv and buses bus, defined by their flow rates Q lv and Q bus . Linear sound power level 
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No acceleration or deceleration zones are considered in usual static models: vehicles are supposed to pass through intersections without stopping. Hence, 0 c a = whatever the cell is. Finally, the noise power level W L of the cell is the acoustical sum ⊕ of the emissions lv W L and bus W L of the cell: x t t + ∆ is the minimum between the position it is willing to reach when traffic is free and the position it cannot overpass when traffic is congested, that is as soon as it is 1 SYMUVIA is a dynamic traffic simulation tool jointly developed by INRETS -ENTPE 2 A starting wave defines the mean time between two starts of consecutive vehicles at a green light unable to reach the position he would reach if traffic were free. The time-step is fixed to t ∆ = -smin / w to have a numerical scheme that exactly matches analytical solutions, and avoids numerical viscosity. Then:
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II.2.2.2 Dynamic representation
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where i l is the length of the cell.

The model has been refined to take into account the bounded acceleration of vehicles [START_REF] Leclercq | Bounded acceleration closed to fixed and moving bottlenecks[END_REF], the influence of slow motion of buses [START_REF] Leclercq | Moving bottlenecks in Lighthill-Whitham-Richards Model: A unified theory[END_REF], the lane-changing phenomena [START_REF] Laval | Microscopic modeling of the relaxation phenomenon using a macroscopic lane-changing model[END_REF], and conflicts at junctions [21][22]. 

II.2.2.3 Calibration

II.2.3 Noise indicators

II.2.3.1 Static indicators

Static indicators are calculated for the 2h period of the experiment, from the Lp,2h octave bandwidth values. They can be calculated by both static and dynamic models. They are:

-The sound level spectrum, which is the sound level Lp,Bi of each octave bandwidth (Bi) from 63 Hz to 8 kHz.

-The spectrum is compared to Noise Rating curves. Those curves have been developed

by the International organization of Standardization to rate noisiness [START_REF]Acoustics -Description, measurement and assessment of environmental noise -Part 1: Basic quantities and assessment procedures[END_REF]. Each x dB NRx curve is built as follows: the value NRx,Bi allocated to the octave bandwidth Bi is the sound level that a sound at the frequency Bi should have to be as noisy as a sound of x dB(Lin) at 1kHz (thus NRx,1kHz = x).

-The Noise Rating value NR is also calculated from the sound spectrum at P. For each octave bandwidth Bi, a NRx curve passes through the point Lp,Bi. NR is the maximum of the 8 x,Bi values that correspond to the 8 bandwidth. Hence this indicator takes emerging frequencies into account, since it reflects the most noisy octave bandwidth.

-The spectrum gravity center SGC. This indicator makes an average of the sound power frequency spectra. Thus it approximates the "averaged pitch" of the sound. It is calculated as in [START_REF] Raimbault | Ambient sound assessment of urban environments: field studies in two French cities[END_REF]: 
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II.2.3.2 Dynamic indicators

Dynamic indicators can only be calculated if the dynamic traffic model is used, since they are based on the evolution of the Lp,1s octave bandwidth values. They are:

-The « spectrum mean noise pattern ». It is based on a previous study, which has demonstrated the strong periodicity of traffic noise on signalized junction streets [START_REF] Can | Capturing urban traffic noise dynamics through relevant descriptors[END_REF]. It consists in the spectrum sound pressure levels evolution within a representative traffic signal cycle. The mean noise pattern is defined for each octave bandwidth as follows: (i) for each of the tc instants ti ∈ [0; tc[ the sample Sti that contains the instants t ≡ ti (mod tc) 3 is constructed (hence there is tc = 90 samples Sti, each one made of 7200/tc = 80 elements), (ii) the median value of the elements of Sti is calculated: it gives the value of the pattern at ti. Finally, the « spectrum mean noise pattern » is the set of the 8 mean noise patterns at each octave bandwidth Bi.

-The 1s and 10s SGC evolutions within a mean noise pattern. Both indicators are obtained by calculating SGC,ti for each instant ti of the mean noise pattern. They allow for quantifying pitch variations, which appear when vehicles speed varies and can play an important role on sound quality.

III Results

III.1.1 « static indicators » Measurements

The observed sound spectra at the four points are shown in Figure 3. They have some similarities; for instance the sound levels in dB(Lin) tend to decrease with the increasing frequency. The decrease between the 63 Hz and the 8 kHz sound levels reaches at least 20 dB for the four points. This can be explained by the road traffic noise spectrum, which contains more low than high frequencies (see Figure 2). It results in a low Spectrum Gravity Centers (SGC) for the four points, between 266 Hz and 375 Hz (see Figure 4). Moreover, spectra show a peak at 1 kHz, which is mainly caused by the contact of tires on the road. It can be seen on Figure 2 that this frequency is predominant for speeds above 40km/h that is close to their free flow speed. This peak causes high NR values (except for the point P4 that stands at further distance from the main road), since this indicator reflects the loudest octave bandwidth; see II.2.3.2. Note that the 1 kHz peak is less pronounced at P2 (that is in front of the traffic signal), because lots of vehicles have to stop at this point before accelerating at low speeds for which the 1kHz octave bandwidth is less energetic.

Finally, the sound levels at P4 sharply decrease with the frequency, mainly because of its specific location. This point is indeed less noisy than the others as it is set back from the street; but it still contains lots of low frequencies probably due to urban background noise. Those low frequencies explain why the SGC is lower at this point than for the other points. Moreover, noise decrease at this point is lesser than expected, which can be explained by the geometry of the site. Indeed, the perpendicular road, named "Rue Vendome", is rather large and high for a secondary road, with a width of 25m and a height of 20m, leading to a height to width ratio of 0.8. This ratio allows for reverberation within the street, while the width of the street limits the screening effect.

Static Model

The spectra obtained by the static model tend to have the same envelope whatever the traffic situation is. They correspond to the noise emitted by a flow of vehicles moving at their free-flow speed. As the model cannot capture the feature of urban traffic flow (stops of vehicles at traffic signals, speed variations along the network due to traffic, etc.), it fails in reproducing the real spectra envelopes that correspond to each traffic situation. In particular, the low frequencies, which are mainly due to stops and slow vehicles, are underestimated by the static model. This results in a poor estimation of SGC, which stands at too high frequencies (errors exceed 100%), due to the speed overestimation. Moreover, the NR estimation is also biased by the speed overestimation: sound levels around 1kHz are overestimated, so that NR is too high.

Finally, the static model gives surprisingly high levels at P4. Those high levels are due to the additional contribution of noise emitted at the intersection "Lafayette ∩ Vendome" and noise emitted within the street Vendome. This overestimation can be explained by the fact that those two contributions correspond to traffic situations where the static model dramatically overestimates real vehicle speeds. Indeed, in both situations, stops or slowing-downs of vehicles are not represented by the model.

Dynamic Model

The dynamic model improves the estimation of spectrum envelopes, since it takes speed variations into account. The low frequencies emitted at slow speeds and during the acceleration phases and the 1 kHz frequencies mainly emitted at free flow speed can thus be reproduced by the model. This improvement in the estimation of vehicles kinematics also results in an improvement of the SGC estimation: errors fall between 2 to 18%. Nevertheless, the estimation of the SGC could be improved at the points P2 and P3, where the 63Hz bandwidth sound level is underestimated. This error may be due to an underestimation of the background noise at those points. Finally, the accurate modeling of the part of vehicles that move at free-flow speed improves the 1 kHz bandwidth sound level estimation. It induces a precise estimation of the NR, which is "fixed" by this frequency, as it is most often the noisiest one. NR is indeed estimated with errors under 1 dB(Lin) for the points located on the main road (P1, P2 and P3). NR estimation is not as good for the point P4, mainly because high frequencies are underestimated. This underestimation might come from a specific propagation phenomena (the site here is large with trees close to P4) or from an underestimation of vehicles speed on this secondary road by the model. -Point P1. This point is located in front of a bus station and downstream of a traffic signal; see Figure 1. The pattern extracted from measurements (see Figure 6) clearly shows the periodicity between the high levels reached during the green time (from t=1s to t=70s) and the low levels reached during the red time. Moreover, the pattern shows the increasing proportion of medium and high frequencies when the traffic signal turns green. This corresponds to the speed increase of the vehicles that pass by in front of the receiver. This tendency is reproduced by the model, although the model seems to anticipate this phenomena (see around t=15s for the 500 Hz frequency). Moreover, compared to P2, the higher distance from the traffic signal makes the pitch variation evolve slower, as underlined in Figure 5. Those patterns, which are also traffic flow dynamics, are exhibited by the simulation. Since it is based on a coarse description of traffic flow, the static model fails in reproducing the spectra envelopes along the corridor. In particular, low frequencies sound levels are systematically underestimated, since they are mainly emitted by vehicle at slow speeds or accelerating vehicles, which are not reproduced by the static model. This could be knotty for achieving noise impact studies, especially when they involve noise reducers that often offer better performance for high frequencies than for low frequencies. Results of the static model could be improved by using speed distributions instead of a mean speed when assessing noise emissions. This could be obtained by elaborating noise emission laws that correspond to real traffic situations.

The dynamic representation outperforms the static one. Firstly, it improves the estimation of the spectra envelopes, because it is able to capture the part of slowly moving vehicles as well as the part of freely-moving vehicles. This enables a precise estimation of indicators that describe the sound spectra, such as the Spectrum Gravity Center, which approximates the pitch of the sound, and the Noise Rating value, which is deduced from the value of the noisiest octave bandwidth. Secondly, it allows for the estimation of spectra variations, since the output of the model is the 1s-sound levels evolution. Those variations are illustrated in the paper by exhibiting with a pretty good accuracy: (i) the spectrum mean noise patterns, which represent for each octave bandwidth the average evolution of sound levels within traffic signal cycles, (ii) the Spectrum Gravity Center evolution within traffic cycles. Hence, this modeling chain enables a faithful physical description of urban noise, including both sound levels and spectra variations.

To go further, a wider range of situations (2 ways road, congested ring roads, different distances from the road, etc.), should be tested to clarify in which cases the dynamic traffic representation is useful. There is a strong assumption that it will be useful in every usual urban traffic situations, as it greatly improves the description of traffic characteristics. Its efficiency for situations where noise dynamics is less pronounced, such as ring roads or at greatest distance from the road, should be questioned. The dynamic traffic representation might be also useful in those situations as it can reproduce speed reductions induced by flow rates increase or stop-and-go situations, and their effects on noise spectra emitted by vehicles. Finally, a next step of this research is to couple the dynamic noise modeling chain to a perception model. This would improve the analysis of noise perception in urban area, and lead to a global accurate tool for assessing the impact of urban traffic management policies.
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 2 Figure 2. Noise emission laws for light vehicles: accelerating (a=0.8m/s 2 ), cruising (a=0m/s 2 ) or decelerating (a=-3m/s 2 ).
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  of a given cell is deduced from the mean speed c v , acceleration c a and flow rate c Q on the cell:

  Dynamic traffic models aim at predicting how key traffic variables evolve along the network. The model used in this study is SYMUVIA 1 , which is based upon a detailed and individualized vehicle representation. SYMUVIA is a component of the noise simulation package SYMUBRUIT that dynamically estimates noise in urban area [13][17]. It gives position ( ) k x t , speed ( ) k v t and acceleration ( ) k a t of each vehicle k on the network at each time step (usually about 1s). Motion of vehicles on the network is governed by three parameters: the maximal speed u reached when traffic is free, the wave speed w at which a starting wave 2 spills back on the network (thus w is negative), and the minimum spacing min s between two vehicles, observed when vehicles are stopped for example at a traffic signal. Position of a vehicle k at the next time step ( ) k

  Models have been calibrated to fit on-field measurements. The flow rates used for the simulations are the ones measured during the experiment (see section II.1). Traffic flow parameters are the wave speed w = -3.33 m/s, the minimum spacing min s = 5 m, and the maximal speed u. The maximal speed of light vehicles depends on the location on the network: u1 = 17 m/s at the beginning of the Cours Lafayette (up to the second intersection), u2 = 15 m/s at the end of the Cours Lafayette (after the second intersection), and u3 = 10 m/s on the crossing roads. The average acceleration rate is a = 0.8 m/s 2 . The maximal speed of buses is ubus = 10 m/s. Finally, the background noise is taken into account by adding a constant level value afterward, calibrated on the minimum levels observed on field. It varies between 63 Hz to 8 kHz: Lw,back = {60, 55, 50, 50, 45, 40, 35, 35}, which corresponds to a global level of 51dB(A).
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  with i ∈ {63 ;...;8k}, where Li is the sound level in dB(Lin) measured from each sound octave bandwidth (Bi) from 63 Hz to 8 kHz.

  Figure 3. Equivalent sound pressure level spectrum at the four measurement locations
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 4 Figure 4. Noise Ratings values and Sound Gravity Spectrum from Measurements and both static and dynamic models estimates
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 657 Figure 6. Spectrum mean noise pattern at P1, calculated by means of the dynamic model or by means of measurements
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 8 Figure 8. Spectrum mean noise pattern at P3, calculated by means of the dynamic model or by means of measurements

Figure 1. Experimental site. Position of traffic signals TS and their green time tg and red time tr durations II.2 Calculation process II.2.1 Noise estimation Each

  acoustic value Lx is an 8 element vector, which corresponds to the values of the octave bands with center frequencies from 63 Hz to 8 kHz: {Lx,63 ;...; Lx,8k}. Emission and propagation are computed for each octave. Each lane of the traffic network is divided into noise cells i. Noise cells are between 9m and 18m
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  of a cell i is the acoustical sum of noise emissions of vehicles on the cell at t:

	Speed	( ) v t and acceleration k	( ) a t are then deduced from positions ( ) k k x t and ( k x t	) + ∆ . Noise t
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