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Abstract

To maximize efficiency in time and space, allocations and dealloca-
tions, in the exact linear algebra library LinBox, must always occur in
the founding scope. This provides a simple lightweight allocation model.
We present this model and its usage for the rebinding of matrices between
different coefficient domains. We also present automatic tools to speed-up
the compilation of template libraries and a software abstraction layer for
the introduction of transparent parallelism at the algorithmic level.

1 Introduction

As a building block for a wide range of applications, computational exact
linear algebra has to conciliate efficiency and genericity. The goal of the
LinBox project is to address this problem in the design of an efficient
general-purpose C++ open-source library for exact linear algebra over the
integers, the rationals, and finite fields. Matrices can be either dense,
sparse or black box (i.e. viewed as a linear operator, acting on vectors
only). The library proposes a set of high level linear algebra solutions,
such as the rank, the determinant, the solution of a linear system, the
Smith normal form, the echelon form, the characteristic polynomial, etc.
Each of these solutions involves a hybrid combination of several specialized
algorithms depending on the domain, and the type of matrix. Over a finite
field, the building blocks are an efficient implementation of Wiedemann
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†Laboratoire LIG, Université de Grenoble. umr CNRS, F38330 Montbonnot, France.
Thierry.Gautier@inrialpes.fr, Clement.Pernet@imag.fr. Part of this work was done while
the second author was visiting the ArTeCS group of the University Complutense, Madrid,
Spain.

‡University of Delaware, Computer and Information Science Department. Newark / DE /
19716, USA. saunders@udel.edu.

1

Jean-Guillaume.Dumas@imag.fr
Thierry.Gautier@inrialpes.fr
Clement.Pernet@imag.fr
saunders@udel.edu


and block Wiedemann algorithms combined with preconditioners [1] for
black box matrices, a sparse Gaussian elimination for sparse matrices and
the BLAS based dense linear algebra techniques of the FFLAS library [4]
for dense matrices. The solutions over the integers and rationals are lifted
from modular computations by a Chinese remainder algorithm or p-adic
lifting. The design is based on high genericity to allow us to write effi-
cient algorithms independent of the many representations of domains and
matrices. As a middleware, the library relies on the efficiency of kernel
libraries such as GMP1, Givaro4, NTL4, ATLAS4 and can be used by general
purpose computer algebra systems such as Sage4 or Maple4.

We describe in this paper a selection of ideas and improvements that
were recently introduced into the the design of LinBox for the forthcoming
2.0 release.

2 The lightweight founding scope alloca-

tion model

The main objects that require memory allocation in LinBox are base
field or ring elements, vectors, matrices, and polynomials. The memory
management for all of these object types follows the same rules, organized
to maximize efficiency in time and space, and consequently requiring some
efforts by the programmer: the allocations and deallocations must always
occur in the founding scope. In particular no external garbage collection
mechanism is used.

2.1 Call-by-reference

The input and output types of most functions are usually template types,
and can be either basic types, or complicated objects. Consequently,
passing arguments by value (copy) must be avoided as much as possible.
Every argument is passed as a reference, including the return types. More
precisely the return value of a function is also the first argument, defined
as a non const reference.

Matrix& someFunction(Matrix& result, const XXX& args);

This convention was already presented in [2, §2.1] for the design of field
and ring arithmetic. It does require a redefinition of the interface for some
stl-like operators, as discussed in section 3.1. A consequence of the above
convention is that the objects returned by a function, have to be declared
and initialized (in particular, memory allocated, e.g. via constructors)
before the function call. By enforcing this practice, we require that the
programmer keep the handle on the objects that he allocates until all uses
of the object and its subobjects are completed. Moreover, he is respon-
sible for object deallocation in the same scope where it was allocated.
This restricts some convenient programming practices, but provides pre-
cise control of memory usage. This is particularly important when large,

1gmplib.org,www-ljk.imag.fr/CASYS/LOGICIELS/givaro,www.shoup.net/ntl,

math-atlas.sourceforge.net,sagemath.org,www.maplesoft.com.
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memory filling, matrices are in play. It also allows to avoid the costs of
garbage collection or reference counting. Many LinBox objects involve a
handle containing a reference to the free store. Note that even though a
function does not allocate the handle itself, it is in certain cases still free
to resize and thus reallocate the free store memory referenced.

Dense Matrix allocations. The objects storing dense matrices re-
quire a special care concerning their allocations. Dense matrices are rep-
resented as a one dimensional array storing elements in the row major
format: A[i,j] = *(A+i*n+j). It is important to be able to define a
sub-matrix as a view on such an array, without allocating the data. For
this we propose to distinguish two classes: one for allocated (via construc-
tors) matrices and the other for sub-matrix views. The genericity of the
template mechanism or inheritance will allow to use these two types in
the same code, without duplication. This allows also for an automatic
decision about deallocation. Other solutions includes reference counting
and explicit ”end of use” functions.

Thus a first approach is to define a dense matrix class with a boolean
alloc member, telling whether the matrix owns its data or whether it
is a simple view on some other matrix’s data. The destructor deallocates
the data only if alloc is true. This can be viewed as a simplified ref-
erence counting mechanism, where one assumes that the matrix initially
allocated is always destructed after all of its sub-matrices. This conven-
tion is consistent with the previous consideration: the allocations and
deallocations must always occur in the founding scope.

To further improve the efficiency, an alternative is to distinguish two
classes: one for allocated matrices and the other for sub-matrix views.
The genericity of the template mechanism or inheritance will allow to
use these two types in the same code, without duplication. Furthermore,
thread-safety mechanism on the allocmember are not required anymore.

Remark that in this founding scope model, neither the alloc vari-
able nor a two classes system is required. The programmer should know
whether a matrix is created as a sub-matrix or as an allocating instance
by what constructors or other initializers she uses. Thus she knows which
require care to deallocate in the same scope. What she does not necessar-
ily get is automatic decision about deletion in the destructor, and would
thus have to call an explicit ”end of use” function.

2.2 Rebind of coefficient domains

2.2.1 Mapping of data between domains

LinBox makes use of the concept of rebinds for the mapping of data struc-
tures between different coefficient domains. For instance, in the context of
the Chinese remainder algorithm, rebinds allow to map a matrix over the
integers of type, say, (DenseMatrix<PID Integer>) to a modular matrix
of type, say,
(DenseMatrix<Modular<double> >).

In LinBox, binder adaptors are enclosed within many data structures
and make use of a generic converter, named Hom and found in linbox/
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field/hom.h. Hom can generically use the LinBox domain’s canonical con-
version methods methods init and convert from/to the LinBox Integer
type: Domain1 → Integer → Domain2. Moreover, when natural, efficient
conversions exists between domains (e.g. different representations of the
same field or one ring embedded in another), generic Hom can be directly
bypassed by a specialization of Hom.

Rebind of dense matrices. We illustrate the founding scope allo-
cation model with the use of rebind functions adapted from the allocators
in the STL, on dense matrices.

template <class Domain> class DenseMatrix {

typedef DenseMatrix<Domain> Self_t;

...

template<class AnyDomain> struct rebind{

typedef DenseMatrix <AnyDomain> other;

operator ()(other& Ap, const Self_t& A, const AnyDomain& D){

// Performs the modular conversion of A to Ap over D

typename Self_t::ConstRawIterator A_iter;

typename other::RawIterator Ap_iter;

Hom<Field, _Tp1> hom(A. field(), F);

for (A_iter = A. rawBegin(), Ap_iter = Ap.rawBegin();

A_iter != A. rawEnd(); ++ A_iter, ++ Ap_iter)

hom.image (*Ap_iter, *A_iter);

}

};

}

According to the founding scope allocation model, the function operator()

in charge of the initialization of the matrix cannot allocate any memory.
This has to be done at the level where the rebind is called. This also
requires a modification of the rebind operator interface of the STL: the
new object is passed by reference.

2.2.2 Rebind of handlers in the founding scope allocation

model

In the case of BlackBoxes (functions providing only a matrix-vector prod-
uct and not necessarily storing any data) the rebind mechanism becomes
more specific. We detail in this section the solution provided in blackboxes
which only store references to other blackboxes, such as the Compose,
Transpose, Submatrix, etc.

Indeed to rebind a blackbox containing only references one should al-
locate a new memory zone and rebind the refered blackbox there. The
problem is that a caller, given a BlackBox::rebind<Field2>::other type,
does not necessarily know how to allocate for this object. The STL solu-
tion is to embed the allocator in each container. In LinBox, we propose
another solution: the other not only has different elements, but also can
be of a different type. For instance, the rebind other type of a blackbox
containing a reference will be the same kind of blackbox, but physically
storing the data (and thus owning it).
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For the different blackboxes defined in LinBox which use references,
we thus define a similar class called e.g. TransposeOwner, ComposeOwner,
SubmatrixOwner, etc. These classes store and own their data. Then it
suffices for the rebind sub-class of their reference equivalents to define its
other type to the associated *Owner class. The example of the Compose

is given in figure 1.
Not this also fits well in the LinBox founding scope allocation, since

the *Owner class will be declared (and thus allocated) by the caller of the
rebind in codes similar to the following:

template<class BlackBox> void f(const BlackBox& A) {

...

typedef typename Blackbox::template rebind<Field2>::other FBlackbox;

// rebinds generically the BlackBox A to a BlackBox Ap

// with a new Domain F2

// The container type of Ap might be different from the one of A

// this decision is made in the rebind type of A,

// via the ’other’ typedef

FBlackbox Ap(A, F2);

...

}

Remark that for a submatrix of a class storing its elements (contrary
to a submatrix of a blackbox containing e.g. only references), a more
efficient rebind would only rebind the elements within the boundaries
of the submatrix. There we use a trait to decide wether the refered
blackbox is a storing component and in the latter case specialize e.g.
Submatrix<DenseMatrix<Field1> >::rebind<Field2>::other to a sim-
pler DenseMatrix<Field2> instead of using the *Owner mechanism.

3 Software abstraction layer for parallelism

Efficient parallel applications must take into consideration hardware char-
acteristics (number of cores, memory hierarchy, etc.). It is time consum-
ing or impossible for a single developer to program a high performance
computer algebra application, with state of the art algorithms, while ex-
ploiting all the available parallelism. In order to separate the domains
of expertise we have designed a software abstraction layer between com-
puter algebra algorithms and parallel implementations which may employ
automatic dynamic scheduling.

3.1 Parallel building blocks

Computer algebra algorithms have three main characteristics: 1) they are
complex and require a deep knowledge of the problem in order to obtain
the most efficient sequential algorithm; 2) they may be highly irregular.
This enforces a runtime use of load balancing algorithms; 3) they are
generic in the sense that they are usually designed to work over several
algebraic domains.
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template <class _Blackbox1, class _Blackbox2> class Compose {

...

template<typename _Tp1, typename _Tp2 = _Tp1> struct rebind {

typedef ComposeOwner<

typename Blackbox1::template rebind<_Tp1>::other,

typename Blackbox2::template rebind<_Tp2>::other

> other;

...

};

const Blackbox1 * _A_ptr;

const Blackbox2 * _B_ptr;

};

template <class _Blackbox1, class _Blackbox2> class ComposeOwner {

...

template<typename _Tp1, typename _Tp2 = _Tp1> struct rebind {

typedef ComposeOwner<

typename Blackbox1::template rebind<_Tp1>::other,

typename Blackbox2::template rebind<_Tp2>::other

> other;

...

};

template<typename _BBt1, typename _BBt2, typename Field>

ComposeOwner (const Compose<_BBt1, _BBt2> &M, const Field& F)

: _A_data(*(M.getLeftPtr()), F), _B_data(*(M.getRightPtr()), F) {

typename Compose<_BBt1, _BBt2>::template rebind<Field>()(*this,M,F);

}

template<typename _BBt1, typename _BBt2, typename Field>

ComposeOwner (const ComposeOwner<_BBt1, _BBt2> &M, const Field& F)

: _A_data(M.getLeftData(), F), _B_data(M.getRightData(), F) {

typename ComposeOwner<_BBt1, _BBt2>::template rebind<Field>()(*this,M,F);

}

Blackbox1 _A_data;

Blackbox2 _B_data;

};

Figure 1: Owner mechanism for the composed blackboxes
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In the case of LinBox algorithms, we have decided to base our soft-
ware abstraction, called Parallel Building Blocks (PBB), on the STL algo-
rithms (Standard Template Like) principles. Indeed, C++ data structures
in LinBox let us have random access iterators over containers which are
naturally parallel. We have already defined several STL-like algorithms
and the list will be extended in the near future:
for each, transform, accumulate2: the PBB versions of these algo-
rithms are similar to the STL versions except that the involved operators
(or function object classes), given as parameters, are required to have their
return value reference passed as the first parameter of the function. This
is in accordance with the memory model of LinBox. The STL return-by-
value semantic is not appropriate.

The fundamental idea of PBB is that at the computer algebra level, the
parallelization of all the loops and more generally of all the STL-like al-
gorithms will already enable good performance and easy switching among
multiple implementations. Regarding performance, this parallelization of
the inner loops of the underlying linear algebra is sufficient in many cases.
Regarding implementations, this abstraction provides for programming in-
dependent of the parallel model with selection of the parallel environment
depending on the target architecture. The parallel blocks can be imple-
mented using many different parallel environments, such as OpenMP3;
TBB7 (Thread Building Blocks) or Kaapi [6]; using both static and dy-
namic work-stealing schedulers [9]. The current implementations are built
on OpenMP and Kaapi.

3.2 Accumulate until and early termination

To bound the complexity of many linear algebra problems, one of the key
ideas is to use an accumulation with early termination.

For instance, this is used in Chinese Remaindering algorithms. The
computation is performed modulo a sequence of (co)prime numbers and
the result is built from a sequence of residues, until a condition is satis-
fied [3]. The termination of the algorithm depends on the accumulated
result.

In order to parallelize such algorithms, we proposed an extension of
the STL algorithms called accumulate until . The algorithm takes an
array v of length N , a unary operator f to be applied to each array en-
try and a specific binary update operator/predicate for the accumulation.
This accumulator with a signature like bool accum(a, b) behaves like an
in place addition (a+=b) and returns true to indicate sufficiently many
values are accumulated. Let Sk =

∑
i=0,..,k

f(v[i]) with k ∈ {0, N}. The
algorithm computes and returns n ≤ N and Sn such that one accumula-
tion during the computation of Sn returned true or n = N . In intended
use, we know any additional accumulation would also return true.

This algorithm will be used for the early termination Chinese remain-
dering algorithms of LinBox. Though not yet using PBB and accumu-

late until , a sequential version and parallel versions with OpenMP and

2www.sgi.com/tech/stl
3openmp.org, threadingbuildingblocks.org
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Kaapi can be found in the LinBox distributions as linbox/algorithms/
cra-domain-*.h.

3.3 Memory contention and thread safe alloca-

tion

Many computer algebra programs allocate dynamic memory for the in-
termediate computations. Several experiments with LinBox algorithms
on multicore architectures have shown that these allocations are quite of-
ten the bottleneck. An analysis of the memory pattern and experiments
with three well known memory allocators (ptmalloc, Hoard and TCMal-
loc from Google Perf. Tools [7]) have been conducted. The goal was to
decide whether the parallel building blocks model was suitable to high-
performance exact linear algebra. We used dynamic libraries to exchange
allocators for the experiments, but one can use them together in the Lin-

Box library if needed [8, §7]. Preliminary experiments on early terminated
Chinese remaindering, not the easiest to parallelize, have demonstrated
the advantage, in our setting, of TCMalloc over the others [3]. One of
the main reasons for that fact is that our problems required many tem-
porary allocations. This fits precisely the thread safe caching mechanism
of TCMalloc.

4 Automated Generic Separate compila-

tion

LinBox is developed with several kinds of genericity: 1) genericity with
respect to the domain of the coefficients, 2) genericity with respect to the
data structure of the matrices, 3) genericity with respect to the interme-
diate algorithms. While this is efficient in terms of capabilities and code
reusability, there is a combinatorial explosion of combinations. Consider
that each of 50 arithmetic domains may be combined with each of 50
matrix representations in each of 10 intermediate algorithm forms for a
single problem as simple as matrix rank. This lengthens the compilation
time and generates large executable files.

For the management of code bloat LinBox has used an “archetype
mechanism” which enables, at the user’s option, to switch to a compi-
lation against abstract classes [2, §2.1]. However, this can reduce the
efficiency of the library. Therefore, we propose here a way to provide a
generic separate compilation. This will not deal with code bloat, but will
reduce the compilation time while preserving high performance. This is
useful for instance when the library is used with unspecialized calls. This
is largely the case for some interface wrappers to other Computer algebra
systems such as Sage or Maple. Our idea is to automate the technique
of [5] which combines compile-time instantiation and link-time instanti-
ation, while using template instantiation instead of void pointers. The
mechanism we propose is independent of the desired generic method, the
candidate for separate compilation, and is explained in algorithm 1.

This Algorithm is illustrated on figure 2, where the function is the rank
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Algorithm 1 C++ Automatic separate compilation wrapping

Input: A generic function func.
Input: Template parameters TParam for separate specialization/compilation of

func.
Output: A generic function calling func with separately compiled instantia-

tions.
1: Create a header and a body files “func instantiate.hpp” and

“func instantiate.cpp”;
2: Add a template function func separate, with the same specification as

func, to the header;
3: Its generic default implementation is a single line calling the original function

func.
{This enables to have a unified interface, even for non specialized class.}

4: for each separately compiled template parameter TParam do

5: Add a non template specification funcTParam, to the header file;
6: Add the associated body with a single line returning the instantiation of

func on a parameter of type TParam, to the body file;
7: Add an inline specialization body of func separate on a parameter of

type TParam with a single line returning funcTParam, to the header file;
8: end for

9: Compile the body file “func instantiate.cpp”.

and the template parameter is a dense matrix overGF (2), DenseMatrix<GF2>.

rankDenseMatGF2

template<class Mat>

I
n
s
t
a
n
t
i
a
t
e
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n
d
 
c
a
l
l
s

Separately compiled body

rank_separate(const Mat&)
template<class Mat>

rank_separate(const DenseMat<GF2>&)

Default call

User interface

rank(const Mat&)

rankDenseMatGF2

header

Specialization

template<>Specialized call

Figure 2: Separate compilation of the rank

Algorithm 1 has been simplified for the sake of clarity. To enable
a more user-friendly interface one can rename the original function and
all its original specializations func original; then rename also the new
interface simply func. With the classical inline compiler optimizations,
the overhead of calling func separate is limited to single supplementary
function call. Indeed all the one line additional methods will be automat-
ically inlined, except, of course, the one calling the separately compiled
code. If this overhead is too expensive, it suffices to enclose all the non
generic specializations of “func instantiate.hpp” by a macro test. At com-
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pile time, the decision to separately compile or not can be taken according
to the definition of this macro.

We show in tables 1 and 2 the gains in compilation time obtained on
two examples from LinBox: the examples/{rank,solve}.C algorithms.
Indeed, without any specification the code has to invoke several special-
izations depending on run-time discovered properties of the input. For
instance solve.C requires 6 specializations for sparse matrices over the
Integers or over a prime field, with a sparse elimination, or an iterative
method, or a dense method, if the matrix is small. . .

file real time user time sys. time real time user time sys. time
Rank Solve

instantiate.o 143.43s 142.47s 0.90s 171.62s 170.42s 1.12s
{rank,solve}.o 18.58s 18.26s 0.30s 23.13s 22.80s 0.32s

link 0.80s 0.64s 0.15s 0.85s 0.70s 0.14s
Sep. comp. total 162.81s 161.37s 1.35s 195.60s 193.92s 1.58s
Full comp. 162.02s 160.47s 1.21s 191.47s 189.52s 1.40s

speed-up 8.4 8.5 2.7 8.0 8.1 3.0s

Table 1: linbox/examples/{rank,solve}.C compilation time on an AMD Athlon
3600+, 1.9GHz, with gcc 4.5 -O2. instantiate.o contains to the separately
compiled instantiations (e.g. densegf2rank in figure 2); {rank,solve}.o con-
tains to the user interface and generic implementation compilation; link corre-
sponds to the linking of both .o and the library; Full comp. corresponds to
the compilation without the separate mechanism.

file real time user time sys. time real time user time sys. time
Rank Solve

instantiate.o 46.36s 44.47s 1.33s 67.32s 63.16s 2.20s
separate.o 9.51s 9.13s 0.30s 9.88s 9.38s 0.30s

separate 0.55s 0.34s 0.07s 0.97s 0.72s 0.08s
Sep. comp. 56.42s 53.94s 1.70s 78.17s 73.26s 2.58s
Full comp. 50.60s 46.88s 1.90s 70.42s 65.55s 2.42s

speed-up 5.0 5.0 5.1 6.5 6.5 6.4

Table 2: linbox/examples/{rank,solve}.C compilation time on an intel Xeon
E5345, 2.33GHz, with icc-11.1 -O2.
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