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Common before-after accident study on a road site: 
a low-informative Bayesian method 

 
Thierry Brenac* 

INRETS (National Institute for Transport and Safety Research)  
Chemin de la Croix Blanche F-13300 Salon de Provence, France 

___________________________________________________________________________ 
Abstract: 
Purpose: This note aims at providing a Bayesian methodological basis for routine before-after accident studies, 
often applied to a single road site, and in conditions of limited resources in terms of time and expertise. Methods: 
A low-informative Bayesian method is proposed for before-after accident studies using a comparison site or 
group of sites. As compared to conventional statistics, the Bayesian approach is less subject to misuse and 
misinterpretation by practitioners. The low-informative framework seems appropriate in situations of limited 
expertise. The proposed approach gives the possibility of correcting for regression to the mean. Examples 
illustrate the application of this method. Results and conclusions: It is shown that a relatively simple method, 
based on the Jeffreys's rule prior considered as a "reasonable standard", can be implemented without major 
difficulties. Posterior distributions are proper. The numerical calculation of posterior probabilities can be done 
without using Monte-Carlo simulations nor specialised software tools. 
Keywords Road safety, controlled before-after study, odds-ratio, low-informative prior, Bayes 
—————————————————————————————————————– 
 
1. Introduction 

 It is common that road sites are modified in order to achieve improvements from various 
points of view (traffic conditions, better integration of various uses and users of the road and 
public space, reduction of noise and air pollution, traffic safety, etc.). A few years after a site 
has been modified, local engineers generally have to study the effects of this road change, 
regarding various aspects including road safety. Thus, a retrospective before-after accident 
study is often needed. 

 In such routine situations, resources are limited in terms of time and expertise, and the risk 
of misuse of conventional statistical methods is increased. Even among people who are more 
experienced in statistics, like researchers, erroneous uses of conventional methods are 
common: misuse of tests of significance, erroneous understanding of p-values, 
misinterpretation of confidence intervals (as pointed out by many authors [15, 18, 19, 24, 27, 
32]; see also [5, 11, 28]). For example, the p-value is often erroneously regarded as the 
probability that the null hypothesis is true, and the 95% confidence interval obtained is 
wrongly assumed to contain the true parameter with a 95% chance. The Bayesian approach to 
statistics is more in accordance with the expectations and intuitions of non-specialists. In 
particular, the posterior distribution can be legitimately used to give the probabilities that the 
parameter of interest is contained in various regions of the parameter space (a 95% credible 
interval, for example), or exceeds a particular value, given the data observed and prior 
knowledge. Some authors consider that teaching Bayesian statistics is easier than teaching 
frequentist statistics [10, 31]. Nevertheless, aids to practitioners are necessary to implement 
Bayesian methods, since the calculations in these approaches are sometimes complex. 

______________________ 

*E-mail address: thierry.brenac@inrets.fr 
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 In this paper, we will not deal with studies based on large samples of sites and using 
multivariate modelling, for which Bayesian approaches were proposed in the recent period [4, 
30, 35, 37]. Bayesian methods adapted to meta-analyses or to overviews of several studies 
(see, for example, [12]) will not be considered here. We will focus on methods applicable to a 
single site and transferable to engineers for common practice. 

 In the case we deal with here (routine evaluation, single site), the methods currently used 
and recommended are conventional statistical methods (see, for example, [23]), even though 
they sometimes make use of empirical Bayes estimates of the expected accident number on 
the treated site in order to cope with 'regression to the mean' bias. The principle of a 'full' 
Bayesian approach was described by Hauer [21, 22] for studying the index of effectiveness θ 
of a road measure: the prior probability density function of the parameter θ, reflecting the 
prior knowledge concerning this parameter, is combined with the likelihood function 
(probability of the data given the parameter) to obtain the posterior probability density 
function. The posterior probabilities reflect the revised knowledge about the parameter, given 
previous knowledge and the data analysed. The method proposed by Hauer, however, is an 
informative (subjective) Bayes method and presupposes expertise or previously formalised 
knowledge: the prior probabilities are based on the "elicitation of prevailing opinion about the 
effectiveness of a treatment" ([22], p. 289), or possibly on the results of previous studies or 
meta-analyses. Road safety expertise is limited, however, in the routine situations we consider 
here, since the study is often carried out by a local road engineer, and not by a road safety 
specialist. Moreover, the site modification is often singular and not generic (it may combine 
several treatments, for example: redesigning of islands, resurfacing and marking at a junction 
site). Therefore, it may be difficult to make use of results from previous meta-analyses. A 
method coping with this problem was described by Al Masaied et al. [3]: prior probabilities 
were estimated using a part of the accident data, for both the before and the after periods. In 
the case of a single site, however, this may lead to very small accident numbers for each data 
subset. Another way is to use the 'objective' or 'low-informative' Bayesian framework [6, 7, 
17, 25, 26] where the prior probabilities are chosen in order to be neutral in some way as 
regards the possible parameter values, reflecting the lack of previous knowledge. Besides, it 
can be argued that results based on low-informative approaches are generally easier to 
communicate to a diverse or uninitiated audience, since, as mentioned by Box and Tiao [13], 
they represent "what someone who a priori knew very little about an unknown parameter 
should believe in light of the data" (p. 22). 

 In before-after accident studies, it is important to be able to control for regression to the 
mean bias, which can be done by incorporating some limited information into the prior 
distribution concerning one component of the vector of parameters (see section 4). Besides, 
although such studies are retrospective and not experimental, one should seek to control for 
the confusing influence of factors other than the road change. To this end, it can be useful to 
take into consideration a comparison group of similar sites, for example. The method 
described by Hauer [22] uses a comparison sample, but the calculations are based on 
approximations which presuppose that the accident counts in the comparison sample are 
large. The method proposed by Al-Masaied et al. [3] is a simple before-after method without 
comparison sites. 

 In this methodological note, we describe a low-informative Bayesian method adapted to 
the current practice of before-after accident studies concerning a single treated site (or a group 
of sites considered as a whole). A comparison site (or group of sites) is used in order to 
control for factors other than the road modification. Practical means of calculation, for a 
commonly available spreadsheet software package, will also be provided on the author's 
webpage (http://www.inrets.fr/ur/ma/Brenac.html). 



Published in Eur. Transp. Res. Rev. (2009) 1(3):125-134                                                                          T. Brenac 
—————————————————————————————————————————————   

 3 

 
2. Data structure and parameters for the before-after study with comparison sites 

 When a comparison site or group of sites is used, the basic data take the form of a 2×2 
contingency table (table 1) containing the observed accident counts xi . These counts are 
considered as observations of independent Poisson variables Xi with expected values µi 
(unknown). 
 
Table 1 Usual form of the basic accident data 

 Treated site Comparison site 
(or group of sites) 

Period I (Before) x1 x3 

Period II (After) x2 x4 

 
 Under the assumption of a strong similarity between the treated site and the comparison 
site, and if the evolution of traffic does not differ between them, the effect of the measure can 
be represented by the odds ratio 

θ  = µ2 / [µ1 × (µ4 / µ3)] = µ2 µ3 / (µ1 µ4) (1) 

θ expresses the ratio of the 'accidentality' on the treatment site during period II  (after 
modification) to what this 'accidentality' would have been during the same period II, had the 
site not been modified — here we use the term 'accidentality' in the somewhat unusual sense 
of the expected value of the accident count. From a practical point of view, an odds ratio of 
0.8, for example, would mean that the effect of the treatment is a 20 % reduction in 
accidentality. The ratio η = µ4 / µ3 reflects the effect of other factors on the evolution from 
period I to period II, assumed to be common to both the treated and comparison sites (η can 
be considered as a trend parameter). In other terms, µ2 and µ4 can be expressed as follows: 
µ2 = µ1 θ η and µ4 = µ3 η . 

 Thus, we are in the presence of a problem with four observations x1, x2, x3, x4 from four 
independent random Poisson variables X1, X2, X3 and X4, and four unknown parameters 
θ, η, µ1 and µ3 with the following relationships: 

X1 ~ Poiss(µ1),  X2 ~ Poiss(µ1θ η),  X3 ~ Poiss(µ3),  X4 ~ Poiss(µ3η) (2) 
 
3. The Bayesian framework 

 According to the Bayesian approach to statistics, the unknown parameters θ, η , µ1 and µ3 

are considered as instantiations of variables Θ, Η, M1 and M3, treated as random variables, but 
which in fact reflect our uncertainty about the values of these parameters. Given the observed 
data x = (x1, x2, x3, x4), given the likelihood function L(x | θ, η, µ1, µ3)

1 and the joint prior 
probability density function of the parameters π(θ, η, µ1, µ3), the application of Bayes' 
theorem leads to the joint posterior distribution 
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The joint prior distribution π(θ, η, µ1, µ3) represents our previous assumptions or knowledge 
(or lack of knowledge) regarding the parameters (see section 4). The joint posterior 
distribution represents our revised knowledge about the parameters, after the observations are 

                                                           
1 This notation means: probability of the data x = (x1, x2, x3, x4) given the parameter values θ, η , µ1, µ3. 
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taken into account. The likelihood function can be easily derived from the problem 
formulation given in section 2: 
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 The parameter of interest is θ. Its posterior probability density function can be obtained by 
integrating the joint posterior distribution with respect to the three other parameters: 

3131 ddd)|,,,()|( µµηµµηθθ xx pp ∫∫∫=  (5) 

From a practical point of view, however, the most useful result is the posterior cumulative 
distribution function of Θ, 
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This cumulative distribution function makes it possible to calculate credible intervals and the 
probability that the effect studied is lower or higher than a particular value, given the data and 
prior probabilities. 
 
4. Low-informative prior distributions 

 In this paper we assume a lack of previous knowledge or sufficient expertise regarding the 
parameters. Thus, the prior distributions should be low-informative or neutral as regards these 
parameters. This choice also tends to "let the data speak for themselves", giving a higher 
importance to the likelihood function in the calculation of posterior probabilities. Two 
situations should be distinguished, however, according to whether regression to the mean bias 
is likely or not. Regression to the mean (see, for example, [1]) occurs when the site was 
chosen for treatment in consideration of a high accident record. In this case, the count x1 gives 
only biased information on the expected value µ1, and a low-informative prior distribution for 
µ1 would lead to biased results, overestimating the treatment effect. In this situation, other 
data or information are needed and should be taken into account in the prior distribution of µ1 
(see point 4.2). 

4.1. Case where regression to the mean bias is unlikely 

 In many circumstances, regression to the mean bias is unlikely: for example, when the site 
modification was not decided for safety reasons, but for other purposes (really independent 
from accident counts). In this case, a low-informative joint prior distribution can be chosen 
for the four parameters θ, η , µ1 and µ3. The way of selecting low-informative priors (also 
called non-informative, objective, default or reference priors) is widely discussed in Bayesian 
statistics (see the review by Kass and Wassermann [29]; see also [2, 8, 9, 17, 20, 25, 26, 39]). 
We will not enter this debate here since, as mentioned by Ghosh et al. [17], "even though 
there is no unique objective prior, the posteriors will usually be very similar even with a 
modest amount of data" (p. 147). In the present paper, for the sake of simplicity, we will only 
consider the prior obtained by the Jeffreys's general rule2 [26], which is widely accepted as a 

                                                           
2 This rule can be justified from several points of view, in particular: invariance by re-parameterisation, 
uniformity, in the sense of equiprobability of regions of same size in the parameter space with a Riemannian 
metric, and minimisation of information (the Jeffreys's rule prior can be considered as a special case of the 
Bernardo-Berger prior). For developments of these arguments, see for example Ghosh et al. [17] and Kass and 
Wassermann [29]. 
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"reasonable standard" [29]. For a vector of parameters ξ, the Jeffreys's rule prior is 
proportional to the square root of the determinant of the Fisher information matrix: 

π(ξ) ∝ [det(I(ξ))]½ (7) 

where ∝ denotes proportionality. In this expression, I(ξ) is the Fisher information matrix 

defined by 


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,)(  where l is the log-likelihood. Applied to our problem, using 

equation 4, this rule leads to the joint prior 

π(θ, η, µ1, µ3) ∝ (1/θ)½  (8) 

Like many non-informative priors, this prior is improper since it does not integrate to a finite 
value over the parameter space. In Bayesian statistics, however, this is not regarded as a 
problem, provided that the posterior distribution is proper (i.e., the integral in the denominator 
of equation 3 converges to a finite value). 

4.2. Case where regression to the mean bias is likely 

 In this situation, conventional methods correct for regression to the mean by considering 
that the site is taken from a population of comparable sites and extracting complementary 
information from a sample of such sites3. Each of the accident counts x1j at these sites, during 
period I, is considered as an observation from a Poisson variable with mean µ1j . The µ1j are 
assumed to be distributed like a Gamma variable with shape parameter α and scale parameter 
λ (some empirical justifications can be found in the literature [1, 34]). This Poisson-Gamma 
structure leads to a negative binomial distribution of the counts x1j among this sample of sites. 
Based on the mean m and variance s2 of this distribution, estimated from the x1j, it is possible 
to estimate4 α and λ: α = m2/(s2–m) and λ = m/(s2–m). Conventional evaluation methods then 
replace x1, the usual estimate of µ1, by the empirical Bayes estimate µ1* = m2/s2 + x1(s

2–
m)/s2 = (α+x1)/(1+λ) for the calculation of the odds ratio [16, 23, 36]. This technique has 
proved to be effective for correcting for regression to the mean bias [38].  

 The equivalent in the 'full' Bayes approach consists in taking the Gamma(α,λ) prior 
distribution for the parameter µ1: 

)(

)exp(
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1 α
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In this situation, a joint prior distribution can be obtained by calculating π(θ, η, µ3) with the 
Jeffreys's rule applied while holding µ1 fixed (see [29]), which gives π(θ, η, µ3) ∝ (1/θ)½ and 
leads to 

π(θ, η, µ1, µ3) ∝ (1/θ)½ µ1
α–1exp(–λµ1) (10) 

(Constants are not taken into account since they would be cancelled anyway as common 
factors in the denominator and numerator of equation 3). This prior is also improper. The 
estimates of α and λ are drawn from accident data at a sample of similar sites (independent 
from the group of comparison sites), or from an accident model, as described above for 
conventional methods using empirical Bayes estimates. Although this joint distribution 
                                                           
3 Alternatively, when a general accident model is available (see, for example, the models published by the 
Transport Research Laboratory in the United Kingdom), it can be applied for obtaining complementary 
information, instead of using a sample of the population of comparable sites [23, 38]. 
4 Instead, if an accident model is available, it can give the mean m and variance s2 of the accident counts on a 
virtual population of sites with the same characteristics as the site of interest [23, 38]. The parameters α and λ 
are then also obtained by calculating α = m2/(s2–m) and λ = m/(s2–m).  
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(equation 10) uses some prior information concerning µ1 (through α and λ), it remains, 
however, low-informative in a relative sense, since no prior knowledge is used concerning the 
parameter of interest θ and the two other parameters η and µ3. 
 
5. Posterior probabilities 

5.1. Case where regression to the mean bias is unlikely 

 Applying the likelihood function (equation 4) and the joint prior distribution given in 
equation 8 to the calculation of the joint posterior distribution (equation 3) gives the following 
expression, after simplification (cancelling of factors present both at the numerator and the 
denominator): 

4224321 ½
331131 ))1(exp())1(exp(
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This latter integral converges to a finite value even when some (or all) of the xi equal zero. 
Therefore, a proper posterior distribution can always be obtained. The terms in µ1 and µ3 are 
proportional to Gamma density functions, which makes it possible to integrate the expression 
given in equation 11 with respect to µ1 and µ3, leading to the joint posterior of θ and η 
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Beta function5. The posterior cumulative distribution function of Θ is then given by 
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The calculation of this integral is generally not possible by analytical means. We describe in 
the appendix of this paper a way of calculating it numerically. 

5.2. Case where regression to the mean bias is likely 

 For the prior given in equation 10, the same kind of calculations as those described in point 
5.1 lead to the following expression for the posterior cumulative distribution of Θ : 
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K . The calculation leading to this result is not valid 

if x1+α ≤ ½ (which is unlikely: α is a positive parameter and we are in a situation where the 
treated site was chosen in consideration of a high accident count x1). For the numerical 
calculation of this integral, see the appendix. 

 

 

                                                           
5 In the expression of K, the term in θ is proportional to a three-parameter Beta-prime distribution, which makes 
it possible to integrate with respect to θ over [0,+∞). The integration with respect to η is then possible, over 
[0,+∞). 
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5.3. Practical uses of the posterior cumulative distribution function of Θ 

 From a practical point of view, various useful results can be obtained using the function 
FΘ(t | x). For example, the lower limit θLL and upper limit θUL of a 95% symmetrical credible 
interval are defined by FΘ(θLL | x) = 0.025 and FΘ(θUL | x) = 0.975; the probability, given the 
data, that θ is contained in this interval is 95%. The median θmed defined by FΘ(θmed | x) = 0.5 
gives a point estimate of the odds ratio for which the posterior risks of overestimation and 
underestimation are equal. The value FΘ (1 | x) represents the posterior probability that θ is 
lower than 1, i.e. the probability that the treatment is beneficial to safety, given the data and 
initial assumptions (see section 2). 
 
6. Particular cases 

6.1 Group of comparison sites instead of a single comparison site 

 In this situation, the group of q comparison sites is considered as a whole, with x3 = Σ x3k 
and x4 = Σ x4k (where x3k and x4k are the accident counts during periods I and II on each 
comparison site k, with k = 1 to q). The aggregated counts x3 and x4 are observations from 
random variables X3 and X4 which are Poisson variables (since they are obtained by summing 
the independent Poisson variables X3k and X4k) with means µ3 = Σ µ3k and µ4 = Σ µ4k. The 
calculations described in sections 3 to 5 are then applied by simply using the aggregated 
counts x3 and x4 and the aggregated means µ3 and µ4 . The low informative joint prior is given 
by equation 8 or 10. The posterior cumulative distribution function of Θ is then given by 
equation 13 or 14 (with x3 = Σ x3k and x4 = Σ x4k ). 

6.2 Multiple treated sites 

 The general case of several treated sites, considered independently, with possibly different 
odds ratios θi due to heterogeneity in the treatment effect is beyond the purpose of this paper 
and will be the subject of further publications. Nevertheless, in the simpler situation where a 
group of treated sites is considered as a whole (with a focus on the overall effect of 
treatment), the methods described above can be easily adapted. 

 Let us consider n treated sites with accident counts x1i and x2i (i = 1 to n) during periods I 
and II, with corresponding means µ1i and µ2i, and q comparison sites with accidents counts x3k 
and x4k (k = 1 to q) during periods I and II, with corresponding means µ3k and µ4k. 

 When regression to the mean bias is unlikely, and if we consider the treated sites as a 
whole (and the comparison sites as a whole), the calculations and results described in sections 
3 to 5 can be applied by simply using the aggregated counts x1 = Σ x1i, x2 = Σ x2i, x3 = Σ x3k, 
x4 = Σ x4k  and the corresponding aggregated means, with the prior given in equation 8. In this 
case, the parameter θ represents the overall effect of the programme of treatment. The 
posterior probabilities are given by equation 13. 

 When regression to the mean bias appears likely, if the same prior Gamma(α,λ) 
distribution can be assumed for the mean µ1i of each treated site i, the prior distribution of the 
overall mean µ1 = Σµ1i is a Gamma(nα,λ) distribution (using the classical property of the sum 
of independent Gamma variables with same scale parameter λ). Considering the treated sites 
as a whole (and the comparison sites as a whole), and considering θ as the overall effect, the 
joint prior distribution becomes 

π(θ, η, µ1, µ3) ∝ (1/θ)½ µ1
nα–1exp(–λµ1) (15) 

where µ3 = Σµ3k .  
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The posterior cumulative distribution function of Θ is then 
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x1 = Σ x1i, x2 = Σ x2i, x3 = Σ x3k and x4 = Σ x4k. 
 
7. Examples of application 

7.1. Example 1: Safety effect of redesigning an urban road section 

 We describe here the case of an urban section of road where the infrastructure was largely 
modified in order to enhance the quality of local urban life. Raised median islands, small 
roundabouts, speed humps and raised tables were implemented in 2000 on this section of a 
main urban road in a town of 40,000 inhabitants (length of the treated section: 700 meters). 
All the unmodified sections of the main roads in this town were taken as a comparison group 
of sites. The comparability between the treated site and the comparison group of sites was 
verified by comparing the yearly injury accident counts for the 1989-1999 period. The 'before' 
period is the five-year period from 1995 to 1999. The 'after' period is the five-year period 
from 2001 to 2005. The presence of regression to the mean bias was considered to be unlikely 
for the following reasons: this project was not decided for safety reasons, and the proportion 
of accidents during the 1995-1999 period relative to 1989-1999 was not higher on the treated 
site as compared to all the unmodified sections of main roads in this town. For the 'before' 
period, 16 injury accidents occurred on the treated site and 61 injury accidents occurred on the 
comparison group of sites. For the 'after' period, 3 injury accidents occurred on the treated 
site, and 46 injury accidents occurred on the comparison group of sites. 

 The calculations applied to these data (x1 = 16, x2 = 3, x3 = 61, x4 = 46) with the low-
informative prior based on the Jeffreys's rule (equation 8) give the following results based on 
the posterior cumulative distribution function of Θ : 

  95% symmetrical credible interval: 0.062 to 0.815 
  Median:    0.259 
  Posterior probability that θ < 1: 0.990 

 Figure 1 shows an example of spreadsheet screen for the posterior probability calculation 
(see the appendix), applied to these data. 

 These results suggest a beneficial effect on safety. They can be compared to the results that 
would be obtained by conventional statistical methods. Nevertheless, as mentioned in the 
introduction, Bayesian and non-Bayesian concepts (like credible interval and confidence 
interval) can not be interpreted in the same way6. In this example, the usual unconditional 
maximum likelihood estimator of the odds ratio, with the related approximate 95% 
confidence interval (Woolf interval), would lead to the following results: 

  θML* = 0.249    
  Woolf 95% confidence interval: 0.068 to 0.904 

In this example, a practitioner would probably conclude in favour of a positive effect on 
safety, from both these Bayesian and non-Bayesian results. 
                                                           
6 A correct interpretation of a classical (non-Bayesian) 95% confidence interval is: if we could indefinitely repeat 
the same "experiment" with the same parameter value, 95% of the confidence intervals thus obtained would 
contain this value. 
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Fig. 1 Example of spreadsheet screen for the posterior probability calculation 
 

 
 
7.2. Example 2: Safety effect of a rural crossroads modification 

 This example deals with a priority intersection on a main rural two-lane road. This 
crossroads was modified in 1986 (installation of median raised islands, marking) for safety 
reasons. Therefore, regression to the mean is likely to occur. At this junction, 14 injury 
accidents occurred during the three-year period before the treatment. During the three-year 
period following the treatment, 4 injury accidents occurred. 

 This evolution was compared to the evolution observed at a set of 11 similar intersections 
on main rural two-lane roads in the same region, used as a comparison group of sites. At these 
sites, considered as a whole, 33 injury accidents occurred during the before period and 22 
injury accidents occurred during the after period. 

 The calculations applied to these data (x1 = 14, x2 = 4, x3 = 33, x4 = 22), using the low-
informative prior distribution given by equation 8 (Jeffreys's rule prior), would lead to the 
following results based on the posterior cumulative distribution function of Θ : 

  95% symmetrical credible interval: 0.117 to 1.389 
  Median:    0.439 
  Posterior probability that θ < 1: 0.917 

 Due to the high risk of regression to the mean in this case, however, these results are 
probably biased. In order to correct for this regression to the mean bias, it is necessary to use a 
more 'informed' prior, concerning the parameter µ1 (see section 4). To this end, the parameters 
α and λ of a prior Gamma distribution for µ1 have to be estimated. By applying an accident 
model (which was established at a national level [14]) to the characteristics of this junction 
(traffic volumes, number of arms, number of traffic lanes), as mentioned in section 4.2., it is 
possible to obtain the mean m = 3.55 and variance s2 = 15.90 of the accident counts for a 
virtual population of similar sites during the same period I. On this basis, we can calculate the 



Published in Eur. Transp. Res. Rev. (2009) 1(3):125-134                                                                          T. Brenac 
—————————————————————————————————————————————   

 10

estimates α = 1.02 and λ = 0.29. The joint prior given by equation 10 is then precisely defined 
and leads to the following results, in terms of posterior probabilities: 

  95% symmetrical credible interval: 0.151 to 1.789 
  Median:    0.566 
  Posterior probability that θ < 1: 0.828 

 These results show that, in this case, the safety effect is in reality smaller than indicated by 
the biased results obtained with the low-informative prior given by equation 8. The median of 
the posterior distribution (0.566) can be used as a point estimate of the odds ratio (where the 
posterior probabilities of overestimation and underestimation are equal). This value 
corresponds to an accident reduction of approximately 43%. The 95% credible interval, 
however, is large and the beneficial effect of the treatment remains uncertain. 

 Using the same data, a more conventional approach would lead, for example, to the 
maximum likelihood estimate θML* = 0.429 (without controlling for regression to the mean), 
or to a corrected estimate of 0.515 based on the empirical Bayes estimate of µ1 [16, 36]. 

7.3. Example 3: Safety effect of resurfacing on main roads 

 This example is based on some of the data published in an article by Leden et al. [33], 
dealing with the effect of resurfacing on friction, speeds and safety on main roads in Finland. 
The treated sites are all sections on main roads (in the south of Finland) which were 
resurfaced in 1991. The comparison sites are all the untreated main roads in the same region. 
Due to the particular road conditions in winter in Finland, only the effects on the non-winter 
period (from April 1 to September 30) are studied. Regression to the mean bias is considered 
to be unlikely, since "sections were selected for treatment on a routine maintenance base" [33] 
(p. 82) and not for safety reasons. We consider the treated sites as a whole, and the 
comparison sites as a whole. The parameter θ thus represents the overall effect of the 
treatment on the set of sites. The following data concern the 'before' period from April to 
September 1990 and the 'after' period from April to September 1992. Before and after injury 
accident counts are x1 = 80 and x2 = 74 on the treated sites, and x3 = 931 and x4 = 779 on the 
comparison sites. Based on the Jeffreys's rule prior, the results are as follows, in terms of 
posterior probabilities: 

  95% symmetrical credible interval: 0.794 to 1.537 
  Median:    1.106 
  Posterior probability that θ < 1: 0.275 

One can note the proximity of these results with the following results which would be 
obtained with a conventional frequentist approach: 

  θML* = 1.105    
  Woolf 95% confidence interval: 0.794 to 1.537 

This proximity is not surprising: posterior credible intervals based on the Jeffreys's rule prior 
are frequently close to frequentist confidence intervals in large sample conditions [17, 40] 
although they do not have the same meaning. 

 Based on these results, the posterior median estimate of θ would suggest a slight 
detrimental effect on safety (increase of accidentality of approximately 11%), but no certain 
conclusion can be drawn since the 95% credible interval is large. Based on the posterior 
probability that θ < 1 (approximately 28%), however, one could say that the probability that 
the treatment increases the accidentality, given the data and assumptions, is 72%. No 
equivalent result from a conventional statistical analysis could lead to this kind of 
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interpretation, except if one wrongly interprets a p-value as a posterior probability. A possible 
increase of accidentality could be explained by the fact that resurfacing tends to increase the 
average speeds, at least when the road is dry, as shown by Leden et al. [33]. 
 
8. Discussion and conclusion 

 In this note, we described a low-informative Bayesian method for before-after accident 
studies, using a comparison site or group of sites, and giving the possibility of correcting for 
regression to the mean bias. The aim was to provide a methodological basis for routine 
evaluation studies, often applied to a single treated site, and in conditions of limited resources 
in terms of time and expertise. As compared to conventional statistics, the Bayesian approach 
is less subject to misuse and misinterpretation by practitioners with limited statistical 
experience. The low-informative or objective Bayesian methods seem appropriate in routine 
evaluation studies, where expertise or previous knowledge are often limited or hard to 
formalise. As shown in sections 2 to 6, a relatively simple method, based on the Jeffreys's rule 
prior considered as a "reasonable standard", can be implemented without major difficulties. 
Posterior distributions are proper. The numerical calculation of posterior probabilities can be 
done without using Monte-Carlo methods nor specialised software tools. The examples given 
in section 7 show that the results can be analysed in a direct way, without the high risk of 
misinterpretation involved in the analysis of frequentist results. 

 Further developments, however, are still needed. Although this method seems to be 
transferable to engineers for common practice, further work is necessary in order to provide a 
simple, didactic description of the Bayesian line of reasoning, with minimal use of 
mathematical formalisms, appropriate for communicating this approach to practitioners. 
Concerning the practical means for calculating the posterior probabilities, the spreadsheet 
mentioned in the appendix (for a common spreadsheet software package) will be made 
available on our website. 

 The proposed method has limitations, of course. Retrospective before-after studies are not 
randomised experiments and the validity of their results is based on the assumption that the 
treated and comparison sites are similar. Before-after studies based on multivariate 
generalised linear models make it possible to better control for the influence of differences 
between treated and comparison sites. But such methodologies would generally involve a 
thorough data collection and analysis on a large sample of sites, which seems hard to 
implement by practitioners in the routine situations we considered in this paper. The 
comparability of treated and comparison sites, however, can be checked by examining their 
accident history, when accident data are available for a long period before the treatment (see 
[23]). A Bayesian approach to this subject could be studied. Besides, other developments 
could contribute to extending the field of application of the proposed method: in this paper, 
we only dealt with the case of a single treated site (or a group of sites treated as a whole, with 
a focus on the overall effect of the programme of treatment), with a comparison site or group 
of sites. The case of multiple treated sites considered independently and with possibly 
different odds ratios remains to be dealt with. However, this would involve an increased 
complexity and more difficulties for practitioners. 

 We hope this methodological note will contribute to an increased use of the Bayesian 
approach, which is more in accordance with the expectations and intuitions of non-
statisticians, in the current practice of before-after accident studies. 
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Appendix: Numerical calculation of the posterior cumulative distribution function of ΘΘΘΘ  

 In the case where regression to the mean bias is unlikely, this function is given by equation 13. It can be 
written in a more generic form: 
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where the parameters a, b, c and d take the values a = x2+½, b = x1+½, c = x4+½, d = x3+½ for the Jeffreys's rule 
prior (equation 8), and the values a = Σx2i+½, b = Σx1i+½, c = Σx4k+½, d = Σx3k+½ in case of multiple sites 
considered as a whole (with the Jeffreys's rule prior; see section 6), for example.  

 If we successively use the three changes of variable z(η) = η /(1+η), ω(θ) = θ z /((θ –1) z + 1) and lastly 
u(z) = Betacdfc,d(z), where Betacdfc,d denotes the cumulative distribution function of the Beta distribution with 
parameters c and d, we obtain from equation 17: 
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where Betacdfa,b denotes the cumulative distribution function of the Beta distribution with parameters a and b, 
and Betacdfc,d

–1 denotes the inverse function of Betacdfc,d. The Beta cumulative distribution function and its 
inverse are commonly available in spreadsheet software, and this integral can be calculated without using 
specialised tools (see below). 

 In the case where regression to the mean bias is suspected, the posterior cumulative distribution function of Θ 
is preferably calculated from equation 14. This equation can be written in the following form: 
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where the parameters a, b, c and d take the values a = x2+½, b = x1+α–½, c = x4+½, d = x3+½ for the prior given 
by equation 10, and the values a = Σx2i+½, b = Σx1i+nα–½, c = Σx4k+½, d = Σx3k+½ in case of multiple sites 
considered as a whole, with the prior given in equation 15. After the three successive changes of variable 
z(η)= η /(1+η), ω(θ) = θ z /((θ –1–λ) z + 1 + λ) and lastly u(z) = Betacdfc,d(z), this integral becomes 
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 We will propose (on our website) a spreadsheet calculating FΘ(t | x) for any given value of t, given the 
accident counts and the prior choice (among the priors mentioned in this paper), for a common spreadsheet 
software package. The calculation of the integrals of equations 18 and 20 is based on a classical trapezoidal 
quadrature method, with an increase of the number of calculation points in the vicinity of 0 and 1. The reliability 
of the results was carefully checked by comparing them to the results obtained with a more powerful software 
tool using other quadrature methods (adaptive Simpson quadrature and Lobatto quadrature), for a large range of 
possible values for accident counts x1, x2, x3, and x4. 

NB: Simplified calculations can be equivalently used in the special case where the counts x3 and x4 are very 
large, since the trend parameter η can then be considered as non-random and approximately equal to x4 / x3. The 
problem then reduces to a two-parameter problem (θ and µ1), with two random observations x1 and x2. In this 
situation, the Jeffreys's rule prior is again π(θ, µ1) ∝ (1/θ)½. In the case where regression to the mean should be 
taken into account, the method described in section 4 leads to the following prior: π(θ, µ1) ∝ (1/θ)½ µ1

α–1exp(–
λµ1). With the Jeffreys's rule prior, the same kind of calculations as those described in section 3 to 6 lead to the 
posterior cumulative distribution function 
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This is a Beta-prime distribution function with three parameters x2+½, x1+½ and 1/η. After a change of variable 
z(θ) = θ /(θ + 1/η), this integral can be written in the form of a Beta cumulative distribution function:  
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where a = x2+½ and b = x1+½. In the case where the prior is π(θ, µ1) ∝ (1/θ)½ µ1
α–1exp(–λµ1), the calculation 

leads to the following result: 
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where a = x2+½ and b = x1+α–½.  
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