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Common before-after accident study on a road site:
a low-informative Bayesian method

Thierry Brenac

INRETS (National Institute for Transport and Safegsearch)
Chemin de la Croix Blanche F-13300 Salon de ProgeRcance

Abstract:

Purpose:This note aims at providing a Bayesian methodackldbasis for routine before-after accident studies
often applied to a single road site, and in coodgiof limited resources in terms of time and etiperMethods

A low-informative Bayesian method is proposed fefdoe-after accident studies using a comparisan it
group of sites. As compared to conventional staisthe Bayesian approach is less subject to misinsl
misinterpretation by practitioners. The low-infottima framework seems appropriate in situationsiwitéd
expertise. The proposed approach gives the passibil correcting for regression to the mean. Exésp
illustrate the application of this methodesults and conclusion#t is shown that a relatively simple method,
based on the Jeffreys's rule prior considered agasonable standard”, can be implemented withajom
difficulties. Posterior distributions are propehelnumerical calculation of posterior probabiliteem be done
without using Monte-Carlo simulations nor specedisoftware tools.

Keywords Road safety, controlled before-after study, odu& low-informative prior, Bayes

1. Introduction

It is common that road sites are modified in ortdeachieve improvements from various
points of view (traffic conditions, better integmat of various uses and users of the road and
public space, reduction of noise and air pollutimatfic safety, etc.). A few years after a site
has been modified, local engineers generally havstudy the effects of this road change,
regarding various aspects including road safetysTla retrospective before-after accident
study is often needed.

In such routine situations, resources are limitetérms of time and expertise, and the risk
of misuse of conventional statistical methods @eased. Even among people who are more
experienced in statistics, like researchers, eooseuses of conventional methods are
common: misuse of tests of significance, erroneawsderstanding of p-values,
misinterpretation of confidence intervals (as pethout by many authors [15, 18, 19, 24, 27,
32]; see also [5, 11, 28]). For example, fhealue is often erroneously regarded as the
probability that the null hypothesis is true, arn 95% confidence interval obtained is
wrongly assumed to contain the true parameter a/@b% chance. The Bayesian approach to
statistics is more in accordance with the expematiand intuitions of non-specialists. In
particular, the posterior distribution can be legétely used to give the probabilities that the
parameter of interest is contained in various negjiof the parameter space (a 95% credible
interval, for example), or exceeds a particularugalgiven the data observed and prior
knowledge. Some authors consider that teaching $ayestatistics is easier than teaching
frequentist statistics [10, 31]. Nevertheless, aapractitioners are necessary to implement
Bayesian methods, since the calculations in thepeoaches are sometimes complex.

*E-mail address: thierry.brenac@inrets.fr
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In this paper, we will not deal with studies basedlarge samples of sites and using
multivariate modelling, for which Bayesian approaghvere proposed in the recent period [4,
30, 35, 37]. Bayesian methods adapted to meta-semlgr to overviews of several studies
(see, for example, [12]) will not be consideredeh&We will focus on methods applicable to a
single site and transferable to engineers for compractice.

In the case we deal with here (routine evaluatsamgle site), the methods currently used
and recommended are conventional statistical mstf®ek, for example, [23]), even though
they sometimes make use of empirical Bayes estgnaftéhe expected accident number on
the treated site in order to cope with 'regressmithe mean' bias. The principle of a 'full’
Bayesian approach was described by Hauer [21,&Ftlidying the index of effectiveneds
of a road measure: the prior probability densityction of the parametef, reflecting the
prior knowledge concerning this parameter, is comthi with the likelihood function
(probability of the data given the parameter) tdaob the posterior probability density
function. The posterior probabilities reflect tleised knowledge about the parameter, given
previous knowledge and the data analysed. The mgthaposed by Hauer, however, is an
informative (subjective) Bayes method and presugpaxpertise or previously formalised
knowledge: the prior probabilities are based on'dteitation of prevailing opinion about the
effectiveness of a treatment” ([22], p. 289), osgibly on the results of previous studies or
meta-analyses. Road safety expertise is limitedeher, in the routine situations we consider
here, since the study is often carried out by alloocad engineer, and not by a road safety
specialist. Moreover, the site modification is aftangular and not generic (it may combine
several treatments, for example: redesigning ahis$, resurfacing and marking at a junction
site). Therefore, it may be difficult to make uderesults from previous meta-analyses. A
method coping with this problem was described byMalsaiedet al [3]: prior probabilities
were estimated using a part of the accident dataydth the before and the after periods. In
the case of a single site, however, this may leacety small accident numbers for each data
subset. Another way is to use the 'objective' aw-informative' Bayesian framework [6, 7,
17, 25, 26] where the prior probabilities are cmoge order to be neutral in some way as
regards the possible parameter values, reflectindack of previous knowledge. Besides, it
can be argued that results based on low-informatipproaches are generally easier to
communicate to a diverse or uninitiated audienicees as mentioned by Box and Tiao [13],
they represent "what someone who a priori knew \Vigilg about an unknown parameter
should believe in light of the data" (p. 22).

In before-after accident studies, it is importeambe able to control for regression to the
mean bias, which can be done by incorporating sbmeed information into the prior
distribution concerning one component of the vectoparameters (see section 4). Besides,
although such studies are retrospective and nagrarpntal, one should seek to control for
the confusing influence of factors other than thadrchange. To this end, it can be useful to
take into consideration a comparison group of simsites, for example. The method
described by Hauer [22] uses a comparison sample,the calculations are based on
approximations which presuppose that the accidenonts in the comparison sample are
large. The method proposed by Al-Masa&dl [3] is a simple before-after method without
comparison sites.

In this methodological note, we describe a lowsinfative Bayesian method adapted to
the current practice of before-after accident gsidioncerning a single treated site (or a group
of sites considered as a whole). A comparison (sitegroup of sites) is used in order to
control for factors other than the road modificatid’ractical means of calculation, for a
commonly available spreadsheet software packagé,also be provided on the author's
webpage (http://www.inrets.fr/ur/ma/Brenac.html).
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2. Data structure and parametersfor the before-after study with comparison sites

When a comparison site or group of sites is utesl basic data take the form of a22
contingency table (table 1) containing the obseraedident counts; . These counts are
considered as observations of independent PoisaoablesX; with expected valuegs
(unknown).

Table 1 Usual form of the basic accident data

Treated site Comparison site

(or group of sites)
Period | (Before) Xg X3
Period Il (After) X2 X4

Under the assumption of a strong similarity betwéee treated site and the comparison
site, and if the evolution of traffic does not diffoetween them, the effect of the measure can
be represented by the odds ratio

O =] [th* (s ! )] = tlo s | (L&r hs) (1)

@ expresses the ratio dhe 'accidentality’ on the treatment site duringripeé 1l (after
modification) towhat this 'accidentality’ would have been during #ame period Il, had the
site not been modified- here we use the term 'accidentality’ in the sehat unusual sense
of the expected value of the accident count. Fropnaatical point of view, an odds ratio of
0.8, for example, would mean that the effect of theatment is a 20 % reduction in
accidentality. The ratigy = 14 / 1 reflects the effect of other factors on the evolutfrom
period | to period Il, assumed to be common to libéhtreated and comparison sitgscén
be considered as a trend parameter). In other tgurend 14, can be expressed as follows:
o= th @nandi =51 .

Thus, we are in the presence of a problem with @lservation, X, X3, X4 from four
independent random Poisson variabls X,, X3 and X4, and four unknown parameters
6, n, tn andis with the following relationships:

X; ~ Poissfs), X, ~ Poissfa81), Xs ~ Poissfs), X4~ Poissfen)  (2)

3. The Bayesian framework

According to the Bayesian approach to statistlos,unknown parametets 77 , (4 and /s
are considered as instantiations of varialde$/, M; andMs, treated as random variables, but
which in fact reflect our uncertainty about theues of these parameters. Given the observed
datax = (X1, X2, X3, X4), given the likelihood functior_(x | 8, 77, 14, 1&)* and the joint prior
probability density function of the parameteréf, n, (u, 15), the application of Bayes'
theorem leads to the joint posterior distribution

L(X|61/71:ul’lu3)xﬂ(e!,7nulwu3) (3)
[ITTL(x 16,7, 4y, pa5) 726,17, 14y, 145 ) B0y s

The joint prior distributionv &, n, (4, (&) represents our previous assumptions or knowledge
(or lack of knowledge) regarding the parameterse (section 4). The joint posterior
distribution represents our revised knowledge allo@ifpparameters, after the observations are

P81, s s | X) =

! This notation means: probability of the data (x;, X,, Xs, X4) given the parameter valuéss , 14, /4.
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taken into account. The likelihood function can basily derived from the problem
formulation given in section 2:
L(x 6.7, i, f45) =

explis) 4 expis6n)(146n)* expEiL) i expum)(ug)  (4)
X! X! X! X,!

The parameter of interest 6 Its posterior probability density function can digtained by
integrating the joint posterior distribution witespect to the three other parameters:

p(@1x) =111 p(6.n, 14y, 145 | X)dndsd; — (5)

From a practical point of view, however, the moseful result is the posterior cumulative
distribution function of®,

o=t
Fot1X)=Pr@<t|x)= [ [[[p(6.17, 1, 115 | x)dpsdpszdryd (6)
0=01 piz 14
This cumulative distribution function makes it pibés to calculate credible intervals and the
probability that the effect studied is lower ortiég than a particular value, given the data and
prior probabilities.

4. Low-informative prior distributions

In this paper we assume a lack of previous knogdeat sufficient expertise regarding the
parameters. Thus, the prior distributions shoultbbeinformative or neutral as regards these
parameters. This choice also tends to "let the dp&mk for themselves"”, giving a higher
importance to the likelihood function in the caktidbn of posterior probabilities. Two
situations should be distinguished, however, adngrtb whether regression to the mean bias
is likely or not. Regression to the mean (see,efoample, [1]) occurs when the site was
chosen for treatment in consideration of a highdmett record. In this case, the coungives
only biased information on the expected valaweand a low-informative prior distribution for
L4 would lead to biased results, overestimating thatinent effect. In this situation, other
data or information are needed and should be takeraccount in the prior distribution of
(see point 4.2).

4.1. Case where regression to the mean bias iselyli

In many circumstances, regression to the meanibiaslikely: for example, when the site
modification was not decided for safety reasong,fouother purposes (really independent
from accident counts). In this case, a low-inforrejoint prior distribution can be chosen
for the four parameter§, 7 , 14 and (5. The way of selecting low-informative priors (also
called non-informative, objective, default or reflece priors) is widely discussed in Bayesian
statistics (see the review by Kass and Wasserni#djndee also [2, 8, 9, 17, 20, 25, 26, 39]).
We will not enter this debate here since, as meatioby Ghostet al [17], "even though
there is no unique objective prior, the posteriaid usually be very similar even with a
modest amount of data” (p. 147). In the presenépdpr the sake of simplicity, we will only
consider the prior obtained by the Jeffreys's gameie’ [26], which is widely accepted as a

2 This rule can be justified from several points viéw, in particular: invariance by re-parameteiisat
uniformity, in the sense of equiprobability of regs of same size in the parameter space with a digian
metric, and minimisation of information (the Jeffs&s rule prior can be considered as a special chslee
Bernardo-Berger prior). For developments of theggiments, see for example Ghathal [17] and Kass and
Wassermann [29].



Published irEur. Transp. Res. Re{2009) 1(3):125-134 T. Been

"reasonable standard” [29]. For a vector of paramef, the Jeffreys's rule prior is
proportional to the square root of the determirmdribe Fisher information matrix:
&) O [det( (8)]" (7)
where [0 denotes proportionality. In this expressiof¥) is the Fisher information matrix
9
0&IE,
equation 4, this rule leads to the joint prior

0, n, u, ) O (1% (8)

Like many non-informative priors, this prior is ingper since it does not integrate to a finite
value over the parameter space. In Bayesian stafistowever, this is not regarded as a
problem, provided that the posterior distributierproper i(e., the integral in the denominator
of equation 3 converges to a finite value).

defined by 1(¢), =E[ J wherel is the log-likelihood. Applied to our problem, ogi

4.2. Case where regression to the mean bias Iy like

In this situation, conventional methods correctriegression to the mean by considering
that the site is taken from a population of compkraites and extracting complementary
information from a sample of such siteEach of the accident courts at these sites, during
period I, is considered as an observation fromiag@a variable with meam; . The t4; are
assumed to be distributed like a Gamma variable shiape parameterand scale parameter
A (some empirical justifications can be found in literature [1, 34]). This Poisson-Gamma
structure leads to a negative binomial distributdthe countsy; among this sample of sites.
Based on the mean and variance® of this distribution, estimated from thg, it is possible
to estimaté a andA: a = mf/(s—m) andA = m/(s—m). Conventional evaluation methods then
replacex;, the usual estimate qf,, by the empirical Bayes estimatg* = mf/s” + xy(S—
m)/s? = (a+x,)/(1+4) for the calculation of the odds ratio [16, 23].36his technique has
proved to be effective for correcting for regreasio the mean bias [38].

The equivalent in the 'full' Bayes approach cdesia taking the Gamma(A) prior
distribution for the parametes:

_ A" expEAw,)
() = @ 9)

In this situation, a joint prior distribution cam lmbtained by calculating 8, n, 1) with the
Jeffreys's rule applied while holding fixed (see [29]), which gives(6, 1, i) O (1/6)” and
leads to

76, 1, t4, 1) O (LG o "exp(Aw)  (10)

(Constants are not taken into account since theyldvbe cancelled anyway as common
factors in the denominator and numerator of eqnaBp This prior is also improper. The
estimates otr andA are drawn from accident data at a sample of simsitas (independent
from the group of comparison sites), or from anidexat model, as described above for
conventional methods using empirical Bayes estismiafdthough this joint distribution

% Alternatively, when a general accident model igilable (see, for example, the models publishedhey
Transport Research Laboratory in the United Kingfloih can be applied for obtaining complementary
information, instead of using a sample of the papaoh of comparable sites [23, 38].

* Instead, if an accident model is available, it gare the meamn and variance? of the accident counts on a
virtual population of sites with the same charastes as the site of interest [23, 38]. The partanser and A
are then also obtained by calculatimg nm’/(s>-m) andA = m/(s—m).
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(equation 10) uses some prior information concernimn (through a and A), it remains,
however, low-informative in a relative sense, sinogrior knowledge is used concerning the
parameter of intere®tand the two other parameterands.

5. Posterior probabilities
5.1. Case where regression to the mean bias iselyli

Applying the likelihood function (equation 4) anie joint prior distribution given in
equation 8 to the calculation of the joint postedistribution (equation 3) gives the following
expression, after simplification (cancelling of tas present both at the numerator and the
denominator):

1 X, + X X3 X4 Xy Y2 0 X, X,
P61, fys s | X) = < XD+ O7) )47 XD (Lt ) s 156 e (11)

whereC =[] [[expE(L+6nm) ) 1™ expEQ+n) ;) gy ™ 6% d@dndudu, .

This latter integral converges to a finite value®when some (or all) of the equal zero.
Therefore, a proper posterior distribution can gisvae obtained. The terms ja and s are
proportional to Gamma density functions, which nsakeossible to integrate the expression
given in equation 11 with respectg®and/s, leading to the joint posterior éfandn

g N

1
o, == 12
p( ,7 |X) K (1+ 0,7) X +X; +1 (1+,7)X3+X4+1 ( )

with k= [[— 01
o @FOm)=T (L)

Beta function. The posterior cumulative distribution function®is then given by

1 o=t exz—l/z Xp+Xg
F(_)(t|X):—II X+ X%, +1 7 X3+ X,
Kgzoy Q)77 Qtm)=

—dnd@ = B(x, +%2,x +¥2)B(x, +¥%2,%, +%2) Where B denotes the

—dndé (13)

The calculation of this integral is generally naispible by analytical means. We describe in
the appendix of this paper a way of calculatinguinerically.

5.2. Case where regression to the mean bias Iy like

For the prior given in equation 10, the same kihdalculations as those described in point
5.1 lead to the following expression for the pastecumulative distribution 0®:

1 6=t gxz—’/z ,7x2+x4
Fot]x)=— dndé 14
0( | ) KIH'L);!- (1+/] +e/7)x1+x2+a (1+,7)>(3+x4+1 /7 ( )

B(x, +a —¥2,X, +¥2)B(X; +%2,X,
(1+/])X1+a—1/2

if x3+a <Y (which is unlikely:a is a positive parameter and we are in a situatibare the

treated site was chosen in consideration of a ligtident count;). For the numerical

calculation of this integral, see the appendix.

where K'= **2)  The calculation leading to this result is notigral

® In the expression d€, the term in@is proportional to a three-parameter Beta-pringtrittiution, which makes
it possible to integrate with respect @over [0,+0). The integration with respect # is then possible, over
[0,+00).
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5.3. Practical uses of the posterior cumulativé&itistion function of@

From a practical point of view, various usefuluies can be obtained using the function
Fdt|x). For example, the lower lim#l . and upper limitd,. of a 95% symmetrical credible
interval are defined b¥Fo(4 . | x) = 0.025 and~o(&,. | X) = 0.975; the probability, given the
data, thatdis contained in this interval is 95%. The medéRydefined byF o Gned| X) = 0.5
gives a point estimate of the odds ratio for whicl posterior risks of overestimation and
underestimation are equal. The vakig(1|Xx) represents the posterior probability tithis
lower than 1j.e. the probability that the treatment is benefittakafety, given the data and
initial assumptions (see section 2).

6. Particular cases
6.1 Group of comparison sites instead of a singtegarison site

In this situation, the group @f comparison sites is considered as a whole, with> Xz
and x4 =2 xa (Wherexsc and x4 are the accident counts during periods | and lleach
comparison sitk, with k=1 toq). The aggregated counts andx, are observations from
random variableXs andX, which are Poisson variables (since they are obtilby summing
the independent Poisson variables and Xa) with meansis =% f& and (=% fux. The
calculations described in sections 3 to 5 are thgplied by simply using the aggregated
countsxz andx, and the aggregated meamsand/y . The low informative joint prior is given
by equation 8 or 10. The posterior cumulative thstion function of @ is then given by
equation 13 or 14 (withs = = Xa andxs = = Xax ).

6.2 Multiple treated sites

The general case of several treated sites, camesidedependently, with possibly different
odds ratiosf due to heterogeneity in the treatment effect \hd the purpose of this paper
and will be the subject of further publications.vdgheless, in the simpler situation where a
group of treated sites is considered as a whol¢h(&i focus on the overall effect of
treatment), the methods described above can by edapted.

Let us considen treated sites with accident coumisandxy (i = 1 ton) during periods |
and II, with corresponding meaps and ki, andg comparison sites with accidents couxs
andxs (k = 1 toq) during periods | and II, with corresponding meamsand fi.

When regression to the mean bias is unlikely, e consider the treated sites as a
whole (and the comparison sites as a whole), tloelledions and results described in sections
3 to 5 can be applied by simply using the aggrebatintsx; = Z Xij, Xo = Z Xoi, X3 = 2 Xak,

X4 =Z Xg and the corresponding aggregated means, witprtbegiven in equation 8. In this
case, the parameté? represents the overall effect of the programmeredtment. The
posterior probabilities are given by equation 13.

When regression to the mean bias appears likélythe same prior Gamma(/)
distribution can be assumed for the megrof each treated siie the prior distribution of the
overall means =4 is a Gammaia,A) distribution (using the classical property of gwen
of independent Gamma variables with same scalenesd). Considering the treated sites
as a whole (and the comparison sites as a whald)cansideringd as the overall effect, the
joint prior distribution becomes

6,1, w, 1) O (16" 1" ‘exp(-Aw)  (15)
wherets = 2 Loy
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The posterior cumulative distribution function @fis then

gxz—l/z ,7x2+x4
WL+ A +07)=77 L)

o=t
F@(tlx)=%jj —dpdg  (16)

6=0n7

B(X, +na Y, %, +¥5)B(X, +Y5,x, +% . :
where k»=B0a*na (zlja);)mfis “X.*%) and wheren is the number of treated sites,

X1 = Z X, X2 = Z Xoi, X3 = Z Xgx andxs = Z Xak.

7. Examples of application
7.1. Example 1: Safety effect of redesigning aranrtmad section

We describe here the case of an urban sectiovadf where the infrastructure was largely
modified in order to enhance the quality of locdban life. Raised median islands, small
roundabouts, speed humps and raised tables wetenmapted in 2000 on this section of a
main urban road in a town of 40,000 inhabitantadte of the treated section: 700 meters).
All the unmodified sections of the main roads iis ttown were taken as a comparison group
of sites. The comparability between the treated aitd the comparison group of sites was
verified by comparing the yearly injury accidentats for the 1989-1999 period. The 'before'
period is the five-year period from 1995 to 1999eTafter' period is the five-year period
from 2001 to 2005. The presence of regressiondartean bias was considered to be unlikely
for the following reasons: this project was notided for safety reasons, and the proportion
of accidents during the 1995-1999 period relatova 289-1999 was not higher on the treated
site as compared to all the unmodified sectionsain roads in this town. For the 'before’
period, 16 injury accidents occurred on the treatexland 61 injury accidents occurred on the
comparison group of sites. For the 'after' per@®dnjury accidents occurred on the treated
site, and 46 injury accidents occurred on the corapa group of sites.

The calculations applied to these daka=16,x; = 3,x3=61,X4 = 46) with the low-
informative prior based on the Jeffreys's rule &tiqun 8) give the following results based on
the posterior cumulative distribution function @f.

95% symmetrical credible interval: 0.062 to 0.815
Median: 0.259
Posterior probability thaf < 1: 0.990

Figure 1 shows an example of spreadsheet screghdgosterior probability calculation
(see the appendix), applied to these data.

These results suggest a beneficial effect onysaféiey can be compared to the results that
would be obtained by conventional statistical mdghoNevertheless, as mentioned in the
introduction, Bayesian and non-Bayesian concepke (tredible interval and confidence
interval) can not be interpreted in the same Swéy this example, the usual unconditional
maximum likelihood estimator of the odds ratio, lwithe related approximate 95%
confidence interval (Woolf interval), would leadttee following results:

Gu* = 0.249
Woolf 95% confidence interval: 0.068 to 0.904

In this example, a practitioner would probably dade in favour of a positive effect on
safety, from both these Bayesian and non-Bayesisuits.

® A correct interpretation of a classical (non-Bage}95% confidence interval is: if we could indetely repeat
the same "experiment" with the same parameter y&5#& of the confidence intervals thus obtained ld/ou
contain this value.
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Fig. 1 Example of spreadsheet screen for the posteradoatility calculation

Before-after accident study, with comparison sites — Low-informative Bayesian approach
Posterior probability calculator

CALCULATION OF Pr(O <t| data)

Probability that the "index of effectiveness" (represented here by the odds ratio ©)
is less than a particular value t, given the data and assumptions (posterior probability)

Enter the total accident counts Treated site  Comparison site(s)
"Before" period 16 61
"After" period 3 46

Select a prior distribution

PRIOR 1: Jeffreys's rule joint prior for (6, n, p1, u3)
PRIOR 2: Modified joint prior : prior Gamma(a,A) for y1 and Jeffreys's rule prior for (6, n, p3)
(this modified prior is recommended if regression-to-the-mean is likely)

Touse PRIOR 1, entera=0and A=0 a= 0.000
To use PRIOR 2, enter the values (>0) of a and A A= 0.000
Enter a value (>0) for t t= 1.000
RESULT Pr(© <t| data) = 0.990]

NB: The intermediate calculations (numerical integration) are provided in another sheet.

7.2. Example 2: Safety effect of a rural crossraadslification

This example deals with a priority intersection anmain rural two-lane road. This
crossroads was modified in 1986 (installation ofdrae raised islands, marking) for safety
reasons. Therefore, regression to the mean isyliteeloccur. At this junction, 14 injury
accidents occurred during the three-year periodrbethe treatment. During the three-year
period following the treatment, 4 injury accidenturred.

This evolution was compared to the evolution obserat a set of 11 similar intersections
on main rural two-lane roads in the same regioad s a comparison group of sites. At these
sites, considered as a whole, 33 injury accidentairved during the before period and 22
injury accidents occurred during the after period.

The calculations applied to these data=(14,x; = 4,%3 = 33,X4 = 22), using the low-
informative prior distribution given by equation(8effreys's rule prior), would lead to the
following results based on the posterior cumulathgtribution function of©®:

95% symmetrical credible interval: 0.117 to 1.389
Median: 0.439
Posterior probability thaf < 1: 0.917

Due to the high risk of regression to the mearhis case, however, these results are
probably biased. In order to correct for this regren to the mean bias, it is necessary to use a
more ‘informed’ prior, concerning the parametefsee section 4). To this end, the parameters
a and A of a prior Gamma distribution fq, have to be estimated. By applying an accident
model (which was established at a national levé])[10 the characteristics of this junction
(traffic volumes, number of arms, number of trafhoes), as mentioned in section 4.2., it is
possible to obtain the mean =3.55 and variance = 15.90 of the accident counts for a
virtual population of similar sites during the sapeziod I. On this basis, we can calculate the
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estimatesy = 1.02 andl = 0.29. The joint prior given by equation 10 isriprecisely defined
and leads to the following results, in terms oftpaer probabilities:

95% symmetrical credible interval: 0.151 to 1.789
Median: 0.566
Posterior probability thaf < 1: 0.828

These results show that, in this case, the safétygt is in reality smaller than indicated by
the biased results obtained with the low-informatprior given by equation 8. The median of
the posterior distribution (0.566) can be used psiat estimate of the odds ratio (where the
posterior probabilities of overestimation and umedémation are equal). This value
corresponds to an accident reduction of approxiynat8%. The 95% credible interval,
however, is large and the beneficial effect ofttleatment remains uncertain.

Using the same data, a more conventional appreamid lead, for example, to the
maximum likelihood estimaté, * = 0.429 (without controlling for regression toetimean),
or to a corrected estimate of 0.515 based on theral Bayes estimate gf; [16, 36].

7.3. Example 3: Safety effect of resurfacing onmraads

This example is based on some of the data publighe@n article by Ledert al [33],
dealing with the effect of resurfacing on fricti@peeds and safety on main roads in Finland.
The treated sites are all sections on main roaasth@ south of Finland) which were
resurfaced in 1991. The comparison sites are elutiireated main roads in the same region.
Due to the particular road conditions in winterFimland, only the effects on the non-winter
period (from April 1 to September 30) are studi@dgression to the mean bias is considered
to be unlikely, since "sections were selected featiment on a routine maintenance base" [33]
(p. 82) and not for safety reasons. We consider tthated sites as a whole, and the
comparison sites as a whole. The paramétdhus represents the overall effect of the
treatment on the set of sites. The following datacern the 'before’ period from April to
September 1990 and the ‘'after' period from Apribeptember 1992. Before and after injury
accident counts ang = 80 andx, = 74 on the treated sites, axgd= 931 andx, = 779 on the
comparison sites. Based on the Jeffreys's rule,pii@ results are as follows, in terms of
posterior probabilities:

95% symmetrical credible interval: 0.794 to 1.537
Median: 1.106
Posterior probability thaf < 1: 0.275

One can note the proximity of these results with fbllowing results which would be
obtained with a conventional frequentist approach:

Ga* = 1.105
Woolf 95% confidence interval: 0.794 to 1.537

This proximity is not surprising: posterior credilihtervals based on the Jeffreys's rule prior
are frequently close to frequentist confidenceriaks in large sample conditions [17, 40]
although they do not have the same meaning.

Based on these results, the posterior median &tirof & would suggest a slight
detrimental effect on safety (increase of acciddgtaf approximately 11%), but no certain
conclusion can be drawn since the 95% crediblernvates large. Based on the posterior
probability thatd< 1 (approximately 28%), however, one could sat the probability that
the treatment increases the accidentality, givem data and assumptions, is 72%. No
equivalent result from a conventional statisticalalgisis could lead to this kind of
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interpretation, except if one wrongly interprets-@alue as a posterior probability. A possible
increase of accidentality could be explained byfdu that resurfacing tends to increase the
average speeds, at least when the road is drizoassby Lederet al [33].

8. Discussion and conclusion

In this note, we described a low-informative Bagesmethod for before-after accident
studies, using a comparison site or group of séed, giving the possibility of correcting for
regression to the mean bias. The aim was to proaideethodological basis for routine
evaluation studies, often applied to a single &é@aite, and in conditions of limited resources
in terms of time and expertise. As compared to eatignal statistics, the Bayesian approach
is less subject to misuse and misinterpretation pbgctitioners with limited statistical
experience. The low-informative or objective Bag@smethods seem appropriate in routine
evaluation studies, where expertise or previouswkedge are often limited or hard to
formalise. As shown in sections 2 to 6, a relayivseinple method, based on the Jeffreys's rule
prior considered as a "reasonable standard”, camplemented without major difficulties.
Posterior distributions are proper. The numerietuation of posterior probabilities can be
done without using Monte-Carlo methods nor spesgalisoftware tools. The examples given
in section 7 show that the results can be analyseddirect way, without the high risk of
misinterpretation involved in the analysis of freqtist results.

Further developments, however, are still needeithoAgh this method seems to be
transferable to engineers for common practiceh&rrtvork is necessary in order to provide a
simple, didactic description of the Bayesian liné reasoning, with minimal use of
mathematical formalisms, appropriate for commuimcptthis approach to practitioners.
Concerning the practical means for calculating plosterior probabilities, the spreadsheet
mentioned in the appendix (for a common spreadskefttvare package) will be made
available on our website.

The proposed method has limitations, of coursétdRpective before-after studies are not
randomised experiments and the validity of thesuhes is based on the assumption that the
treated and comparison sites are similar. Befaer-abtudies based on multivariate
generalised linear models make it possible to betatrol for the influence of differences
between treated and comparison sites. But suchauelibgies would generally involve a
thorough data collection and analysis on a largapsa of sites, which seems hard to
implement by practitioners in the routine situatowe considered in this paper. The
comparability of treated and comparison sites, hamnecan be checked by examining their
accident history, when accident data are availéila long period before the treatment (see
[23]). A Bayesian approach to this subject couldshedied. Besides, other developments
could contribute to extending the field of applioatof the proposed method: in this paper,
we only dealt with the case of a single treateel @t a group of sites treated as a whole, with
a focus on the overall effect of the programmer@htinent), with a comparison site or group
of sites. The case of multiple treated sites cared independently and with possibly
different odds ratios remains to be dealt with. ldeer, this would involve an increased
complexity and more difficulties for practitioners.

We hope this methodological note will contribute &n increased use of the Bayesian
approach, which is more in accordance with the etgtens and intuitions of non-
statisticians, in the current practice of beforeafccident studies.

11
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Appendix: Numerical calculation of the posterior cumulative distribution function of @

In the case where regression to the mean biaslilsely, this function is given by equation 13.c&n be
written in a more generic form:
o=t ea 1 a+c—1
Fo(t1x)= e
? B(a b)B(C d) Joi (L+6n7)*" (1+f7) ‘
where the parametess b, c andd take the valuea = x,+Y2, b = x;+%, ¢ = X4+Y%%, d = Xgt+% for the Jeffreys's rule
prior (equation 8), and the values= Zxy+Y2, b = Zx3;+%, € = ZXgt+%2, d = ZX3+Y% in case of multiple sites
considered as a whole (with the Jeffreys's rulerpsee section 6), for example.

dnde  (17)

If we successively use the three changes of Merizly) = n/(1+n), (8 = 6z/((6-1)z+ 1) and lastly
u(2) = Betacdf4(2), where Betacdf denotes the cumulative distribution function o tBeta distribution with
parameters andd, we obtain from equation 17:

ust t x Betacdf?; (u)
Fo(t]x) = j Betacdf , o ldu
o "\ 1+ (t -1 xBetacdf (u)

where Betacd{b denotes the cumulative distribution function of tBeta distribution with parametesisandb,
and Betacdf;~ denotes the inverse function of BetagdfThe Beta cumulative distribution function and its
inverse are commonly available in spreadsheet soétwand this integral can be calculated withouhgis
specialised tools (see below).

(18)

In the case where regression to the mean biassested, the posterior cumulative distributionction of ©
is preferably calculated from equation 14. Thisaun can be written in the following form:

ST P ) W A i
° B(a,b)B(c,d) Lo, @+A+87)™" (L+n7)"

where the parametess b, c andd take the valuea = x,+%2, b = x;+0—Y2, ¢ = X4+%2, d = x3+% for the prior given
by equation 10, and the valuass Ixy+%2, b = Zx;+na—Y2, ¢ = Zx4t+Y2, d = Zxz+Y% in case of multiple sites
considered as a whole, with the prior given in ¢igmal5. After the three successive changes ofabéi
A= nlA+n), 6 = 0z/((6-1-A) z+ 1 + 1) and lastlyu(2) = Betacdf4(2), this integral becomes

ust t x Betacdf’; (u)
Fo(t]x) = j Betacdf , : —— |du
"\ 1+ A +(t-1-1)xBetacdf, (u)

u=0

dndé (19)

(20)

We will propose (on our website) a spreadsheatutating Fe(t |X) for any given value of, given the
accident counts and the prior choice (among thergnmentioned in this paper), for a common spresetsh
software package. The calculation of the integadlequations 18 and 20 is based on a classicatzoagal
quadrature method, with an increase of the numbealoulation points in the vicinity of 0 and 1. & heliability
of the results was carefully checked by comparhmegrt to the results obtained with a more powerftiwsre
tool using other quadrature methods (adaptive Simpmiadrature and Lobatto quadrature), for a leagge of
possible values for accident courtsxs, X3, andx,.

NB: Simplified calculations can be equivalently usedhe special case where the couxgsandx, are very
large, since the trend parametecan then be considered as non-random and appr@tinggual tax, / Xs. The
problem then reduces to a two-parameter problémnd 1), with two random observationg andx,. In this
situation, the Jeffreys's rule prior is agaii®, 1) O (1/6*. In the case where regression to the mean shauld b
taken into account, the method described in seciterds to the following prio£8, t4) O (1/6)* 14" "exp(—
Aty). With the Jeffreys's rule prior, the same kinccalculations as those described in section 3I&aﬁ to the
posterior cumulative distribution function

o=t X, +2 Xo =2
Fo(t1x, )= [ =D o e (D)
2o BOG +¥ex, +) (4 1/7)"
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This is a Beta-prime distribution function with ¢ler parameters+y2, x;+%2 and 15. After a change of variable
Z(6) = 8/(8+ 1/n), this integral can be written in the form of a@&eumulative distribution function:

Fo(t]x,x,)= Betacdg'b[ ] (22)

t+1/n

wherea = x,+% andb = x+%. In the case where the prior 0, 1) O (1/6)” 14 *exp(-Aw4), the calculation
leads to the following result:

t

FQ (t | X X2) = BetaCdL’b[m

j (23)

wherea = x,+%2 andb = x;+a—Y%.
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