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Abstract: This paper deals with the control of a fleet of non-linear systems representing AUVs
(autonomous underwater vehicles). This paper proposes a novel framework which is able to
express in a simple manner the control law for a larger class of formations, including time-varying
formations. This has been produced by applying a sequence of affine transformations such as
translations, rotations and scalings. A cooperative control law based on consensus algorithms
is added to reach the same formation and to achieve the uniform distribution of all the agents
along the formation. This is achieved taking into account the communication constraints using
a cooperative control which includes the Laplacian matrix of the communication graph. Several
simulations are provided to illustrate the convergence.
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1. INTRODUCTION

Cooperative control problems and multi-agent systems
have received much attention in recent years (see Olfati-
Saber et al. [2007]). This topic concerns an increasing num-
ber of engineering applications such as sensor networks,
environmental monitoring among many others. This field
includes the consensus algorithms for multi-agent systems
Olfati-Saber et al. [2007], Olfati-Saber and Murray [2004],
flocking Olfati-Saber [2006], distributed sensor networks
Leonard et al. [2007], Ogren et al. [2004], Zhang and
Leonard [2010], trajectory tracking and path following
Kaminer et al. [1998], Frew et al. [2008], Encarnacao and
Pascoal [2001] and autonomous systems as underwater and
unmanned air vehicles (AUVs and UAVs) Fiorelli et al.
[2003], Raffard et al. [2004].

A particularly relevant area deals with the formation con-
trol and the motion coordination, Leonard et al. [2007],
Mart́ınez et al. [2007], Ogren et al. [2002] and the reference
therein. For instance, control laws have been provided to
make a fleet of agents obtain circular and parallel forma-
tions, Leonard et al. [2007], Sepulchre et al. [2007] and
other closed forms, Paley et al. [2008]. A relevant problem
is now to relax these constraints and to consider time-
varying formations. Two kind of transformations, transla-
tion and contraction, have been developed in Briñón et al.
[2009, 2010] to stabilize a fleet of AUVs to a time-varying
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circle, in order to translate and contract the circular for-
mation.

This paper provides a general framework based in the
affine transformations to stabilize a formation of non-
linear multi-agent systems. Translation, contraction (scal-
ing) and rotation are the three fundamental transforma-
tions of a formation (see Leonard and Fiorelli [2001]).
These three main affine transformations, usually used in
the fields of geometric and robotic control, are pertinent to
express any kind of trajectory and closed curve in a matrix
representation. The transformation of a fleet formation is
pertinent to some applications where the agents should
perform collaborative tasks requiring the formation to
displace towards an a priori unknown direction and adjust
to some particular form. For instance, in source seeking
applications, the formation should displace in the source
gradient direction and contract its size to adapt to the
level curves of the source plume.

The general control law presented in this paper enables to
track a reference velocity and to stabilize a time-varying
curve. The formation control problem is tackled here from
a collaborative point of view. A cooperative control law is
developed that leads to the agents converging to the same
formation which is defined by a closed curve expressed
as a sequence of transformations. In the context of the
source seeking for underwater vehicles, it is relevant to
constrain the agents in an appropriate shape, to avoid
unnecessary energy waist. Moreover, ensuring that the
agents are uniformly distributed along the formation might
be more adequate to produce efficient search motions.
Therefore, an additional component of the control law is



also added to achieved the uniform distribution of the
agents along the time-varying formation. Moreover, this
collaborative control law stands for the case of range-
dependent graph, and provides some simulations showing
the asymptotic convergence.

The paper is organized as follows. The following section
presents the problem formulation introducing the affine
transformation and the model of the agents. Section 3
exposes the main contribution of the article which deals
with the general control law making the agents converge to
a curve represented by a sequence of affine transformations
and presents some particular cases and simulations. In
section 4 a cooperative control is developed in order to
stabilize the agents in the same formation.

2. PROBLEM FORMULATION AND
PRELIMINARIES

2.1 Model of Agents

Consider the standard agent model commonly used in the
literature to model AUVs restricted kinematics (Cochran
and Krstic [2007], Leonard et al. [2007]). It corresponds to
a kinematic unicycle fitting with model properties subject
to a simple non-holonomic constraint. Consider a set of N
agents (vehicles), in which each agent k = 1, ..., N has the
following constrained dynamics:

ẋk = vk cos θk (1a)
ẏk = vk sin θk (1b)
v̇k = u1k (1c)
θ̇k = u2k (1d)

where (xk, yk)T is the position vector of the agent k, θk
the heading angle and u1k, u2k are the control inputs. Note
that v ∈ RN and θ ∈ RN represent the vector of all
velocities and the vector of all headings respectively.

The objective is for the agents to follow different velocities
and to stabilize to different formations in a cooperative
way. In Sepulchre et al. [2007], a complex notation was
introduced to formulate in a simple manner the circular
formation control law. Here the vectorial notation (1) is
employed and leads to a simple formulation of the control
laws.

2.2 Affine Transformations

The three main transformations are the translation, the
rotation and the scaling. To express these affine trans-
formations, we need to introduce the homogeneous coor-
dinates. For instance the homogeneous coordinates of a
vector zzz ∈ R2 can simply be defined as the new vector
zzzH = (zx, zy, 1)T . The affine transformations are intro-
duced in order to express any trajectory in a matrix
representation. The translation matrix for a vector c is

Tc =

( 1 0 cx
0 1 cy
0 0 1

)
. The rotation by α is expressed as

Rα =

( cosα − sinα 0
sinα cosα 0

0 0 1

)
and S =

(
sx 0 0
0 sy 0
0 0 1

)
is the

non-uniform scaling matrix in homogeneous coordinates
(see Foley et al. [1994]).

The main idea is to define any trajectory as a sequence
of these transformations applied to a constant vector r0

expressed in the homogeneous coordinates framework. In
the sequel, we consider affine transformations generated
by a combination of the basic ones which can be defined
as follows:

G =
I,J,K∏
i,j,k

SiRj
αTk

c (2)

Note that the affine transformations are invertible, there-
fore G−1 exists. Thanks to previous definitions, G and
G−1 are differentiable, if their parameters are time-
varying. Note that the operator derivative and invertible
are not commutative, therefore (Ġ)−1 6= ˙(G−1).

3. CONTROL DESIGN

In previous section, the basic affine transformations have
been defined. The objective is now to design control laws
such that the fleet of agents converge to a curve defined
by a sequence of affine transformations.

3.1 Main Result

Consider the system (1). The position vector of the agent k
in homogeneous coordinates is defined as rk = (xk, yk, 1)T .
The objective can now be expressed as:

rk = Gr0

where r0 is a constant vector. The differentiation of previ-
ous equation leads to:

ṙk = Ġr0 = ĠG−1rk (3)
Using the previous definitions of transformations, a control
law is proposed in the following theorem:
Theorem 1. Let G be a twice differentiable matrix with
bounded derivatives resulting from a sequence of affine
transformations like in (2). Let κ > 0 be a control
parameter and the condition vk 6= 0 is satisfied. Then the
control law:

u1k = −κvk +
1
vk

ṙTk ĠG−1ṙk + (4a)

+
1
vk

ṙTk
(
G̈G−1 + Ġ ˙(G−1) + κĠG−1

)
rk

u2k =
1
v2
k

ṙTkR∗T ĠG−1ṙk + (4b)

+
1
v2
k

ṙTkR∗T
(
G̈G−1 + Ġ ˙(G−1) + κĠG−1

)
rk

where the matrix R∗ represents a rotation by π
2 but erasing

the homogeneous coordinate of position vector such that:

R∗ =

( 0 −1 0
1 0 0
0 0 0

)
makes all the agents defined by (1) converge to the curve
defined by the transformation G applied to the constant
vector r0.

Proof. We analyze the convergence of the system to the
curve defined by G using the following Lyapunov function:

S(r,v, θ) =
1
2

N∑
k=1

∥∥∥ṙk − ĠG−1rk
∥∥∥2

≥ 0



Note that when S(r,v, θ) = 0 the dynamics of system
satisfy ṙk = ĠG−1rk which is the objective defined in (3).
Evaluating the derivative of S(r,v, θ) along the solutions
of system (1) leads to:

Ṡ(r, v, ψ) =
N∑
k=1

(
r̈k − G̈G−1rk − Ġ ˙(G−1)rk − ĠG−1ṙk

)T
·
(
ṙk − ĠG−1rkrk

)
(5)

The second derivative of the position vector rk expressed
in homogeneous coordinates depends on the control input
variables u1k and u2k:

r̈k =
v̇k
vk

ṙk + θ̇kR∗ṙk =
u1k

vk
ṙk + u2kR∗ṙk (6)

Considering the control law (4) and using the equation (6)
the derivative of the Lyapunov function becomes:

Ṡ(r, v, ψ) =−κ
N∑
k=1

∥∥∥ṙk − ĠG−1rk
∥∥∥2

= −2κS(r, v, θ) ≤ 0

Therefore S(r,v, θ) is a suitable Lyapunov function for
this system. Then, system (1) asymptotically reaches the
conditions ṙk = ĠG−1rk which describe a curve defined
by G.
Remark 2. The control law presented in the previous the-
orem has a singular point when vk = 0. The mathematical
condition to avoid this situation is not straightforward
obtained. The future works will be centered in a detailed
analysis of this singular point. Nevertheless, the simulation
results for the particular cases presented in the following
subsections, show that if the initial velocities are positive
for all the agents, and the trajectory represented by G
varies slowly, the singular point is avoided.

This previous theorem present a general result to stabilize
the agents to a curve defined by the matrix G. The
following subsections present particular applications.

3.2 Velocity Tracking

First of all, we analyze the simplest case when the trans-
formation is the identity matrix, that is, G = I3. The
objective becomes ṙk = 0. Thus, the control inputs become
u1k = −κvk and u2k = 0. It is clear that in such situation,
the objective only concerns the velocity and no constraint
appears on the final position of the agents. These final
positions depend on the initial condition of the agents.
This fact is important to understand the following cases.

The trajectory tracking problem can be expressed as a
transformation, specifically as a translation by the refer-
ence vector rref = (xref , yref ). Thus, the objective is:

rk = Trref
r0 =

( 1 0 xref
0 1 yref
0 0 1

)
(0, 0, 1)T = rHref

where rHref is the reference position vector in homogeneous
coordinates. This objective expressed in the new formula-
tion presented before leads with ṙk = Ṫrref

T−1
rref

rk = ṙHref .
Therefore, the system will be able to follow a reference

Fig. 1. Simulation of five agents governed by (7). The blue
lines represent the trajectories of the agents following
a reference velocity given by the red dashed line
ṙref = (1,−2 sin t

2 ). The figure shows two snapshots.
The blue agents represent the initial conditions. The
red ones represent the final state at t = 20s.

velocity. The control law dealing with this problem is
presented in the following corollary:
Corollary 3. Let rref : R → R2 a twice differentiable
function with bounded first and second derivatives. Let
κ > 0 be a control parameter and the condition vk 6= 0 is
satisfied. Then the control law:

u1k = −κvk +
1
vk

ṙTk (r̈Href + κṙHref ) (7a)

u2k =
1
v2
k

ṙTkR∗T (r̈Href + κṙHref ) (7b)

makes all the agents defined by (1) follow the reference
velocity ṙref .
Remark 4. Note that the agents follow the reference ve-
locity and not the exact reference trajectory. This is not
a trajectory tracking or path following problem. The for-
mulation of the problem allows the agents to track the
same velocity. We can define this as a velocity, as shown
in Figure 1. Note that parallel motion problem analyzed
in Sepulchre et al. [2007] loads to a straight line reference.
Here, (7) is pertinent to consider more general references.

3.3 Circular Trajectory

A circular trajectory centered at 0 and of unit radius is
described using the following parametrization in time:

x(t) = cos(ω0t)

y(t) = sin(ω0t)
where ω0 6= 0 is the angular velocity of the rotation. The
transformation matrix G becomes a time-varying rotation
by the angle ω0t, that is, G = Rω0t. In this case, the
objective can be expressed as:

ṙk = Ṙω0tR
−1
ω0trk = ω0R∗rk

Applying this objective to the control law (4) the following
Corollary is obtained:
Corollary 5. Let ω0 6= 0 and κ > 0 be two control
parameters and the condition vk 6= 0 is satisfied. Then
the control law:

u1k = −κvk + κ
ω0

vk
ṙTkR∗rk (8a)

u2k = ω0 + κ
ω0

v2
k

ṙTk rk (8b)



makes all the agents defined by (1) converge to a con-
centric circular trajectories centered at the origin and the
direction of the rotation defined by the sign of ω0.
Remark 6. Once more, this formulation ensures that the
agents converge to a circle. This leads to the same problem
analyzed in Sepulchre et al. [2007]. However, no conditions
on its radius is stated for now. As in the previous case,
the initial conditions will influence the final radius. Note
that the radius of the final circle of each agent satisfies
Rk = vk∞ω0, where vk∞ is the final velocity of the agent
k. This final value vk∞ is related to the initial conditions
of the agent. Therefore, the radius depends of the initial
conditions of the agents and thus, the agents converge to
a circular trajectory with different radius.
Remark 7. Applying different sequences of transforma-
tions the agents can track a time-varying circular trajec-
tory with a moving center and no constant radius. The
results presented in Briñón et al. [2009, 2010] can be
included in this new general formulation.

In order to achieve the same circle, and for more complex
cases, the same formation, a cooperative control analysis
is introduced in the following section.

3.4 Not Circular Formations

A particular case of the contraction or scaling of a circular
trajectory can be consider when its radius depends on the
agent position. In this way, many curves can be expressed
by scaling of a circle. For example, a non-uniform time-

invariant scaling S =

(
a 0 0
0 b 0
0 0 1

)
where a and b are

constant, defines an ellipse. In general, a scaling matrix
depending on the position of the agent can be expressed as

Sk =

(
Rk 0 0
0 Rk 0
0 0 1

)
where the uniform scaling parameter

Rk is a function leading to:

Rk =R(αk)

tanαk =
yk
xk

The transformation matrices dealing with these problems
are G = SRω0t and Gk = SkRω0t respectively. Applying
the second formulation to the control law (4) the following
Corollary is obtained:
Corollary 8. Let R : R2 → R a twice differentiable
function with bounded first and second derivatives, as in
(9). Let ω0 6= 0 and κ > 0 be two control parameters and
the condition vk 6= 0 is satisfied. Then the control law:

u1k = −κvk +
Ṙk
Rk

vk + κ
ω0

vk
ṙTkR∗rk + (9a)

+
RkR̈k + κRkṘk − Ṙ2

k

vkR2
k

ṙTk rk (9b)

u2k = ω0 + κ
ω0

v2
k

ṙTk rk +
RkR̈k + κRkṘk − Ṙ2

k

vkR2
k

ṙTk rk(9c)

where Rk = R(αk) makes all the agents defined by (1)
converge to a curve defined by the function R and the
direction of the rotation defined by the sign of ω0.

Fig. 2. Simulation of five agents governed by the control
law (9) and the radius reference Rk = cos 6αk + 5.
The red line represents the trajectory of one agent
and the blue ones represent the final curves achieves
for each agent. The figure shows two snapshots. The
blue agents represent the initial conditions. The red
ones represent the final state t = 50s.

Remark 9. Note that one more time, the final trajectory
of each agent is related to its final velocity which depends
on the initial conditions. Therefore, each agent converge
to a different curve but with the same shape and velocity
of rotation, as in Figure 2.

4. COOPERATIVE CONTROL DESIGN

The general formulation presented in Theorem 1 allows to
govern a group of agents to follow a reference velocity or
to converge to a curve given by G. Note that each agent
converges to a different curve depending on the initial
conditions but with the same shape. The aim to develop
a cooperative control design deals with the stabilization
of the same formation. This section presents collaborative
control laws to obtain consensus on velocities and on
the heading angles to reach a uniform distribution of the
agents along the same formation.

4.1 Preliminaries

This paragraph presents some basic tools of graph theory.
When an agent k communicates with an agent j both
agents are called neighbors. The set of neighbors of agent
k is denoted by Nk. The communication topology for the
groups of agents can be represented by means of a graph
G(V,E) where V = {1, 2, ..., N} is the set of vertices
(agents) and E = {(k, j) : j ∈ Nk} the set of edges
(communication links) such that (k, j) ∈ E if agent k
communicates with agent j. The Laplacian of G is the
matrix L = ∆ − A. For an undirected graph, (j is a
neighbor of k if and only if k is a neighbor of j), the
Laplacian matrix is symmetric positive semidefinite (see
Olfati-Saber et al. [2007]).

4.2 Consensus on Velocities for Circular Formation

In the sequel, the cooperative control law to stabilize a
circular formation using a consensus algorithm on the
velocities is presented:



Theorem 10. Let ω0 6= 0, κ1 > 0 and κ2 > 0 be
three control parameters and the condition vk 6= 0 is
satisfied. Let G be the communication graph and L be
the corresponding Laplacian matrix, where Lk represents
its kth row. Then the control law:

u1k = −κ1vk + κ1
ω0

vk
ṙTkR∗rk − κ2Lkv (10a)

u2k = ω0 + κ1
ω0

v2
k

ṙTk rk (10b)

makes all the agents defined by (1) converge to the same
circular formation centered at the origin and the direction
of the rotation defined by the sign of ω0. Moreover, if the
communication graph G is strongly connected (see Olfati-
Saber et al. [2007]), the radius of the circle is obtained
through a consensus algorithm applied to the velocities of
the agents.

Proof. The stability is analyzed by the composed Lya-
punov function V (r,v, θ) = κ1S(r,v, θ) + κ2Q(v) whose
derivative is expressed as V̇ (r,v, θ) = κ1Ṡ(r,v, θ) +
κ2Q̇(v). The quadratic form Q(v) = 1

2vTLv reaches its
minimum only when v = 1β where β is constant, that
is, when all agents turn around the same circle of radius
R = βω0.

Evaluating the derivative of V (r,v, θ) along the solutions
of system (1) and using the equation (6):

V̇ (r, v, θ) = κ1

N∑
k=1

(r̈k − ω0R∗ṙk)T (ṙk − ω0R∗rk) +

+κ2v̇TLv

=
N∑
k=1

v̇k

(
κ1vk − κ1

ω0

vk
ṙTkR∗rk + κ2Lkv

)
+

+κ1

N∑
k=1

(ω0 − θ̇k)ω0ṙTk rk

Considering the control law (10) the previous equation
leads to:

V̇ (r, v, θ) =−
N∑
k=1

(
κ1vk − κ1

ω0

vk
ṙTkR∗rk − κ2Lkv

)2

−κ1

N∑
k=1

(
ω0

vk
ṙTk rk)2

Therefore V (r,v, θ) is a suitable Lyapunov function for
this system and the agents converge to the same circular
formation.
Remark 11. The work already cited, Sepulchre et al.
[2007], deals with the circular formation problem. A for-
mation control law is presented to stabilize a fixed circle.
The agents have unit velocity and converge to a circle of
radiusR = 1/ω0. In our approach, the consensus algorithm
provides the final radius.
Remark 12. Based on Olfati-Saber et al. [2007] and Sepul-
chre et al. [2008], using uniform connectivity properties,
the collaborative control law in Theorem 10 also makes the
agents converge to the same circular formation considering
time-varying and switched communication graphs.

Fig. 3. Simulation of five agents governed by the control
law (10). The same circular formation (blue line)
with uniform distribution is stabilized. The red line
represents the trajectory of one agent. The figure
shows two snapshots. The blue agents represent the
initial conditions. The red ones represent the final
state t = 50s.

4.3 Uniform Distribution for Circular Formation

The following Corollary proposes an additional potential
function whose minimum corresponds to the uniform dis-
tribution of the agents along the circular formation.
Corollary 13. Let ω0 6= 0, κ1 > 0, κ2 > 0, and K > 0
be four control parameters. Let G be the communication
graph and L be the corresponding Laplacian matrix. Then
the control law:

u1k = −κ1vk + κ1
ω0

vk
ṙTkR∗rk − κ2Lkv (11a)

u2k = ω0 + κ1
ω0

v2
k

ṙTk rk −
∂U

∂θk
(11b)

and

U(θ) = −K
N

bN/2c∑
m=1

1
2m2

BT
mLBm (12)

where bN/2c is the largest integer less than or equal
to N/2, the following equation L = L ⊗ I2 is satisfied
(⊗ is the classical Kronecker product), and the matrix
Bm = (cosmθ1, sinmθ1, ..., cosmθN , sinmθN )T contains
all the agents’ headings, makes all the agents defined by
(1) converge to a circular formation centered at the origin
and the direction of the rotation defined by the sign of ω0.
Moreover, if the communication graph G is d0-circular (see
Sepulchre et al. [2008], Briñón et al. [2010]), the radius
of the circle is obtained through a consensus algorithm
applying to the velocities of the agents and the uniform
distribution of the agents along the circle is achieved.

Proof. The stability is analyzed by the composed Lya-
punov function V1(r,v, θ) = κV (r,v, θ) + U(θ) whose
derivative is expressed as V̇1(r,v, θ) = V̇ (r,v, θ) +∇U(θ).
Based in the previous works of Sepulchre et al. [2007,
2008], the potential function U(θ) is invariant to rigid rota-
tions. Therefore, using (11) the derivative of the Lyapunov
function satisfies V̇1(r,v, θ) ≤ 0.



4.4 Towards Generalized Cooperative Control Laws

Following the same approach applied to the circular for-
mation, the objective is to provide a cooperative control
added to the general control law (4) to stabilize the same
formation. This is possible including consensus algorithms
and potential functions to the general control law. In each
case the consensus variable is different and this fact leads
to several difficulties. The first result presented on the
circle can be generalized to find the adequate variable for
each formation, for exemple, in the translation of a circle,
the consensus variable becomes ṽ = ‖ṙk − ċref‖ where
cref is a time-varying center reference.

5. CONCLUSION AND FUTURES WORKS

This paper provides a general framework to make a fleet
of agents converge to formations defined by a sequence
of affine transformations (translation, rotation and scal-
ing). The control laws presented here make the agents
converge to a time-varying velocity reference defined by
the sequence of transformations G. Several cases have
been presented. Moreover, a cooperative control law to
achieve the circular formation and the uniform distribution
of the agents along the circle is proposed. The consensus
algorithm and the potential function added in this col-
laborative approach are designed taking into account the
communication constraints between agents.

Future works will be focuss on finding the cooperative
control algorithm to stabilize any formation expressed in
the general framework.
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