
HAL Id: hal-00506517
https://hal.science/hal-00506517

Submitted on 28 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Conditional independence between two variables given
any conditioning subset implies block diagonal

covariance matrix for multivariate Gaussian distributions
Guillaume Marrelec, Habib Benali

To cite this version:
Guillaume Marrelec, Habib Benali. Conditional independence between two variables given any con-
ditioning subset implies block diagonal covariance matrix for multivariate Gaussian distributions.
Statistics and Probability Letters, 2009, 78 (13), pp.1922. �10.1016/j.spl.2008.01.060�. �hal-00506517�

https://hal.science/hal-00506517
https://hal.archives-ouvertes.fr


Accepted Manuscript

Conditional independence between two variables given any
conditioning subset implies block diagonal covariance matrix for
multivariate Gaussian distributions

Guillaume Marrelec, Habib Benali

PII: S0167-7152(08)00059-X
DOI: 10.1016/j.spl.2008.01.060
Reference: STAPRO 4923

To appear in: Statistics and Probability Letters

Received date: 23 April 2007
Revised date: 3 July 2007
Accepted date: 9 January 2008

Please cite this article as: Marrelec, G., Benali, H., Conditional independence between two
variables given any conditioning subset implies block diagonal covariance matrix for
multivariate Gaussian distributions. Statistics and Probability Letters (2008),
doi:10.1016/j.spl.2008.01.060

This is a PDF file of an unedited manuscript that has been accepted for publication. As a
service to our customers we are providing this early version of the manuscript. The manuscript
will undergo copyediting, typesetting, and review of the resulting proof before it is published in
its final form. Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.spl.2008.01.060


AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Conditional Independence Between Two

Variables Given Any Conditioning Subset

Implies Block Diagonal Covariance Matrix for

Multivariate Gaussian Distributions

Guillaume Marrelec a,b,∗ Habib Benali a,b

aInserm, U678, Paris, F-75013 France

bUniversité Pierre et Marie Curie, Faculté de médecine Pitié-Salpêtrière, Paris,

F-75013 France

Abstract

Let x = (x � ) be a multivariate Gaussian variable with covariance matrix Σ. For i

and j in
�

, we show that if the conditional covariance between xi and xj given any
conditioning set � ⊂

�
\ {i, j} is equal to zero, then Σ is block diagonal and i and

j belong to two different blocks.

Key words: multivariate Gaussian variables, conditional independence, block
diagonal covariance matrix

1 Introduction

As pointed out by Dawid (1998), the concept of conditional independence is
believed to be fundamental knowledge in the process of scientific inference. For
multivariate Gaussian variables, conditional independence is quantified by con-
ditional covariance. Investigation of such coefficients have led to a better char-
acterization of interactions between variables, in particular through the use of
conditional independence graphs (Whittaker, 1990; Lauritzen, 1996; Edwards,
2000). Marginal correlation coefficients have also been examined through co-
variance graphs (Kauermann, 1996; Edwards, 2000). It would be interesting
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to generalize these approaches by simultaneously considering all possible con-
ditional covariances for a given pair of variables. For instance, consider the
case of a three dimensional Gaussian variable x = (x1, x2, x3) with covariance
matrix Σ. If Corr [x1, x2|x3] = 0, then Corr [x1, x2] = Corr [x1, x3] ·Corr [x2, x3]
(Wermuth, 1976; Whittaker, 1990). If one furthermore has Corr [x1, x2] = 0,
it directly comes out that either Corr [x1, x3] = 0 or Corr [x2, x3] = 0. In other
words, the following yields:

{

Corr [x1, x2] = 0 and Corr [x1, x2|x3] = 0
}

⇒ Σ is block diagonal.

To our knowledge, no generalization of such a result has been shown yet. This
paper is a first step in this direction. We prove a result that demonstrates how
this approach can inform us regarding the global pattern of interaction and
shed light into the structure of the variables.

2 Main theorem

Let � be a finite set and x = (x � ) be a multivariate Gaussian variable indexed
on � with covariance matrix Σ.

Theorem 1 Let i and j be two elements of � and further assume that xi and

xj are conditionally independent given any set of remaining variables, i.e.,

∀ � ⊂ � \ {i, j} Cov [xi, xj|x � ] = 0. (1)

Then Σ is block diagonal and i and j belong to two different blocks.

Sole consideration of marginal and/or partial covariance is not sufficient to pro-
vide this result, for there exist covariance matrices that are not block diagonal
while including variables for which Cov [xi, xj] = 0 and/or Cov

[

xi, xj|x �
\{ı,j}

]

=
0.

This result can be established by successive examination of conditional in-
dependence constraints (see Fig. 1 for a graphical sketch of proof). First,
Corr[xi, xj] = 0 and, hence, Σi,j = 0. We also have Cov[xi, xj|xk] = 0 for any
k ∈ � \{i, j}. Since Σi,j = 0, this covariance coefficient is equal to (Anderson,
1958)

Cov[xi, xj|xk] = −
Σi,kΣk,j

Σk,k

.

For Cov[xi, xj|xk] to be equal to zero, we must then have Σi,kΣk,j = 0, i.e.,
either Σi,k = 0 or Σj,k = 0. This line of reasoning being valid for any k 6∈ {i, j},
it is possible to separate � \ {i, j} into three sets: � i

1 such that Σi,k 6= 0 and
Σj,k = 0 for k ∈ � i

1; � j
1 such that Σi,k = 0 and Σj,k 6= 0 for k ∈ � j

1; and � 1

2
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such that Σi,k = 0 and Σj,k = 0 for k ∈ � 1. Let then be � = {k, l} with
k ∈ � i

1 and l ∈ � j
1. Cov[xi, xj|x � ] is given by (see Eq. (A.1))

−
∑

a,b∈ �
(Σi∪j, � )

a,i

(−1)pos � (a)+pos � (b) det
[

Σ � \{b}, � \{a}

]

det [Σ � , � ]
(Σ � ,i∪j)b,j

,

where pos � (a) stands for the position of a in � . Since k ∈ � i
1 and l ∈ � j

1,
we have Σi,l = Σj,k = 0. Direct calculation then shows that Cov[xi, xj|x � ] is
equal to

Cov[xi, xj|x � ] =
Σi,kΣk,lΣl,j

Σk,kΣl,l − Σ2
k,k

.

Since we must also have Cov[xi, xj|x � ] = 0 according to our hypothesis, this
equation leads to Σk,l = 0, given that Σi,k and Σj,l are different from zero.
Elements of � i

1 (resp. � j
1) have hence a zero marginal correlation to both j

(resp. i) and all elements of � j
1 (resp. � i

1).

We then proceed by induction. Assume that there exist 2(N + 1) subsets � i
n

and � j
n, with n = 0, . . . , N , and one set � N of � such that

• � i
0 = {i} and � j

0 = {j};
• { � i

0, . . . , � i
N , � j

0, . . . , � j
N , � N} is a partition of � .

• nonzero marginal correlations can only be found between � i
n−1 and � i

n,

between � j
n−1 and � j

n, or between � N and { � i
N , � j

N}.
• all marginal correlations between � i

n−1 and � i
n, as well as between � j

n−1

and � j
n are different from zero.

Since we proved that Σi,j = 0, Σi,l = 0 for l ∈ � j
1, Σj,k = 0 for k ∈ � i

1,
Σk,l = 0 for (k, l) ∈ � j

1 × � j
1 and constructed � i

1 and � j
1 so that Σi,k 6= 0 for

k ∈ � i
1 and Σj,l 6= 0 for l ∈ � j

1, the assumption holds for N = 1. We now
assume that it also holds for a given N ≥ 1. If � N is empty, then the process
stops. Otherwise, the first step consists of setting � = {k1, l1, . . . , kN , lN , m},
with (kn, ln) ∈ � i

n× � j
n for n = 1 . . . , N , and m ∈ � N . Given the assumption

of independence between xi and xj, we must have Cov[xi, xj|x � ] = 0. This
conditional covariance coefficient is equal to (cf. Eq. (A.2))

Σi,k1
Σj,l1

[

∏

n=1,...,N−1 Σkn,kn+1
Σln,ln+1

]

ΣkN ,mΣlN ,m

det [Σ � , � ]

and is equal to zero if and only if ΣkN ,mΣlN ,m = 0, since, by construction all
Σkn,kn+1

and Σln ,ln+1
are different from zero. It is then possible to separate

� N into three sets: � i
N+1 such that ΣkN ,m 6= 0 and ΣlN ,m = 0 for all m ∈

� i
N+1; � j

N+1 such that ΣkN ,m = 0 and ΣlN ,m 6= 0 for all m ∈ � j
N+1; and

� N+1 such that ΣkN ,m = ΣlN ,m = 0 for all m ∈ � N+1. It now remains
to prove that we have Σk,l = 0 for (k, l) ∈ � i

N+1 × � j
N+1. To this aim, set

� = {k1, l1, . . . , kN+1, lN+1} with (kn, ln) ∈ � i
n× � j

n for n = 1 . . . , N +1. Since

3
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xi and xj are independent, we must have Cov[xi, xj|x � ] = 0. This quantity
being equal to (see Eq. (A.3))

Cov [xi, xj|x � ] =
Σi,k1

Σj,l1

[

∏

n=1,...,N Σkn,kn+1
Σln,ln+1

]

ΣkN+1,lN+1

det [Σ � , � ]
,

it is equal to zero if and only if ΣkN+1,lN+1
= 0. The assumption is therefore

also valid for N + 1.

The sequence ( � N) is of decreasing cardinal. � being a finite set, there ex-
ists a step N0 for which � N0

is empty: the process ends there. Set � i =
{V i

0 , . . . , � i
N0
} and � j = { � j

0, . . . , � j
N0
}. { � i, � j} is hence a partition of �

for which there exists no marginal correlation between an element of � i and
an element of � j. Consequently, the covariance matrix of x has the following
structural form:







Σ �
i,

�
i 0

0 Σ �
j ,

�
j





 ,

thereby proving the theorem.

3 Discussion and perspectives

In this paper, we considered x = (x � ) a multivariate Gaussian variable with
covariance matrix Σ. For i and j in � , we showed that if the conditional
covariance between xi and xj given any conditioning set � ⊂ � \ {i, j} was
equal to zero, then Σ was block diagonal and i and j belonged to two different
blocks. Note that the converse of this theorem is straightforward. Indeed, if one
considers that the covariance matrix Σ is block diagonal, then any conditional
covariance between variables belonging to two different blocks is equal to zero
according to Eq. (A.1).

Theorem 1 shows that, for multivariate Gaussian variables, there is a clear
separation between two variables xi and xj that are independent with regard
to any conditioning subset, and that this separation also applies to all other
variables, which are either “with” xi or “with” xj. Consequently, their effect
can be analyzed independently in one block of variables or the other.

Interestingly, this result nicely relates two distinct properties of Gaussian dis-
tributions. The block diagonal property of the covariance matrix is clearly a
global feature of Gaussian probability distributions. By contrast, the relation-
ship of “complete independence” (i.e., conditioned on all subsets) is rather
a local description and characterization of the interaction structure between
variables, since the definition gives a particular role to xi and xj. This per-
spective differs from the common approach, where one usually sets a “level”

4
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of conditioning (marginal for covariance graphs, partial for conditional inde-
pendence graphs) and then varies the two variables on which correlation is
calculated. In this “dual” approach, the definition does not so much depend
on the conditioning set than on the variables whose conditional covariance we
examine. We mainly focus on the independence pattern that can be exhibited
with a single pair of variables and its potential implications onto the global
structure. We believe that there is much to gain by analyzing variables from
this perspective and hope to be able to provide further results along the same
lines in the near future.

4 Acknowledgments

We are in debt to an anonymous referee for pointing out that the result exposed
here is well-known for three dimensional Gaussian variables.

A Calculation of Cov [xi, xj|x � ]

The conditional covariance between i and j given � reads (Anderson, 1958)

Cov[xi, xj|x � ] = Σi,j −
∑

a,b∈ �
(Σi∪j, � )

i,a

[

(Σ � , � )−1
]

a,b
(Σ � ,i∪j)b,j

.

Calculating (Σ � , � )−1 from the adjoint matrix (Horn and Johnson, 1999) yields
for Cov[xi, xj|x � ]:

Σi,j −
∑

a,b∈ �
(Σi∪j, � )

a,i

(−1)pos � (a)+pos � (b) det
[

Σ � \{b}, � \{a}

]

det [Σ � , � ]
(Σ � ,i∪j)b,j

, (A.1)

where pos � (a) stands for the position of a in � . From now on, we also assume
that there exist 2(N +1)+1 subsets of � , namely � i

n, � j
n, with n = 0, . . . , N ,

and � N , respecting the conditions detailed on page 3.

First, for N ≥ 1, set � = {k1, l1, . . . , kN , lN , m}, kn ∈ � i
n and ln ∈ � j

n for
n = 1 . . . , N , and m ∈ � N . By construction, only elements in � i

1 (resp. � j
1)

have nonzero marginal covariance with i (resp. j). Consequently, the sum in
Equation (A.1) can be simplified into

Σi,k1

(−1)pos � (a)+pos � (b) det
[

Σ � \{l1}, � \{k1}

]

det [Σ � , � ]
Σj,l1.

Given the definition of � , Σ � , � , Σ � \{l1}, � \{k1}, and the determinant of the
latter matrix respectively read

5
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Σ � , � =































Σk1 ,k1
0 Σk1,k2

0 0 0 0 · · · 0

0 Σl1,l1
0 Σl1,l2

0 0 0

Σk1 ,k2
0 Σk2,k2

0 Σk2,k3
0 0

.

.

.

0 Σl1,l2
0 Σl2,l2

0 Σl2,l3
0

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

0 ΣlN−1,lN
0 ΣlN−1,lN−1

0 ΣlN−1,lN−1
0

.

.

. 0 0 ΣkN−1,kN
0 ΣkN ,kN

0 ΣkN ,m

0 0 0 ΣlN−1,lN
0 ΣlN ,lN

ΣlN ,m

0 · · · 0 0 0 0 ΣkN ,m ΣlN ,m Σm,m































Σ � \{l1}, � \{k1} =































0 Σk1,k2
0 0 0 0 0 · · · 0

0 Σk2,k2
0 Σk2,k3

0 0 0

Σl1,l2
0 Σl2,l2

0 Σl2,l3
0 0

.

.

.

0 Σk2,k3
0 Σk3,k3

0 Σk3 ,k4
0

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

0 ΣlN−1,lN
0 ΣlN−1,lN−1

0 ΣlN−1,lN−1
0

.

.

. 0 0 ΣkN−1,kN
0 ΣkN ,kN

0 ΣkN ,m

0 0 0 ΣlN−1,lN
0 ΣlN ,lN

ΣlN ,m

0 · · · 0 0 0 0 ΣkN ,m ΣlN ,m Σm,m































det
[

Σ � \{l1}, � \{k1}

]

=−Σk1,k2
det

(

Σ � \{l1,k1}, � \{k1,k2}

)

,

with

Σ � \{l1,k1}, � \{k1,k2} =































0 0 Σk2,k3
0 0 0 0 · · · 0

Σl1,l2
Σl2,l2

0 Σl2,l3
0 0 0

0 0 Σk3,k3
0 Σk3,k4

0 0

.

.

.

0 Σl2,l3
0 Σl3,l3

0 Σl3,l4
0

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

0 ΣlN−1,lN
0 ΣlN−1,lN−1

0 ΣlN−1,lN−1
0

.

.

. 0 0 ΣkN−1,kN
0 ΣkN ,kN

0 ΣkN ,m

0 0 0 ΣlN−1,lN
0 ΣlN ,lN

ΣlN ,m

0 · · · 0 0 0 0 ΣkN ,m ΣlN ,m Σm,m































,

and, hence,

det
(

Σ � \{l1,k1}, � \{k1,k2}

)

= −Σl1,l2 det
(

Σ � \{l1,k1,l2}, � \{k1,l1,k2}

)

.

This leads to

det
[

Σ � \{l1}, � \{k1}

]

= Σk1,k2
Σl1 ,l2 det

(

Σ � \{l1,k1,l2}, � \{k1,l1,k2}

)

,

6
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with

Σ � \{l1,k1,l2}, � \{k1,k2,l1} =































0 Σk2,k3
0 0 0 0 0 · · · 0

0 Σk3,k3
0 Σk3,k4

0 0 0

Σl2,l3
0 Σl3,l3

0 Σl3,l4
0 0

.

.

.

0 Σl3,l4
0 Σk4,k4

0 Σk4,k5
0

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

0 ΣlN−1,lN
0 ΣlN−1,lN−1

0 ΣlN−1,lN−1
0

.

.

. 0 0 ΣkN−1,kN
0 ΣkN ,kN

0 ΣkN ,m

0 0 0 ΣlN−1,lN
0 ΣlN ,lN

ΣlN ,m

0 · · · 0 0 0 0 ΣkN ,m ΣlN ,m Σm,m































,

which is of the same form as Σ � \{l1}, � \{k1}. Consequently, a similar calculation
shows that

det
(

Σ � \{l1,k1,l2}, � \{k1,l1,k2}

)

= Σk2,k3
Σl2,l3 det

(

Σ � \{l1,k1,l2,k2,l3}, � \{k1,l1,k2,l2,k3}

)

,

and, by induction, one can hence easily show that, for all n ≥ 2,

det
(

Σ � \{l1,k1,...,ln−1,kn−1,ln}, � \{k1,l1,...,kn−1,ln−1,kn}

)

=

Σkn,kn+1
Σln,ln+1

det
(

Σ � \{l1 ,k1,...,ln,kn,ln+1}, � \{k1,l1,...,kn,ln,kn+1,ln}

)

.

We hence obtain that

det
[

Σ � \{l1}, � \{k1}

]

= det
(

Σ � \{l1 ,k1,...,kN−2,lN−2,lN−1}, � \{k1,l1,...,kN−2,lN−2,kN−1}

)

∏

n=1,...,N−2

Σkn,kn+1
Σln,ln+1

,

where the matrix of the right-hand side is equal to

Σ{kN−1 ,kN ,ln,m},{lN−1,kN ,lN ,m} =







0 ΣkN−1,kN
0 0

0 ΣkN ,kN
0 ΣkN ,m

ΣlN−1,lN
0 ΣlN ,lN

ΣlN ,m

0 ΣkN ,m ΣlN ,m Σm,m





 .

The determinant of this matrix can be obtained by a similar argument as
previously developed:

det
(

Σ{kN−1,kN ,ln,m},{lN−1,kN ,lN ,m}

)

=−ΣkN−1,kN

∣

∣

∣

∣

∣

0 0 ΣkN ,m

ΣlN−1,lN
ΣlN ,lN

ΣlN ,m

0 ΣlN ,m Σm,m

∣

∣

∣

∣

∣

= ΣkN−1,kN
ΣlN−1 ,lN

∣

∣

∣

∣

0 ΣkN ,m

ΣlN ,m Σm,m

∣

∣

∣

∣

=−ΣkN−1,kN
ΣlN−1,lN ΣkN ,mΣlN ,m.

We finally have

det
[

Σ � \{l1}, � \{k1}

]

= ΣkN ,mΣlN ,m

∏

n=1,...,N−1

Σkn,kn+1
Σln,ln+1

,

7
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and, in conclusion, for � = {k1, l1, . . . , kN , lN , m}, we obtain for Cov [xi, xj|x � ]

Σi,k1

[

∏

n=1,...,N−1 Σkn,kn+1

]

ΣkN ,m · Σj,l1

[

∏

n=1,...,N−1 Σln,ln+1

]

ΣlN ,m

det [Σ � , � ]
. (A.2)

The second case is rather similar to the first one. Set � = {k1, l1, . . . , kN+1, lN+1},
with N ≥ 1, kn ∈ � i

n and ln ∈ � j
n for n = 1 . . . , N+1. The previous line of rea-

soning can be applied in this case too, except that Σ � \{l1,k1,...,lN−1}, � \{k1,l1,...,kN−1}

reads

Σ{kN−1 ,kN ,lN ,kN+1,lN+1},{lN−1,kN ,lN ,kN+1,lN+1} =











0 ΣkN−1,kN
0 0 0

0 ΣkN ,kN
0 ΣkN ,kN+1

0

ΣlN−1,lN
0 ΣlN ,lN

0 ΣlN ,lN+1

0 ΣkN ,kN+1
0 ΣkN+1,kN+1

ΣkN+1,lN+1

0 0 ΣlN ,lN+1
ΣkN+1,lN+1

ΣlN ,lN











,

leading to a determinant of Σ � \{l1,k1,...,,lN−1}, � \{k1,l1,...,kN−1} equal to

=−ΣkN−1 ,kN

∣

∣

∣

∣

∣

∣

∣

0 0 ΣkN ,kN+1
0

ΣlN−1,lN
ΣlN ,lN

0 ΣlN ,lN+1

0 0 ΣkN+1,kN+1
ΣkN+1,lN+1

0 ΣlN ,lN+1
0 ΣlN ,lN

∣

∣

∣

∣

∣

∣

∣

=ΣkN−1 ,kN
ΣlN−1,lN

∣

∣

∣

∣

∣

∣

0 ΣkN ,kN+1
0

0 ΣkN+1,kN+1
ΣkN+1,lN+1

ΣlN ,lN+1
0 ΣlN ,lN

∣

∣

∣

∣

∣

∣

=−ΣkN−1 ,kN
ΣlN−1 ,lN ΣkN ,kN+1

∣

∣

∣

∣

∣

∣

∣

0 ΣkN+1,lN+1

ΣlN ,lN+1
ΣlN ,lN

∣

∣

∣

∣

∣

∣

∣

=ΣkN−1 ,kN
ΣlN−1,lN ΣkN ,kN+1

ΣlN ,lN+1
ΣkN+1,lN+1

.

Finally, Cov [xi, xj|x � ] reads

Σi,k1

[

∏

n=1,...,N Σkn,kn+1

]

· Σj,l1

[

∏

n=1,...,N Σln,ln+1

]

· ΣkN+1,lN+1

det [Σ � , � ]
. (A.3)
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(a) (b) (c)

Fig. 1. Sketch of proof. From an original partitioning of
�
into {

� i
0, . . . ,

�i
N ,

�j
0, . . . ,

�j
N ,

�
N} (a), we proceed as follows. We first show

that for all elements of
�
N there can be no marginal covariance with both

� i
N and

�j
N . We then partition

�
N into elements that

covariate with
�
i
N (gathered in

�
i
N+1), elements that covariate with

� j
N (gathered in

�j
N+1), and elements that covariate with neither

(gathered in
�
N+1) (b). Last, we show that elements of

� i
N+1 and

�j
N+1 must have zero marginal covariance (c).
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