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This paper aims to provide a nonparametric analysis of the integrated processes of an integer order, via a theoretical solution of a generalized eigenvalue problem. To this end, we introduce a mean operator for the process, by using weights belonging to a Sobolev Space.

Introduction

In this paper we develop a nonparametric model to analyze a p-variate process Y t that is integrated of order d. More generally than [START_REF] Bierens | Nonparametric co-integration analysis[END_REF], whose model describe p-variate integrated processes of order 1, we take into account the α-th differences of Y t (α = 1, . . . , d), that are opportunely weighted, and construct a pair of random matrices, related to the stationary and nonstationary part of the process, referring to the following definition:

Given p ∈ N, d integer, a discrete time p-variate integrated process of order d, Y t ∼ I(d), is defined by the following property: ∆ k Y t is a nonstationary process, for k = 0, 1, . . . , d -1 and ∆ d Y t is a stationary process.

Then we derive their asymptotic behaviors, using Andersen et al. (1982), and we solve a generalized eigenvalue problem.

The novelties of our model are basically two. First, we propose a nonparametric analysis of each integrated process of an integer order. Theoretical results covering cases of order 1 and 2, that are principally linked with economic phenomena, are obtained (see [START_REF] Bierens | Nonparametric co-integration analysis[END_REF] for the case of order 1). Second, the Sobolev Spaces theory is introduced (see [START_REF] Ladyzhenskaya | Linear and quasilinear elliptic equations[END_REF], in order to reduce the number of used weight functions.

The paper is organized as follows. Section 2 presents the data generating process. In Section 3 the random matrices are defined, and their asymptotic behavior is studied. Section 4 provides the solution of the generalized eigenvalue problem.

In this section we provide a description of the data generating process. First of all, we recall the basic definition of integrated processes of an integer order d.

Definition 2.1 A discrete time p-variate integrated process of order d, Y t ∼ I(d), is described by the following difference equation:

Y t = ∆ -d t = (1 -L) -d t ,
(1) 

where p ∈ N, Y t = (Y
= ∞ j=0 C j v t-j =: C(L)v t , t = 1, . . . , n, (2) 
where v t is a p-variate stationary white noise process and C(L) is a p-squared matrix of lag polynomials in the lag operator L.

Let us now state a condition for the matrix C(L) defined in (2).

Assumption 2.1 The process t can be written as in ( 2), where v t are i.i.d.

zero-mean p-variate gaussian variables with variance equals to the identity matrix of order p, I p , and there exist C 1 (L) and C 2 (L) p-squared matrices of lag polynomials in the lag operator L such that all the roots of detC 1 (L) are outside the complex unit circle and

C(L) = C 1 (L) -1 C 2 (L).
The lag polynomial C(L) -C(1) attains value zero at L = 1 with algebraic multiplicity equals to d. Thus, there exists a lag polynomial

D(L) = ∞ k=0 D k L k such that C(L) -C(1) = (1 -L) d D(L)
. Therefore, we can write

t = C(L)v t = C(1)v t + [C(L) -C(1)]v t = C(1)v t + D(L)(1 -L) d v t . ( 3 
)
Let us define w t := D(L)v t . Then, substituting w t into (3), we get

t = C(1)v t + (1 -L) d w t . ( 4 
)
(4) implies that, given Y t ∼ I(d), we can write recursively

∆ d-1 Y t = ∆ d-1 Y t-1 + t = ∆ d-1 Y t-1 + C(1)v t + +(1 -L) d w t = ∆ d-1 Y 0 + (1 -L) d-1 w t -w 0 + C(1) t j=1 v j , (5) 
where rank(C(1)) = p -r < p. This section starts by considering a transformation of the data generating process via a weighted mean operator, in order to define a pair of random matrices related to the stationary and nonstationary part of the process.

We introduce a weight function, representing the scale factor of Y t . It can be formalized by defining the adjusted process z as follows.

z n := 1 n n t=1 Y t • G n (t), n ∈ N and G : [0, +∞) → R. (6) 
The nonstationary part of the process is

M N S n := d-1 j=0 ∆ j z n . (7) 
A straightforward computation gives:

∆ j z n = 1 n j k=0 j k n t=1 ∆ k G n (t) • ∆ j-k Y t , n ∈ N. (8) 
By arranging the terms of ∆ j z t with respect to the differences ∆ α Y t , α ∈ {0, . . . , j}, equation ( 7) can be rewritten as

M N S n = 1 n d-1 j=0 n t=1 ∆ j Y t • d-j-1 k=0 k + j k ∆ k G n (t) . ( 9 
)
Under some hypotheses on the asymptotic behavior and on the functional structure of the G n 's, the convergence of M n is obtained. The following result holds.

Theorem 3.1 Assume that the following conditions hold.

• G n belongs to the Sobolev Space (H 1,d-1 (0, +∞), || • || 1,d-1 ), for each n ∈ N.
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• It results

lim n→+∞ n 2 4 n(d-2) ||G n || 1,d-2 = 0.
• There exists

F n : [0, +∞) → R with support (ζ n , ξ n ) such that -(G n -F n ) belongs to the Sobolev Space (H 1,1 (0, +∞), || • || 1,1 ), for each n ∈ N; -it results lim n→+∞ 4 n(d-1) ||G n (x) -F n (x)|| 1,1 = 0.
Then we have

lim n→+∞ ||M N S n - 1 n n t=1 F n (t)∆ d-1 Y t || = 0.
Proof. In order to prove the result, it is sufficient to show that

∀ > 0, ∃ n ∈ N such that n > n ⇒ ||M N S n - 1 n n t=1 F n (t)∆ d-1 Y t || < . ( 10 
)
We stress that,

∀ 1 > 0, ∃ n 1 1 , n 2 1 ∈ N such that, 1 n n t=1 ∆ k G n (t) - R + G (k) n (x)dx < 1 for n > n 1 1 (11)
and

1 n n t=1 |G n (t) -F n (t)| - R + |G n (x) -F n (x)|dx < 1 for n > n 2 1 . (12)
Then, by ( 11) and ( 12), for 1 small enough and n > max{n 1 1 , n 2 1 }, we have

M N S n - 1 n n t=1 F n (t)∆ d-1 Y t = = 1 n d-1 j=0 n t=1 ∆ j Y t • d-j-1 k=0 k + j k ∆ k G n (t) - 1 n n t=1 F n (t)∆ d-1 Y t ≤ A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT ≤ d-2 j=0 n t=1 ∆ j Y t • d-j-2 k=0 k + j k 1 n n t=1 ∆ k G n (t) + + 1 n n t=1 [G n (t) -F n (t)]∆ d-1 Y t ∼ ∼ d-2 j=0 n t=1 ||∆ j Y t || • d-j-2 k=0 k + j k R + |G (k) n (x)|dx + +||∆ d-1 Y t || • R + |G n (x) -F n (x)|dx. ( 13 
) Since Y t = (Y 1 t , . . . , Y p t ) is a p-variate I(d) process, then ∆ j Y t follows a gaussian
law with zero mean and variance-covariance matrix with finite elements. By defining the norm

||∆ j Y t || = ||(∆ j Y 1 t , . . . , ∆ j Y p t )|| := E[∆ j Y 1 t ] 2 + . . . + E[∆ j Y p t ] 2 ,
then there exists a constant depending on t and j, C(t, j) > 0, such that

||∆ j Y t || < C(t, j). ( 14 
)
Let us define

C n,j := max t=1,...,n C(t, j). ( 15 
)
Then the estimate in (13) can be refined. It results: This fact implies that

(13) ≤ d-2 j=0 n t=1 C(t, j) • d-j-2 k=0 k + j k R + |G (k) n (x)|dx + +C(t, d -1) R + |G n (x) -F n (x)|dx ≤ ≤ d-2 j=0 C n,j n(n + 1) 2 • d-j-2 k=0 k + j k R + |G (k) n (x)|dx + +C n,d-1 R + |G n (x) -F n (x)|dx. ( 16 
(16) ≤ d-2 j=0 C n,j • C d n(n + 1) 2 • d-j-2 k=0 R + |G (k) n (x)|dx + +C n,d-1 R + |G n (x) -F n (x)|dx. ( 17 
) Since G n ∈ H 1,d-2 , then G n ∈ H 1,h
, for each h = 1, . . . , d -2, and we can write

(17) = n(n + 1)C d 2 • d-2 j=0 C n,j ||G n || 1,d-j-2 + C n,d-1 ||G n -F n || 1,1 . (18) 
By standard properties of the Sobolev Spaces, we have

H 1,d-2 ⊂ . . . ⊂ H 1,2 ⊂ H 1,1 ,
and

||G n || 1,1 ≤ ||G n || 1,2 ≤ . . . ≤ ||G n || 1,d-2 .
Such properties give a further estimate:

(18) ≤ n(n + 1)C d ||G n || 1,d-2 2 • d-2 j=0 C n,j + C n,d-1 ||G n -F n || 1,1 ≤ ≤ n(n + 1)C d ||G n || 1,d-2 2 • (d -1)C n,d-2 + C n,d-1 ||G n -F n || 1,1 . (19) 
A long but easy computation shows that, for each 2 > 0, there exists

n 2 ∈ N such that, ∀ j, n > n 2 ⇒ |C n,j -(2 j -1) 2n-2 | ∼ |C n,j -4 jn | < 2 . ( 20 
)
Therefore, for each n > max{n 1 1 , n 2 1 , n 2 } we have the following approximation:

(19) ∼ (d -1)C d 2 • n 2 4 n(d-2) ||G n || 1,d-2 + 4 n(d-1) ||G n -F n || 1,1 . By the hypotheses, ∀ > 0, ∃ n ∈ N such that, for n > n , (d -1)C d 2 • n 2 4 n(d-2) ||G n || 1,d-2 + 4 n(d-1) ||G n -F n || 1,1 < .
The result is proved, by choosing n > max{n 1 1 , n 2 1 , n 2 }.

Theorem 3.1 is a key result to define two suitable random matrices, that are related to the stationary and the nonstationary terms of the process. These random matrices are assumed to be dependent on an integer number m ≥ p.

Given µ = 1, . . . , m, let us consider

M N S µ,n = 1 n d-1 j=0 n t=1 ∆ j Y t • d-j-1 k=0 k + j k ∆ k G µ,n (t) ,
with G µ,n (and related F µ,n ) as the functions G n (and F n ) described in Theorem 

  ) A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT By definition of the binomial coefficient, there exists a constant C d depending on d such that k + j k ≤ C d , ∀ j = 0, . . . , d -2; k = 0, . . . , d -j -2.

  ,ξ n ) (ζ n ,ξ n ) F µ,n (x)F µ,n (y) min{x, y}dxdy
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with

The random matrices defined above are the main tools of the nonparametric analysis, that will be developed in the next section.

Convergence results

In this section the generalized eigenvalue problem is solved. To this end, let us assume firstly that

We define

, where f µ is the derivative of F µ and

Moreover, we define the following p-variate standard normally distributed random vectors:

and we construct the matrix V r,m as

where

The following result summarizes the eigenvalue problem and provide a nonparametric solution for it.

Theorem 4.1 Assume that the following hypotheses hold.

(0,1) (0,1)

If Assumptions 2.1 and 2.2 are true, then:

(I) suppose that λ1,m ≥ . . . ≥ λp,m are the ordered solutions of the generalized eigenvalue problem 

Then the following convergence in distribution holds n 2 ( λp-r+1,m , . . . , λp,m ) → (λ * 2 1,m , . . . , λ * 2 r,m ).

Proof. The proof is due to Lemmas 1, 2 and 4 [START_REF] Bierens | Nonparametric co-integration analysis[END_REF], and Theorem 3.1.