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ABSTRACT26

The action of transforming-growth-factor (TGF)- following inflammatory responses is 27

characterized by increased production of extracellular matrix (ECM) components, as well as 28

mesenchymal cell proliferation, migration, and accumulation. Thus, TGF- is important for 29

the induction of fibrosis often associated with chronic phases of inflammatory diseases. This 30

common feature of TGF-related pathologies is observed in many different organs. Therefore, 31

in addition to the description of the common TGF--pathway, this review focuses on TGF--32

related pathogenetic effects in different pathologies/organs, i. e., arthritis, diabetic 33

nephropathy, colitis/Crohn’s disease, radiation-induced fibrosis, and myocarditis (including 34

their similarities and dissimilarities). However, TGF- exhibits both exacerbating and 35

ameliorating features, depending on the phase of disease and the site of action. Due to its 36

central role in severe fibrotic diseases, TGF- nevertheless remains an attractive therapeutic 37

target, if targeted locally and during the fibrotic phase of disease.38

39
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1. INTRODUCTION40

The fibrotic reaction of the connective tissue following an inflammatory response is mainly 41

characterized by an increased production of extracellular matrix (ECM) components and 42

mesenchymal cell proliferation, migration and accumulation. Despite the existence of 43

numerous distinct causes of chronic inflammatory diseases in different organs and tissues, 44

these diseases are generally characterized by: i) severe and intermittent progression with 45

phases of acute exacerbation and remission; ii) immigration of inflammatory cells 46

(macrophages, granulocytes and T-cells); and iii) increased expression of pro-inflammatory 47

mediators (Figure 1). These processes result in the proliferation of local fibroblasts and, by 48

interaction with epithelial cells, in their differentiation into myofibroblasts and can be 49

regarded as a misguided wound healing. Finally, the inflammatory process comes to rest, but 50

the massive fibrosis prevents a rebuilding of functionally intact tissue and organs.51

Transforming growth factor (TGF)- is an ubiquitously expressed cytokine belonging 52

to a large superfamily of activins/bone morphogenetic proteins [1]. This mediator plays an 53

active role in the processes discussed above, such as proliferation, wound healing [2], and 54

synthesis of ECM molecules [3]. TGF-, therefore, strongly contributes to fibrotic disorders 55

such as diabetic nephropathy, Crohn´s disease, rheumatoid arthritis, radiation-induced 56

fibrosis, and myocarditis. However, TGF- is clearly a bi- (or multi-) functional molecule 57

with strong effects on the immune system [4,5].58

59

2. TGF- SIGNALING PATHWAY60

TGF- is synthesized as one part of a large molecule, the pro-TGF- containing the latency-61

associated proteins (LAP; Figure 2). The latter is cleaved from TGF- in the Golgi apparatus, 62

but remains non-covalently associated with the growth factor. The disulfide-bound latent-63
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TGF--binding proteins 1/2 (LTBP 1/2) connect the whole complex to the ECM (details 64

described in [6]). Release of TGF- from the pro-TGF- complex can be achieved through 65

proteolytic activity by plasmin [7] or matrix-metalloproteinase (MMP)-2 and MMP-9 [8], 66

through integrins [9,10], recently reviewed in [11], treatment with mild acids [12], or through 67

the action of thrombospondin (THBS; [13]) by disrupting the non-covalent interactions 68

between LAP and TGF-1. Once released, TGF- mediates signals through pairs of type I 69

and type II receptors [14]. The type III receptor (betaglycan) acts - probably in conjunction 70

with other heparan sulfate glycans like syndecan [15]- as a co-receptor for binding/presenting 71

TGF and a regulator of TGF- signaling [16]. The result of ligand binding is the activation of 72

the type II receptor (TGFBR2), which then phosphorylates the type I receptor (TGFBR1). The 73

active receptor complex then phosphorylates the so-called R (receptor)-Smad-2 or Smad-3 74

that propagates the signal [17]. The phosphorylation of Smad2/3 decreases the affinity for the 75

Smad-anchor for receptor activation (SARA), which in non-stimulated cells mediates the 76

retention of Smad2/3 in the cytoplasma by interaction, and increases the affinity of Smad2/3 77

for Smad-4 (a so-called co-Smad). This complex is now able to enter the nucleus, to bind 78

transcriptional co-activators like p300 and Creb-binding-protein (CBP) or repressors like SkiL 79

or TGIF [18], and to regulate the transcriptional activity of various genes.80

Mitogen-activated protein kinases (MAPKs) and protein kinase C can also interfere 81

with either the nuclear translocation or binding of Smad3/4 complexes to DNA and regulate 82

TGF-1 signalling [19,20]. Moreover, the serine-threonine protein kinase B can directly 83

interact with Smad3, thereby preventing its phosphorylation and nuclear translocation [21]. 84

Other pathways can be directly activated by TGF-1. These include components of the 85

MAPK pathway, such as ras, raf, ERK, p38 and JNK, the phosphatidylinositol-3 kinase 86

cascade, as well as the regulators of cadherin junctions, RhoA and Rac ([19,22,23]; Fig. 1).87

Recently, an involvement of the focal adhesion kinase (FAK) was established in 88
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myofibroblast differentiation and in remodeling of the connective tissue following stimulation 89

with TGF [24,25]. In line with these results, TGF-induced FAK-signaling is required for the90

activation of TAK [26] or MEKK1 and, subsequently, of JNK [27], all factors shown to be 91

essential for the transcription of pro-fibrotic genes.92

Notably, that signal transduction pathways have their own intracellular regulators. An 93

inhibitory Smad (Smad7) blocks TGF-1 signaling by physical interaction with the activated 94

TGFBR1 receptor and prevents the docking and phosphorylation of Smad2/3 [28,29].95

This complex TGF- signaling pathway (Figure 2) contains numerous ligands, 96

receptors, and signaling molecules which, as potential targets of dysregulation via increased 97

or decreased expression, activation or interaction, may be partially involved in fibrotic 98

reactions in the diseases discussed below.99

100

3. TGF--RELATED MOLECULES IN RHEUMATOID ARTHRITIS101

The importance of TGF-1 in rheumatoid arthritis (RA) ranges from an association with 102

certain vascularization patterns in the synovial membrane (SM) [30], and an association of 103

TGF- polymorphisms with the radiological signs of joint destruction [31] to an induction of 104

pro-inflammatory cytokines, MMP [32], aggreccanase [33] and urokinase-type plasminogen 105

activator [34]. In addition, TGF- plays an important role for the function of regulatory T-106

cells [5] in the suppression of autoimmunity. Indeed, increased levels of TGF-1 have been 107

found in the synovial membrane of patients with RA by northern blot [35], 108

immunohistochemistry [36,37], western blot [38] and in synovial effusions [39]. Also 109

TGFBR2 was detected at higher levels than in normal synovial tissue [35].110

Using “pathway-directed” software following genome-wide comparison between 111

synovial fibroblasts (SFB) from patients with RA and osteoarthritis (OA) with Affymetrix 112
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arrays, gene expression of TGF-1, TGF-3, LTBP1/2, THBS1, TGFBR1, SARA, CBP, SkiL 113

– belonging to the TGF--pathway (Figure 2) - was elevated in RA [40]. After validating 114

array data at the mRNA and protein levels using quantitative PCR and western 115

blot/immunohistochemistry, we confirmed an upregulated TGF- pathway in RA-SFB. The 116

presence of TGF-1, in conjunction with increased amounts of TGF--releasing THBS1 and a 117

higher expression of TGFBR1, may thus lead to an amplified response of RA-SFB to TGF-118

This RA-specific response has been confirmed by increased expression of MMP-11 following 119

TGF- stimulation, implying a pathogenetic relevance of the TGF--pathway for MMP-120

induced degradation or remodeling processes in RA [40].121

The importance of TGF- for the pathogenesis of arthritis is emphasized by a number 122

of animal models. The abundant expression of TGF-1, 2, and 3 as well as the TGFBR1 and -123

2 in rat synovium was increased after onset of the collagen-induced arthritis (CIA) [41], and 124

direct intra-articular injection of TGF-1 or TGF-2 induced synovial erythema, swelling, 125

and cellular infiltration resulting in synovial inflammation and hyperplasia [42]. Conversely,126

neutralization of TGF- inhibited acute and chronic arthritis induced by streptococcal cell 127

wall (SCW) [43]. In line with these observations, an adenovirus-mediated overexpression of 128

TGF-1 in rabbit knees led to an increased glycosaminoglycan release, nitric oxide 129

production and, most notably, to fibrosis and muscle edema [44]. The prevention of CIA by 130

administration of a TGFBR1 inhibitor (HTS466284), which concomitantly reduced the 131

expression of vascular endothelial growth factor (VEGF), platelet-derived growth factor 132

(PDGF)-AA, TNF-, and cellular proliferation [45], further underlines the pathogenetic role 133

of TGF- in arthritis. 134

In contrast to the above-mentioned studies, numerous observations show beneficial 135

effects of TGF- in arthritis. If administered systemically, TGF-1 suppressed SCW-induced 136
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arthritis, as measured by cellular infiltration and joint erosion [46]. In addition, investigation137

of the cytokine expression during CIA demonstrated a strong upregulation of TGF-1/2 in the 138

remission state of disease, possibly refelecting the anti-inflammatory regulation of T-cells by 139

TGF- in arthritis. If TGF- signaling was inhibited by expression of dominant-negative 140

TGFBR2 in T-cells [47] the susceptibility and the clinical severity of CIA was strongly 141

increased. Likewise, if TGF- was retrovirally overexpressed in arthritogenic splenocytes,142

CIA could not be transferred to SCID mice and established disease was ameliorated [48]. 143

Therefore, it may be important to inhibit TGF- only at the site of inflammation without 144

targeting regulatory lymphocytes at extra-articular sites.145

146

4. TGF--RELATED MOLECULES IN DIABETIC NEPHROPATHY147

TGF- and its signal transduction play a major role in diabetic nephropathy and have 148

therefore been thoroughly studied [49-53]. Among the features of the diabetic milieu,149

hyperglycemia, increased non-enzymatic glycation of proteins, de novo synthesis of 150

diacylglycerol and subsequent activation of protein kinase C, increased intracellular 151

glucosamine production, and enhanced renal production of vasoactive agents (angiotensin II, 152

endothelins, thromboxane) have all been shown to increase the expression of TGF- in 153

cultured renal cells and animal models of diabetic nephropathy [50,52,54]. 154

The TGF- level is elevated in the kidneys of insulin-dependent diabetic animals 155

during both early and late stages of disease [53,54]. Treatment of the streptozotocin (STZ)-156

diabetic rat with sufficient insulin to reduce hyperglycemia suppressed the enhanced 157

expression of TGF- and matrix components in the glomeruli. In the STZ-diabetic rat and 158

mouse, increased TGF-1 expression in the renal cortex and glomeruli as well as up-159

regulation of the TGFBR2 mRNA and protein was noted early after the onset of diabetes 160
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[53].. The db/db mouse, a model of type 2 diabetes, characterized by hyperglycemia, obesity, 161

and insulin resistance, develops increased amounts of TGF-1 localized in the glomerular 162

compartments [55]. In contrast, the mRNA and protein levels of the TGFBR2 are 163

significantly up-regulated in both the glomerular and the tubulointerstitial compartments [55]. 164

The development of diabetic renal hypertrophy and glomerulosclerosis is likely caused 165

by heightened activity of the TGF- system [56-63]. Short-term treatment of the STZ-diabetic 166

mouse with a neutralizing monoclonal antibody against all three isoforms of TGF- prevented 167

glomerular hypertrophy, reduced the increment in kidney weight by 50%, and significantly 168

attenuated the increase in TGF-1, 1(IV) collagen, and fibronectin mRNAs without 169

affecting glycemic control [56]. The results of this study suggested a cause-and-effect 170

relationship between the renal TGF- system and the development of early structural changes 171

in diabetic nephropathy. Systemic anti-TGF- therapy for eight weeks prevented the 172

mesangial matrix expansion of diabetic glomerulosclerosis and, most importantly, preserved 173

kidney function, showing for the first time that neutralization of TGF- activity prevents the 174

progression of renal failure in diabetes [57]. However, the anti-TGF- antibody did not reduce 175

albuminuria, which itself may promote the progression of renal insufficiency [57]. The 176

paradox of preserved renal function in view of persistent albuminuria may be explained by 177

postulating that the deleterious effects of proteinuria are themselves mediated by the TGF-178

system [63-65].179

In mouse mesangial and tubular cells, high glucose stimulates the transcription of 180

fibronectin and, in addition, potentiates the transcriptional activation of fibronectin by TGF-181

1 [58,59]. This particular effect of TGF-1 appears to be mediated by Smad3, because over-182

expression of Smad3 alone was able to induce fibronectin promoter activity [66]. In 183

conjunction with exogenous TGF-1, Smad3 over-expression synergistically increased 184
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fibronectin expression, as if the extra Smad3 had increased the efficiency of TGF- signaling185

[66]. Finally, transfection of a Smad3-dominant-negative construct inhibited TGF-1 186

stimulated fibronectin promoter activity [67,68]. However, part of the TGF-1-induced 187

fibronectin expression may be mediated in parallel by the p38MAPK pathway [68,69]. 188

Finally, there is evidence that Smad3 is a central mediator in the TGF-1-induced increase of 189

mRNA expression for 1(I) collagen [68,70]. TGF--induced MAPK activation also leads to 190

N-terminal phosphorylation of p53 that enables its interaction with TGF--activated Smads 191

[64], an indication for cross-talk between the various TGF- signaling pathways. 192

TGF-1 may have additional effects besides the stimulation of extracellular matrix 193

production. In podocytes, TGF-1 induces apoptosis through Smad7 by inhibiting nuclear 194

translocation of the cell survival factor NF-B [70]. TGF-1-mediated activation of Smad7 is 195

specific for podocytes and is not found in mesangial cells in a limited series of biopsies from 196

patients with diabetic nephropathy [64]. Since podocytes are terminally differentiated cells 197

unable to undergo cell division due to the up-regulation of the cell cycle inhibitory proteins 198

p57 and p27Kip1, apoptotic loss of cells was not replaced.199

Studies performed in diabetic patients with various degrees of nephropathy also 200

underline the importance of the renal TGF- system in disease development [71-73]. All three 201

isoforms of TGF- are elevated in both the glomerular and the tubulointerstitial compartments 202

of patients with established diabetic nephropathy [71,72]. Furthermore, glomerular TGF-1 203

mRNA is markedly increased in biopsy specimens from patients with proven diabetic kidney 204

disease. These investigations suggests that increased renal TGF- levels closely correlate with 205

the degree of mesangial matrix expansion, interstitial fibrosis, and renal insufficiency.206
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Another study, designed to assess renal production of TGF- [73] measured aortic, 207

renal vein, and urinary levels of TGF- in 14 type 2 diabetic and 11 non-diabetic control 208

patients undergoing elective coronary artery catheterization [73]. Both groups were roughly 209

matched with regard to the range of renal function and the presence of hypertension and 210

proteinuria. Renal blood flow was measured to calculate the net mass balance across the 211

kidney. The gradient of TGF-1 concentration across the renal vascular bed was negative in 212

the non-diabetic patients indicating net renal extraction of TGF-1, whereas the gradient was 213

positive in the diabetic patients indicating net renal production of TGF-1. When the renal 214

TGF-1 mass balance was calculated, a similar pattern was observed with the non-diabetic 215

kidney removing approximately 3500 ng/min of TGF-1 from the circulation, and the diabetic 216

kidney adding approximately 1000 ng/min of TGF-1 [73]. In addition, the level of 217

bioassayable TGF- was increased four-fold in the urine of diabetic versus non-diabetic 218

patients. This was not simply a function of enhanced glomerular permeability to protein since 219

diabetic patients both with and without microalbuminuria displayed similarly high rates of 220

urinary TGF- excretion [73]. These results demonstrated that the kidneys of diabetic patients 221

overproduce TGF-1 protein; further details, e. g., the exact contribution of the different renal 222

cell types, need to be investigated.223

An interesting post-hoc study assessed whether treatment with the angiotensin 224

converting enzyme inhibitor captopril would lower serum TGF-1 levels in a small subset of 225

patients with diabetic nephropathy who had been enrolled in the Collaborative Study Group 226

[74,75]. After six months, the serum TGF-1 level decreased significantly by 21% in the 227

captopril-treated group, whereas it increased slightly by 11% in the placebo-treated group 228

[75]. Interestingly, the captopril-treated patients with decreased serum TGF-1 levels tended 229

to have better preserved renal function over the ensuing two-year period [75]. This association 230
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was even more pronounced in the subset of patients with an initial glomerular filtration rate of 231

less than 75 ml/min. These results suggest that TGF-1 plays a pivotal role in the progression 232

of diabetic nephropathy and that angiotensin converting enzyme inhibitor therapy may protect 233

the kidney by lowering TGF-1 production.234

235

5. TGF--RELATED MOLECULES IN INTESTINAL INFLAMMATION – A DOUBLE-236

SIDED SWORD237

TGF- is constitutively expressed by epithelial cells, fibroblasts, and mononuclear cells in the 238

gastrointestinal tract [76]. Its critical role in intestinal homeostasis as a negative master 239

regulator of inflammation is well-established [77,78] and indisputable. However, translation 240

of elegant mouse experiments into therapeutic interventions in humans requires a clearer 241

understanding of TGF- activity in the human gut. Mice with global TGF- defects, such as 242

TGF-–null mice or transgenic mice expressing a dominant negative TGFBR2 chain, are 243

unresponsive to TGF-1 signaling. The former die soon after birth due to systemic 244

inflammation, and the latter develop severe colonic and pulmonary inflammation [79,80]. 245

These manifestations of global TGF-1 defects are mirrored in mouse models of colitis in that 246

the secretion of TGF-1 is consistently associated with either the protection from colitis or a 247

greatly diminished severity of colitis. This is seen both in the TH1 model of colitis induced by 248

the haptenating reagent trinitrobenzene sulfonic acid (TNBS), which mimics Crohn’s disease249

(CD), or the TH2 model of colitis induced by the haptenating agent oxazolone, which mimics 250

ulcerative colitis (UC) [81,82]. In addition, it is seen in the colitis of SCID or RAG2-deficient 251

mice receiving CD45RBhigh (naive) T cells in which the protective effect of the cotransfer of 252

CD45RBlow T (memory) cells is abolished by concomitant administration of a neutralizing 253

TGF-1 antibody [83]. These and other studies quite conclusively establish that TGF-1 plays 254
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an essential, regulatory role in the control of colitis. On the other hand, in mice TGF-1 in 255

combination with IL-6 induces a strong pro-inflammatory TH17 cell differentiation [84-86]. 256

Notably, in humans TGF-1 does not have a direct effect on the development of human TH17 257

cells, but it can indirectly favour the development of these cells by suppressing the expression 258

of T-bet and selectively inhibiting the expansion of IFN--producing T cells [87-89]. 259

The important role of Smad3 as an essential mediator of TGF-1-induced anti-260

inflammatory and suppressive activities at the mucosal level emerges from studies in mice 261

with targeted deletion of the Smad3 gene. The animals are viable, but die from defects in 262

mucosal immunity at 1–6 months of age. Mutant mice show diminished cell responsiveness to 263

TGF-1, massive infiltration of T cells, and multiple pyogenic abscesses in the stomach and 264

intestine [87,90]. When Smad signaling was studied in normal human gut mucosa, whole 265

biopsies or isolated lamina propria mononuclear cells, a basal level of phosphorylated 266

(phospho-) Smad3 was observed which was rapidly upregulated by the addition of exogenous 267

TGF-1 [91]. 268

TGF- has been also implicated as a key inducer of epithelial-mesenchymal transition 269

(EMT) [92-97]. Amongst others, EMT is an essential component of tissue remodeling and 270

wound repair (reviewed in [98,99]) and fibrosis (reviewed in [100]). During this transition, 271

the epithelial phenotype, characterized by strong cell-cell junctions and polarity, is replaced 272

by a mesenchymal phenotype, with reduced cell-cell interactions, a fibroblastic morphology 273

and increased motility. TGF- stimulates the proliferation of many cell types, particularly 274

those of mesenchymal origin, and it is also a potent inhibitor of epithelial cell proliferation. 275

EMT in response to TGF-1 and in fibrosis is mediated predominantly via Smad-dependent 276

(mainly Smad3) pathways [101,102]. A loss of Smad3 in mice blocked both morphological 277
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changes of lens epithelium to a mesenchymal phenotype and expression of EMT markers in 278

response to injury in vivo or to exposure to exogenous TGF- in organ culture [101]. 279

CD is a chronic, progressive disease of the gastrointestinal tract with an unknown 280

etiology. It is characterized by transmural inflammation of all layers of the bowel wall. The 281

formation of stenoses and strictures is common in this disease, which causes abdominal pain, 282

anorexia, and weight loss. Approximately 50% of CD patients undergo surgery for this type 283

of complication during a 10-year course; however, the recurrence rate after surgery is high. In 284

contrast, UC rarely causes intestinal stenosis. Cytokines released from inflammatory cells 285

have long been implicated in the pathogenesis of intestinal fibrosis. TGF-/Smad signaling 286

plays an important role in CD [103-105]. The transmural infiltrate of CD is responsible for 287

initiating and maintaining a series of connective tissue changes not only involving the 288

mucosa, but also the submucosa and muscularis mucosae and muscularis propria, where a 289

marked increase of collagen type I, III, and V mRNA is observed [106,107]. TGF- has been 290

identified as one of the central growth factors/cytokines that specifically induces a fibrotic 291

response after inflammatory injury in the intestinal tract. In CD, there is a marked 292

overexpression of TGF-1 and TGFBRs in the colonic mucosa [76,108]. Fibrosis in CD can 293

therefore be interpreted as an aberrant healing response to mucosal injury [109]. In addition, 294

TGF- appears to be involved in intestinal fibrosis in other enteropathies, such as radiation 295

enteritis, collageneous colitis, and intestinal graft-versus host disease [110-112]. Both TGF-296

and its receptors are overexpressed in the intestine of patients with CD [113]. Intestinal 297

fibroblast expression of TGF- isoforms varies according to the nature of tissue. Fibroblasts 298

from normal and inflamed mucosa both express the TGF-1 and TGF-3 isoforms, while 299

those from fibrotic tissue show reduced expression of TGF-3, but enhanced expression of 300

TGF-2 and TGF-1 [114]. This is remarkable, since the TGF-1 and TGF-2 isoforms have 301
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been specifically implicated in pathogenic fibrosis, while TGF-3 appears to have antifibrotic 302

properties [115]. Monteleone and colleagues have provided insight into the failure of TGF-303

down-regulation in CD. Despite the abundant expression of TGF- in the mucosa of patients 304

with CD, phospho-Smad3 is diminished in the mucosa compared to control mucosal samples, 305

as is the complex of Smad3 with Smad4. This may be due to the induction and overexpression 306

of Smad7 in the mucosa of patients with CD and UCs [116]. However, upregulation of Smad7 307

is not specific for inflammatory bowel disease (IBD), but also occurs in Helicobacter pylori-308

induced gastritis [117]. In addition, mucosal T cells in both whole tissue and isolated cells 309

show defective TGF-1 signaling as measured by reduced immuno-reactivity against 310

phospho-Smad3 [117]. Specific anti-sense oligonucleotides for Smad7 reduce expression of 311

Smad7 in cells isolated from IBD patients which then become responsive to exogenous TGF-312

1. TGF-1 cannot inhibit pro-inflammatory cytokine production in isolated lamina propria 313

mononuclear cells from CD patients, but inhibition of Smad7 with anti-sense oligonucleotides 314

restores TGF-1 signaling and allows TGF-1 to inhibit cytokine production. In inflamed 315

mucosal tissue explants from CD patients, inhibition of Smad7 also restores phospho-Smad3 316

and decreases pro-inflammatory cytokine production, an effect which is partially blocked by 317

anti-TGF-1. The extension of these studies examined the interactions between Smad 318

signaling and NF-B activation in inflamed gut: While TGF-1 is a potent inhibitor of TNF-319

-induced NF-B activation in normal gut, it has no activity in inflamed gut. This can be 320

attributed to over-expression of Smad7, since treatment of cells from inflamed gut with anti-321

sense to Smad7 allows TGF-1 to rapidly down-regulate NF-B activation [117].322

If it becomes possible to specifically inhibit Smad7, endogenous TGF-1 in the 323

inflamed gut may negatively regulate pro-inflammatory cytokine production and NF-B 324

activation, the major components of the immune overactivity which drives tissue injury in 325
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IBD. At the same time, however, it is important to discover the factors which control Smad7 326

expression in the inflamed gut. Furthermore, cell-specific expression of Smad7 will be 327

important because TGF-1 has different effects on different cell types. Thus, while blocking 328

Smad7 will allow TGF-1 to reduce pro-inflammatory cytokine production by T cells and 329

macrophages, it may allow TGF-1 to increase collagen production in myofibroblasts, 330

resulting in fibrosis. However, at the moment the relative importance of the known inducers 331

of Smad7 in the gut, such as IFN- or TNF-, or even whether TGF-1 itself induces Smad7 332

in a negative regulatory loop, is still unclear.333

334

6. TGF--RELATED MOLECULES IN RADIATION-INDUCED FIBROSIS335

TGF-1 levels are increased in irradiated mouse skin [118,119] and decrease slowly after 336

irradiation in both pig and human skin [120,121]. Following microvascular hard or soft tissue 337

transfer, TGF-1 is again upregulated in a biphasic manner. The first expression peak on day 338

3 post operation is due to enhanced activation of latent TGF-1 by extracellular enzymes 339

while the second between day 14 and 28 after surgery is a result of de novo synthesis [122]. 340

Its most important signaling receptor TGFBR2 is upregulated in irradiated graft beds as well 341

[123]. Signaling leads to increased nucleoplasmatic shuttling of active Smad2/3 and induction 342

of TGF-1 target genes in fibrotic healing, which is mainly due to decrease in cytoplasmatic 343

levels of the inhibitory Smad7 [124].344

As a consequence, the extracellular matrix is qualitatively and quantitatively altered 345

[125]. Prolyl-hydroxyprolinase- overexpression [126] promotes synthesis of collagen I, III 346

and IV [124], while repression of degrading enzymes, such as MMP-1 and induction of tissue 347

inhibitors [127] suppresses the degrading pathways. Moreover, integrin surface receptors, 348

such as 21 integrin are up-regulated as well and modulate transmission of tensile forces 349
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[128]. In the presence of such forces fibroblasts differentiate into myofibroblasts resulting in 350

constrictive fibrosis [129].351

Irradiation-induced fibrosis and damage to the microvasculature lead to wound healing 352

disorders following surgery in previously irradiated areas. Such disorders are dependent, in 353

part, on the radiation dosage and the timing of surgery after irradiation [130,131] and reduce 354

the success rate of free flaps to 90% compared with 94% in non-irradiated graft beds [132].355

Taking the central role of TGF-1 in radiation-impaired wound healing into account,356

the question of whether TGF-1-levels differ in the healthy tissue between different patients 357

is of utmost importance. It has been demonstrated that patients with an increased TGF-1 358

plasma level exhibit an increased risk of developing skin fibrosis following irradiation [133]. 359

To find a particular predictor which sufficiently corresponds with the frequency to develop 360

wound healing complications following surgery in previously irradiated graft beds would give 361

a large clinical impact on planning individual treatment protocols. The availability of reliable 362

markers may eventually allow the prediction of outcome prior to commencement of treatment, 363

and thus allow modification of combined protocols to minimize late adverse effects without 364

compromising tumor control. 365

366

7. TGF--RELATED MOLECULES IN MYOCARDITIS367

Heart fibrosis is a hallmark feature of the chronic stage of viral myocarditis [134,135]. Human 368

pathogenic coxsackievirus B3 (CVB3) is considered the most frequent viral cause of chronic 369

myocarditis in men [136]. Clinical manifestations of acute myocarditis vary from flu-like 370

symptoms to the fulminant fatal forms. Frequently, acute myocarditis, with distinct onset, 371

follows a monophasic clinical course, and the majority of patients recover spontaneously after 372

several days of congestive heart failure. Some patients progress into subacute or chronic 373
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forms, which ultimately lead to death. The molecular mechanisms underlying fibrosis 374

development in chronic myocarditis are currently not well understood.375

Like humans, mice develop a marked age-related susceptibility to CVB infections 376

[137]. The myocardial lesions in mice closely resemble those seen in human disease [138]; 377

therefore, experimental murine models of coxsackievirus-induced myocarditis have been 378

developed to investigate the pathogenesis of this disease. Although chronic inflammation is 379

characteristic for the human disease as well as for our mouse model, fibrosis is more prevalent 380

in the latter.381

Excessive fibrosis, as it occurs under conditions of chronic myocarditis, can be 382

classified as either replacement fibrosis, when functional tissue is replaced by connective 383

tissue, or as reactive fibrosis, which is part of an adaptive process [139]. In addition to 384

collagen, tenascin C, and fibronectin, splice variants of these molecules are often part of the 385

fibrotic tissue [140,141]. Various cytokines and growth factors are believed to contribute to 386

the induction of fibrosis, including TGF- [142], IL-1, [143], TNF- [144,145], and PDGFs 387

[146,147]. For example, persistent expression of cytokines in the chronic stage of CVB3-388

induced myocarditis has been described for various mouse models [148-150], as well as for 389

human dilatative cardiomyopathy [151]. New observations suggest that sustained pro-390

inflammatory signaling is associated with a pro-fibrotic phenotype based on TGF-mediated 391

signaling [152].392

For fibrogenesis in the heart, members of the PDGF family are apparently important 393

mediators. Transgenic overexpression of PDGF-C and PDGF-D, two more recently 394

discovered PDGF isoforms [153], in the heart leads to massive cardiac fibrosis [146,147].395

Therefore, the importance of PDGF for the pathology of chronic myocarditis was investigated 396

in mice with CVB3-induced myocarditis. Interestingly, all analysed isoforms of PDGF-A, -B, 397

and -C were upregulated in close correlation with the inflammatory process. High levels of 398
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the growth factors persisted only in MHC class II knockout mice, which develop a chronic 399

myocarditis upon CVB3 infection, whereas immunocompetent C57BL/6 wild-type mice 400

exhibit only an acute, completely reversible myocarditis [154,155].401

Furthermore, it has been shown that the PDGF-receptor (PDGFR) blocker Imatinib 402

inhibits activation of resident PDGFR, and attenuates fibrosis in this mouse model 403

significantly [156]. These data strongly suggest that elevation of PDGF levels and subsequent 404

activation of PDGFR causally contribute to the type of cardiac fibrosis which occurs in this 405

model. Efficacy of Imatinib for attenuation of fibrosis has recently been reported also for 406

other organs, i.e., liver, joints, and kidney [157-159]. It can therefore be assumed that 407

Imatinib-sensitive tyrosine kinases play a more general role in fibrogenesis. In addition to the 408

PDGFR [157,160], the Abelson tyrosine kinase, a mediator of TGF--signaling (c-Abl) [161],409

has also been proposed as a relevant target for Imatinib in the inhibition of fibrogenesis 410

[159,162]. While our data [156], and data of others [146,147] strongly suggest a causal 411

involvement of the PDGFR in fibrogenesis, they do not exclude that c-Abl activity is also 412

involved in fibrogenetic signalling. It could function downstream of TGFBRs, but also 413

partially mediate signalling of the activated PDGFR [163]. It is known that TGF- can drive 414

cardiac fibrosis when overexpressed in the mouse heart [164] and the use of genetic mouse 415

models to understand the role of TGF- signalling in the heart is reviewed in [165]. But the 416

relative contribution of the different TGF--mediated signalling mechanisms to fibrosis in our 417

model of CVB3-induced chronic myocarditis remains to be fully elucidated.418

419

8. DIFFERENCES AND SIMILARITIES OF TGF- IN DIFFERENT ORGANS420

As presented in Table 1, numerous molecules have similar expression patterns in the diseases 421

mentioned in this review. Due to limited information from the human system, some data were 422

replaced by results derived from the respective animal model (fibrosis following irradiation).423
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TGF-1 is elevated in most pathologies in its active or latent form and shows 424

similarities with the isoform TGF-2 in most cases. In contrast, the expression of TGF-3 425

varies from down-regulation during wound healing and CD, abundance without regulation in 426

rheumatoid arthritis and UC, to up-regulation during diabetic nephropathy. If determined, the 427

expression of TGFBR2 is often enhanced during disease. The widespread appearance of the 428

term “n.d.” points out the urgent need for further investigation of the expression and the 429

effects of TGF--related molecules in human diseases associated with fibrosis, particularly at 430

the stage of signaling and transcriptional regulation.431

432

9. THERAPEUTIC STRATEGIES 433

As either increased or decreased activity of the TGF-pathway has been implicated in the 434

pathogenesis of different human diseases, methods for increasing or decreasing signaling 435

through these pathways are required [166]. There are some tools for enhancing TGF-436

signals, e. g., direct administration of the ligand, usage of agonists, and increased expression 437

of receptors or decreased expression of signaling antagonists. 438

On the other hand, there are different ways to inhibit TGF- signaling, e. g.,439

administration of neutralizing antibodies, application of soluble receptors, usage of antisense 440

nucleotides, and chemically synthesized inhibitors of the receptor serine/threonine kinases.441

Regarding TGF- inhibition, some clinical trials have been performed with 442

neutralizing antibodies, especially in fibrotic diseases, including a TGF-2 neutralizing 443

antibody (lerdelimumab) which effectively decreased the amount of scarring after glaucoma 444

surgery [167]. A TGF-1 neutralizing antibody (CAT-192, metelimumab) has been 445

administered intravenously to patients with systemic sclerosis, which causes scarring in skin 446

and internal organs, however, without any evidence of efficacy and with more adverse events 447
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and serious adverse events in verum than in placebo patients [168]. This raises the question of 448

whether broader or even complete blockade of the TGF- axis will be safe or rather 449

associated with substantial toxicity [168]. Despite these concerns, a pan-TGF- (GC-1008) 450

neutralizing antibody has recently being administered to patients with idiopathic pulmonary 451

fibrosis in a phase I clinical trial for safety evaluation [169] and is being administered to 452

patients with focal segmental glomerulosclerosis [170], renal cell carcinoma, and malignant 453

melanoma [171]; however, safety and efficacy data from these studies are not yet available.454

Similar to neutralizing antibodies, soluble TGF- superfamily receptors abrogate signaling at 455

the ligand level by binding the ligand and preventing it from binding to its cell surface 456

receptors. Due to the lack of studies in humans, only data from animal models are available. 457

For example, soluble TGFBR3 has demonstrated efficacy against renal damage progression 458

associated with diabetes in mice [172]. Similarly, soluble TGFBR2 has anti-cancer effects in 459

mice, as it suppresses the growth and metastasis of pancreatic cancer cells [173] and also 460

inhibits breast cancer cell growth, migration, invasion, and metastasis [174]. 461

Using anti-sense oligonucleotides to reduce the expression of TGF- superfamily members is 462

a relatively new therapeutic tool that has been already successful applied in clinical trials for463

cancer treatment [175,176]. Also, small molecule inhibitors have been introduced to block 464

TGF- signaling. The TGFBR1-inhibitor Ly573636, which blocks intrinsic receptor-kinase 465

activity, is currently being assessed in patients with certain cancers (see [176]), whereas other466

TGFBR1-inhibitors have shown to be efficient in mouse tumor models [177].467

468

10. CONCLUSIONS469

Due to the central role of TGF- in severe fibrotic diseases (with similarities and 470

dissimilarities among organs/diseases) it is an attractive therapeutic target, as already shown 471

in several clinical trials (see above).472



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
Review21

The strongly bifunctional role of TGF-, however (pro-fibrotic, but anti-inflammatory), 473

requires great care for the application of TGF--directed treatments. Future strategies will 474

therefore have to focus on developing suitable tools to address this bifunctionality such as:475

1) locally or regionally restricted administration of agonists or antagonists (in particular, 476

broad TGF- blockade by agents such as TGF- antibodies, TGF- receptors (soluble/anti-477

sense), latency-associated peptide or Smad7; 2) phase-dependent application in those periods 478

of disease dominated by the critical pathogenetic features of TGF-; and 3) development of 479

local or systemic biomarkers indicative of a future favorable response. The systemic 480

applicability of broad TGF- blockade will have to await the safety date from ongoing trials.481
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Table 1. Expression of TGF- related proteins in human disease compared to controls (normal or inflammatory)

Organ
Irradiated 

skin
Heart

Synovial 
membrane

Gut      Kidney

Disease
Wound 
healing

Fibrotic heart 
diseases*

RA CD inflamed CD fibrotic UC
Diabetic 

nephropathy

Molecule

THBS1    n.d. ↑[178,179] ↑[40,180] ↓[181] n.d. ↔[181] ↑[182]

Latent-
TGF-    ↑[122] n.d. ↔[183], ↑[39] n.d. n.d. n.d. ↑[182]

TGF-1    ↑[122] ↑[184,185]
↔[35,36,40,183], 

↑[37,38]
↑[76,108,114] ↑[108,114] ↑[76,108,114] ↔[186], ↑[53,72]

TGF-2    ↑[122] ↔[185] ↔[35,183] ↑[114] ↑[114] ↔[114] ↑[72]

TGF-3    ↓[187] ↑[185] ↔[35,183] ↓[114] ↓[114] ↔[114] ↔[186], ↑[72]

TGFBR1    n.d. ↓[184] ↑[40] ↔[113] n.d. n.d. n.d.

TGFBR2    ↑[188] ↔[184] ↑[35,183] ↑[113] n.d. n.d. n.d.

↑ increased, ↓ decreased, ↔ no change, n.d. not determined; *mostly following myocardial infarction
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FIGURE LEGENDS

Figure 1: TGF-1 induces different, but overlapping response in different organ systems.

Figure 2: Molecules of the TGF--pathway ranging from the release of TGF-, binding of 

receptors, signaling through Smads, FAK and MAPK to its entry into the nucleus and the 

regulation of the transcriptional activity (adapted from [40]).
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Rheu atoid arthritism

   Immune regulation

   ECM accumulation

   Leukocyte chemotaxis

   Fibroblast proliferation

Diabetic nephropathy

   Renal hypertrophy

   ECM accumulation

   Glomerulosclerosis

   Tubulo-interstitial fibrosis

Intestinal Inflammation

   Intestinal fibrosis

   ECM accumulation

   Fibroblast proliferation &
    migration 
   Myofibroblast differentiation

Graft healing after irradiation

   ECM accumulation

   Fibroblast proliferation  

   Delayed neovascularization

   Intimal dehiscences, hyalinosis

Myocarditis

   heart failure

   ECM accumulation

   tissue remodeling

   cardiac hypertrophy

TGF-

Figure 1
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